用户名: 密码: 验证码:
太行山中段麻棚岩体成因矿物学及其与成矿的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻棚岩体位于太行山中段石湖大型金矿西北部2~3千米处,关于该岩体与成矿关系尚未从成因矿物学角度进行系统研究。岩体与太古宇阜平群变质岩呈侵入接触,是由石英闪长岩(边缘相)、花岗闪长岩(过渡相)及花岗岩(中心相)组成的复式岩体。本文选取花岗闪长岩和花岗岩为研究对象,进行了如下研究。
     造岩矿物成因矿物学研究得出:斜长石环带异常,长石含高Fe_2O_3和TiO_2,反映了岩浆的氧化环境及混合特征。角闪石属钙质角闪石亚族,富Mg,在TiO_2-Al2O3图解位于壳幔混合区,反映壳幔混合特点;碱质变化较大;富含Fe3+是氧化环境的标志。黑云母富镁,AlVI含量较低,MF平均值0.56,符合同熔型特征;黑云母MnO偏高,MgO含量介于壳幔黑云母MgO含量之间,在Fe3+- Fe2+- Mg 2+图中黑云母全部落入壳幔混合区,黑云母与角闪石中具石英包体,说明壳幔混合源特点。角闪石-黑云母矿物温压计与前人研究结果显示,温度主要为740℃~760℃,压力主要为2×108~3×108Pa,氧逸度lgfo2主要为-14.60~-10.77。
     副矿物成因矿物学研究得出:锆石为典型岩浆锆石;其形态研究表明岩体结晶液相线温度约为900℃,岩浆期岩浆富水、富碱质;锆石微量元素表明岩浆具相对氧化的结晶环境,源区以壳源为主,有幔源物质混入。锆石U-Pb测年表明:麻棚岩体形成年龄为130Ma左右;初步推断岩体与脉岩为同源关系;金成矿略晚于130Ma,可能略晚几个Ma。大量磁铁矿和榍石共生组合,且角闪石富镁,说明岩浆氧逸度较高,指示磁铁矿系列。包体中磷灰石为细长针状,有些为短柱状,含MgO0.07%、FeO0.27%、TiO_20.20%,为岩浆混合标志。
     岩石地球化学研究表明:岩体由岩体边缘性→过渡相→中心相, SiO_2及全碱含量逐渐增加,而∑R"O、铝则逐渐减少,总体上贫硅,富含铝、碱及二价元素为钙碱性系列,具高钾特征;成因类型为I型花岗岩;相对富集部分成矿元素,富含碱土金属元素Sr、Ba,而贫岩浆演化晚阶段的碱金属Rb;岩体岩浆源区为下地壳,可能有地幔物质的混入,演化不彻底。
     综上所述,麻棚岩体与脉岩为同源关系;属I型花岗岩,岩浆源区为下地壳,有幔源物质的混入,形成年代为130Ma左右,具有氧化环境,富含碱质,有利于金的运移富集。
Mapeng intrusion lies in the northwest 2~3 kilometers of the large gold deposit in Shihu, which is from Mid-Taihang mountain. The relationship between the intrusion and mineralization hasn’t been studied systematically from the Genetic Mineralogy. Mapeng intrusion has an instrusive contact with metamorphic rocks of Archaeozoic Fuping group, which is composed of quartz diorite (border facies), granodiorite (transitional facies), granite (central facies). This paper studies granodiorite and granite, and the conclusions are as follows.
     The study on Genetic Mineralogy of rock-forming mineral shows that: plagioclase zonings are abnormal, Fe_2O_3 and TiO_2 are high in feldspar, which reflect the oxidation environment and mixing characteristics of magma. Amphiboles are the calc-amphibole subtribe, and are rich magnesium mineral, located in the area of MC in TiO_2-Al2O3 diagram, all of those characteristics on amphiboles indicate magmatic mixing; On the other hand the characteristics of the changing alkaline largely and the rich Fe3+ are the sign of the oxidation environment. All characteristics of rich Mg, low AlVI and the average of MF (0.56) on biotites indicate marke of syntexis type; MnO in biotites are higher, the quantity of MgO in biotites are the quantities between shell source and mantle source, Biotites are located in the area of MC in Fe3+- Fe2+- Mg 2+ diagram, quartzes are wrapped in biotites and amphiboles, all of those characteristics on biotites indicate magmatic mixing. The indicator of hornblende-biotite and the former reseaches show: the main temperatures of the intrusion are 740℃~760℃, the main pressure of the intrusion are 2×108~3×108Pa, the main oxygen fugacities lgfo2 of the intrusion are -14.60~-10.77.
     The study on Genetic Mineralogy of accessory mineral shows that: zircons are divided in the typical magmatogene zircons, the study of zircon shape shows crystallizing liquidus temperature of the intrusion is 900℃, and the magma are richer in water and alkaline; Trace elements of zircon indicates a relative oxidation environment of magmatic crystallization, that the source region is main with shell source and mixed by mantle source. U-Pb zircon dating indicates the formation age of Mapeng intrusion is about 130Ma; the relationships between the intrusion and dykes are primarily considered to be homologous. Intergrowth of a large number of magnetite and spineline and rich Mg in amphiboles indicate the higher oxygen fugacities of magma, and also indicate that the intrusion belongs to magnetite series. Aptities are long and thin needle-like and some are short prismatic, the quantity of MgO、FeO、TiO_2 of aptities are respectively 0.07%、0.27%、0.20%, the characteristics of aptities indicate the magmatic mixing.
     The study of geochemistry shows that: with the contents of the SiO_2 and whole alkali increasing gradually from the border facies, transitional facies to central facies of the Mapeng intrusion, the value of∑R"O and Al presents decreasing inversely. The intrusion is rich in Al, alkali and divalent ion but poor in Si generally, which belongs to calc-alkaline series, and has the characters of high K; The geneses of the intrusion is I-type granite, and the intrusion has the high value of the mineralization elements and Sr, Ba but low value of Rb; The origin source of the magma located at the lower crust and maybe mix partial mantle material, and its evaluation is not thorough.
     In conclution, Mapeng intrusion has the homoeologous relationship with the dykes, and it is divided into I-type granite which is come from lower crust with mantel material mixing. Its formation age is 130Ma±, and during the process of the intrusion, the magmatic environment is under the oxidation conditions and rich in alkali so that it is advantageous for migration and enrichment of Au.
引文
[1]Zhao et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research. 2001, 107:45~73
    [2]Yang, J.H., Wu, F.Y., Wilde, S.A.. Geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol. Rev. 2003, 23: 125~152
    [3]Xu, Y.G., Huang, X.L., Ma, J.L., Wang, Y.B., Iizuka, Y., Xu, J.F., Wang, Q., Wu, X.Y. Crustal–mantle interaction during the thermo-tectonic reactivation of the North China Craton: SHRIMP zircon U–Pb age, petrology and geochemistry of Mesozoic plutons in western Shandong. Contrib. Minera. Petrol. 2004, 147, 750~767
    [4]Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J-H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 2005, 233: 103~119.
    [5]喻学惠等.太行山中段铜-金成矿条件及找矿方向.北京:地质出版社, 1996
    [6]张亚雄,胡祥昭.麻棚岩体特征及其与金矿成因关系研究.中南矿冶学院学报, 1994, 25(3): 275~281
    [7]王季亮等.河北省中酸性岩体地质特征及其与成矿关系.北京:地质出版社, 1994
    [8]王晓霞等.北秦岭老君山、秦岭梁环斑结构花岗岩岩浆混合的岩相学证据及其意义.地质通报, 2002, 21(8~9): 523~529
    [9]李胜荣,陈光远,邵伟,孙岱生.胶东乳山金矿田成因矿物学.北京:地质出版社, 1996: 1~116
    [10]陈光远,孙岱生,周珣若,等.胶东郭家岭花岗闪长岩成因矿物学与金矿化.中国地质大学出版社: 1993, 1-230
    [11]孙丽.西藏尼木曲水一带花岗类成因矿物学及找矿潜力: [硕士学位论文].北京:中国地质大学(北京), 2002
    [12]黄钦.麻棚岩体的成岩物理化学条件及演化规律(摘要).地质地球化学, 1990, (4): XXIV~XXVI
    [13]Baxter S and Feely M. Magma mixing and mingling textures in granitoids: ExamPles fromGalway granite, Connemara, Ireland. Mineral. Petrol. 2002, 76: 63~74
    [14]Lndi P, M trieh N, Bertagnini A and Rosi M. Dynamies of magma mixing and degassing recorded in plagioclase at Stromboli ( Aeolian Arehipelago,Italy). Contri. Mineral. Petrol. 2004, 147: 213~227
    [15]Leak, B.E. Nomenclature of amphiboles. Amer. Minera, 1978, Vol.63
    [16]姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及岩石学意义.矿物岩石, 1984,第3期
    [17]陈斌,刘超群,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据.地学前缘(中国地质大学(北京);北京大学), 2006, 13(2): 140~147
    [18]周珣若.花岗岩混合作用.地学前缘(中国地质大学,北京), 1994, 1(1~2): 87~97
    [19]Chappel B.W. and White A.J.R. Two contrasting granites types. Pecific Geol, 1974
    [20]王洁民,刘振声.西藏花岗岩类中黑云母的特征.矿物岩石, 1988, 8(4): 66~72
    [21]徐克勤等,华南两个成因系列花岗岩类及其成矿特征.矿床地质, 1982, No.2
    [22]洪大卫等,华南花岗岩的黑云母和矿物相及其与矿化系列的关系.地质学报, 1982, No.2
    [23]Foster M D. Interpretation of composition of trioctacherdral mica. U S Geol Surv Prof, 1960, 354-B: 1~49
    [24]孙世华.中国东部花岗岩类云母分类及两类云母花岗岩序列兼论华南花岗岩的演化: [博士学位论文].北京:中国科学院地质所, 1986
    [25]刘凤山,石准立.从闪长质岩石包体角度探讨太行山—燕山造山带壳幔成矿作用.矿床地质, 1995, 14(3): 206~215
    [26]丁孝石.西藏中南部各类花岗岩中云母矿标型特征及其地质意义.中国地质科学院矿床地质研究所所刊, 1988, (1): 33~50
    [27]Whalen J.B. Chappell B.W. Opaque mineralogy and mafic mineral chemistry of I and S-type granites of the Lachlan fold belt, southeast Australia, Am. Mineralogist, 1988 Vol.73: 281296
    [28]徐克勤等.华南花岗岩类的成因系列和物质来源.南京大学学报(地球科学), 1989(3): 1~18
    [29]刘振声,王洁民.青藏高原南部花岗岩地质地球化学.成都:四川科学技术出版社, 1994: 1~133
    [30]王荫德,陈鸣,张成江.花岗岩类中的铁、钛副矿物及其成因意义.成都地质学院学报, 1990, 17(4): 46~52
    [31]Wones D.R. Significance of the assemblage titanite + magnetite + quartz in granitic rocks, Amer. Mineral, 1989, Vol.74: 744~749
    [32]王联魁等.用磁铁矿和钛铁矿划分南岭地区不同来源花岗岩的探讨.地质与勘探, 1983,(6): 2~7
    [33]Wyllie P J, Cox K G, Biggar G M. The habit of apatite in synthetic systems and igneous rocks. J Pet. 1962, 3(2): 238~243
    [34]Hibbard M J. Textural anatomy of twelve magma-mixed granitoid systems [A]. In: J. Dider & B. barbarn (editors). Enclaves and granite petrology [M]. Elsevier, Amsterdam. 1991, 431~444
    [35]修群业,殷艳杰,李惠民.单锆石定年样品的采集及矿物分选.前寒武纪研究进展, 2001, 24(6): 107~110
    [36]Hoskin, Schaltegger. The composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in mineralogy and geochemistry. Mineral Soc Ameraca, 2003, 53(1): 27~62
    [37]陈光远,孙岱生,邵岳.胶东昆嵛山二长花岗岩富矿物成因矿物学研究.现代地质, 1996,10(2): 175~186
    [38]Pupin J.P. Zircon and Granite Petrology. Contribution to Mineralogy and Pereology, 1980, 73: 207~220
    [39]Pupin J.P. Magmatic zoning of hecynian granitoids in france based on zircon typology, Switzerland Minerd. Petrograph. Mitt, 1985, 65: 29~56
    [40]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 2004, 49(16): 1589~1604
    [41]Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from thw western Alps. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Herdelgerg, Germany, 2000, 373~400
    [42]M ller A, O’Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An ex-ample from the ultrahigh-temperature granulites of Rogaland (SW Norway). EMU Notes in Mineralogy, 2003, 5: 65~81
    [43]Belousova E A, Griffin W L, O’Reilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602~622
    [44]陈道公,汪相等.北大别辉石岩成因:锆石微区年龄和化学组成.科学通报, 2001, 46(7): 586~590
    [45]Heaman LM, Bowins R, Crocket J . The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta, 1990, 54: 1597-1607
    [46]Belousova EA, Griffin WL, Pearson NJ. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral Mag, 1998, 62: 355~366
    [47]Hoskin PWO. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: a consideration and comparison of two broadly competitive techniques. J Trace Microprobe Tech, 1998, 16: 301~326
    [48]Hoskin PWO, Ireland TR. Rare earth element chemistry of zircon and its use as a provenance indicator.Geology, 2000, 28: 627~630
    [49]Hinton RW, Meyer C. Ion probe analysis of zircon and yttrobetafite in a lunar granite. Lunar Planet Sci, 1991, 22: 575~576
    [50]Snyder GA, Taylor LA, Crozaz G. Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14: an ion probe study of evolved rocks on the Moon. Geochim Cosmochim Acta, 1993, 57: 1143~1149
    [51]Sano Y, Terada K, Fukuoka T. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol, 2002, 184: 217~230
    [52]Barbey P, AlléP, Brouand M, Albarède F. Rare-earth patterns in zircons from the Manaslu granite and Tibetan Slab migmatites (Himalaya): insights in the origin and evolution of a crustally-derived granite magma. Chem Geol, 1995, 125: 1~17
    [53]Murali AV, Parthasarathy R, Mahadevan TM, et al. Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments—A case study on Indian zircons. Geochim Cosmochim Acta, 1983, 47: 2047~2052
    [54]Maas R, Kinny PD, Williams IS, et al. The Earth’s oldest known crust: a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta, 1992, 56: 1281~1300
    [55]Hoskin PWO, Kinny PD, Wyborn D. Chemistry of hydrothermal zircon: investigating timing and nature of water-rock interaction. In Water-Rock Interaction, WRI-9. Arehart GB, Hulston JR (eds) AA Balkema, Rotterdam, 1998, 545~548
    [56]Gerhard Vavra, Dieter Gebauer, Rolf Schmid, William Compston. Multiple zircon growth andrecrystallization during polyphase Late Carboniferous to Triassic metamorphism in garanulities of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol, 1996, 122: 337~358
    [57]Belousova, Griffin and Suzanne. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples From Easter Australian Granitoids. Journal of Ptrology, 2005, 1~25
    [58]宋彪,张玉海,万俞生等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评, 2002, 48(增刊): 26~30
    [59]Ludwig K R, User’s Manual for Isoplot 3.00, a geochronlogical Toolkit for Microsoft Excel, Berkeley Geochronlogical Center Special Publication, 2003, 4: 25~32
    [60]Zhao Guochun, Sun Min & Simon A. Wilde. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 2003, 23~38
    [61]杨殿范,李高山,贾克实等.太行山区土岭、石湖金矿床成矿条件及成因探讨.长春地质学院院报, 1991, 21(1): 47~54
    [62]刘荣访.河北省灵寿县石湖金矿的构造地球化学特征.北京地质, 2001, 13(4): 13~19
    [63]息朝庄,戴塔根等.冀西麻棚花岗岩类侵入岩岩石地球化学特征.岩石矿物学杂志, 2008, 27(2): 113~120
    [64]Irvine T N. A guide to the chemical classification of the common volcanic rocks, Canad J. Earth Sci, 8
    [65]肖庆辉,邓晋福,马大锉等,花岗岩研究思维与方法,地质出版社,北京,2002
    [66]Rickwood, Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 1989, 22(4): 247~263
    [67]蔡剑辉,阎国翰等.太行山-大兴安岭东麓晚中生代碱性侵入岩岩石地球化学特征及其意义.地球学报, 2006, 27(5): 447~459
    [68]刘本立.地球化学基础[M].北京:北京大学出版社, 1994
    [69]王增,申屠保涌,丁朝建等.藏东花岗岩类及其成矿作用.成都:西南交通大学出版社, 1995
    [70]喻学惠等.太行山中段铜-金成矿条件及找矿方向.北京:地质出版社, 1996
    [71]徐克勤等.与金矿有关花岗岩类的岩石地球化学特征.桂林冶金地质学院学报, 1992, 12(2): 1~9
    [72]朱永峰. Sobolev R N.高加索Eldjurti花岗岩体的生成环境及岩浆岩化特征[J].地质论评, 1994, 40(6): 554~564.
    [73]王中刚,于学元,赵振华等.稀土元素地球化学[M].北京:科学出版社, 1989, 1~495
    [74]胡受奚等.华北与华南古板块拼合带地质和找矿.南京:南京大学出版社, 1988
    [75]王鹤年,徐克勤.胶东中元古代玲珑花岗岩及其后期叠加改造作用的地质、地球化学证据.南京大学学报(地球科学), 1988, (l): 105~118
    [76]邵克忠,王宝德.嵩山西北地区金矿成矿作用及成矿规律[J].河南地质, 1992, 10(3): 161~167
    [77]王启超,马俊良,张建中.河北省灵寿县阜平接壤地带麻棚金矿田的地球化学特征及矿床成因.地球化学, 1995, 24(1): 56~68
    [78]姚凤良,刘连登,孔庆存等.胶东西北部脉状金矿.长春:吉林科学技术出版社,1990
    [79]陈光远,孙岱生,殷辉安.胶东金矿成因矿物学与找矿.重庆:重庆出版设, 1987
    [80]杨殿范,李高山.含矿岩体的评价标志—以太行山北段四个岩体为例.吉林地质, 1994, 13(2): 22~28
    [81]王守一,张步升等.石湖金矿床中金的赋存特征及其微观机理的研究.河北师范大学学报(自然科学版), 1998, 22(2): 276~279
    [82]傅朝义.河北省变质核杂岩及其金矿床[D].长沙:中南大学, 1999
    [83]地质专报-区域地质质.第15号.河北省北京市天津区域地质志.北京:地质出版社, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700