用户名: 密码: 验证码:
北秦岭西段尹道寺中生代火山岩及兴隆山新元古代火山岩岩石地球化学研究与区域构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在充分搜集研究前人资料的基础上,结合野外实际路线调查及重要样品实验测试研究,以地球化学研究为主,通过区域地质学、构造地质学、岩石大地构造学、同位素年代学及岩相学等方面的分析重点对北秦岭西段伯阳-尹道寺地区及祁连东段兴隆山地区火山岩系进行系统研究,确定其形成时代,识别其成因和大地构造环境,阐明岩石成因和构造演化历史,为探讨中国大陆造山带的基本特征及大陆动力学机制提供重要基础资料。
     通过对以上研究,取得以下主要新进展和初步认识:
     (一)北秦岭西段尹道寺火山岩形成时代及岩石学研究结论LA-ICPMS锆石U-Pb定年以及元素地球化学研究表明,北秦岭西段尹道寺流纹岩形成于211±2.6Ma,为印支末期。
     总体说来,该套流纹岩具有如下元素地球化学特征:
     (1)SiO_2、Na_2O+K_2O含量高,TiO_2含量低,属亚碱性系列;
     (2)轻稀土高度富集,Eu负异常明显,具有大陆板内火山岩的微量元素原始地幔标准化分配模式,Ba、Sr、P、Ti呈显著亏损;
     (3)Pb同位素特征显示流纹岩的源区为北秦岭基底岩石,为下地壳部分熔融的产物,稀土元素和微量元素分配模式对比表明源区物质可能为古元古代秦岭岩群中的黑云角闪斜长片麻岩;残留物可能主体为斜长石,含有角闪石,岩浆演化过程中存在程度有限的碱性长石和黑云母的分离结晶;
     (4)印支末期特定的构造转换背景与北秦岭西段尹道寺地区特定的断裂构造的结合,形成了该地区独特的流纹岩浆喷发。
     (二)祁连东段兴隆山群基性火山岩的时代及岩石学研究结论:
     (1)兴隆山群可分为下、中、上三个组,主体为一套浅变质碎屑岩与基性火山岩建造组合。上组基性火山岩样品的锆石U-Pb LA-ICPMS测年显示其形成年龄为713- 824Ma,表明兴隆山群上组形成时代为新元古代。
     (2)元素地球化学研究揭示兴隆山群下组玄武岩和中、上组的基性熔岩具有明显的差异,前者LREE富集,微量元素原始地幔标准化分配型式明显呈现Nb-Ta、Ti负异常;后者LREE亏损,重稀土相对富集,微量元素原始地幔标准化分配型式呈平坦型。兴隆山群火山岩均为亚碱性拉斑系列火山岩。
     (3)兴隆山群基性火山岩源岩浆演化过程中经历了plag+cpx[±ol]的分离结晶作用。下组玄武岩形成于大陆板内伸展环境,源岩浆在上升演化过程中经历了较为强烈的地壳混染作用。中、上组形成于初始洋盆环境。
     (4)下组玄武岩幔源性质显示为EN(富集组分),反映了软流圈似地幔柱源上升过程中经受了地壳混染作用,主要形成于原始石榴子石稳定区域;中、上组基性熔岩幔源性质为亏损地幔源,类似于N-MORB,形成于亏损尖晶石二辉橄榄岩稳定区域。
     (5)兴隆山群是Rodinia超大陆形成后从大陆伸展-大陆裂谷发育-初始洋盆形成的演化历史在祁连造山带东部的响应。
Based on the former data, field investigation and major samples analysis and study, this paper emphasizes particularly on geochemical and tectonic evolution of Mesozoic volcanic rocks from Yindaosi area in west segment of North Qinling Mts., and Late Proterozoic volcanic rocks from Xinglongshan Formation in Eastern Qilian Mts., by means of geochemistry, regional geology, tectonic geology, petromorphology, isotope chronology and microphysiography. The purpose is to determine their age, identify their petrogenesis and geotectonic setting, and clarify the relationship between the petrogenesis and tectonic environment. To study on the two groups volcanic rocks provided us important information for discussing the basic characteristics of Chinese continental orogenic zone and continental dynamics mechanism.
     Through the study, new findings are as following:
     1. The results of U-Pb zircon La-ICPMS dating for volcanic rocks from Yindaosi area in west segment of North Qinling Mts. and the petrography study are as follow:
     The results of U-Pb zircon La-ICPMS dating for volcanic rocks from Yindaosi area in west segment of North Qinling Mts. and the elements geochemistry study show that Yindaosi rhyolite is 211±2.6Ma, at the later Indo-Chinese epoch.
     As a whole, the element geochemistry characteristics of this rhyolite are following.
     (1) High SiO_2, Na_2O + K_2O and low TiO_2, and it belongs to sub-alkali series.
     (2) LREE enriched, distinct negative abnormity on Eu, and the primitive-mantle normalized trace element patterns is of the intraplate, with the markedly depletion on Ba, Sr, P and Ti.
     (3) The traits of Pb isotope show that the source region of Yindaosi rhyolite is the basement rocks in the North Qinling Mts., which are produced by the partial melting earth’s crust. The comparison of Chondrite-normalized patterns of REE and the primitive-mantle normalized trace element patterns suggests that the matter in the source region may be biotite- hornblende-anorthose gneiss of Paleoagnotozoic Qinling Group. The residue may be mainly plagioclase, containing hornblende, and the limited separate crystal of alkalic feldspar and biotite existed in the magma process.
     (4) Combining the specific conversion tectonic setting in Indo-Chinese epoch with certain faults in the Yindaosi area in west of North Qinling Mts., the rhyolite magma erupted particularly in the region.
     2. The results of U-Pb zircon La-ICPMS dating for volcanic rocks from Xinglongshan Formation in Eastern Qilian Mts. and the petrography study are as follow:
     (1) Xinglongshan Group consisting mainly of detrital rocks and basic volcanic rocks, which can be divided into lower, middle and upper formations. The result of U-Pb zircon LA-ICPMS dating for upper formation basic lava is 713-824Ma, together with the regional geological characteristics, we suggest that Neoproterozoic is the formation age of Xinglongshan Group.
     (2) Based on petrographic, major and trace element data, the lower formation of basalt or basaltic and middle and upper formations of basic volcanic rocks of Xinglongshan Group are different distinctly. The former exhibits LREE enriched, distinct Nb-Ta ant Ti depletion in trace element patterns. The latter with LREE depleted and HREE enriched, their primitive-mantle normalized diagram show a“flat-type”patterns. The Xinglongshan Group volcanic rocks are dominantly tholeiitic in composition.
     (3) The parent magma of Xinglongshan Group basic volcanic rocks subjected to shallow level gabbroic (palg+cpx[±ol]) fractionation. The basic lavas in the lower formation occurs within plate rift setting, and crustal contamination has also contributed significantly to the formation of the basalt. In contrast, the middle and upper formation form in initial oceanic basin setting
     (4) The basalt or basaltic in the lower formation with En(composition enriched), exhibits approximate mantle plume in asthenosphere subjects crustal contamination in the process of uplifting , mainly forming in the primitive garnet stability field. The basic lavas in the middle, upper formation derived from depleted mantle source similar to N-MORB in inspinel-iherzolite stability field.
     (5) Xinglongshan Group is the response of the evolvement history in eastern Qilian orogenic belt of continental extension-continental rift development-formation of initial ocean basin, after the formation of Rodinia Supercontinent.
引文
[1]陈隽璐,陈有仓,李海平,等.祁连与北秦岭结合部位陇山岩群与秦岭岩群对比讨论[J].陕西地质, 2002,20(2):39-49
    [2]陈隽璐,张占武,李海平,等宝鸡市幅1:25湾区域成果调查报告[R].中国地质调查局内部资料,2004.
    [3]邓万明,中国西部新生代火山活动及其大地构造背景-青藏及邻区火山岩的形成机制[J],地学前缘,2003,2(2):471-478
    [4]丁仨平,裴先治,胡波,甘肃天水地区新生代火山岩地球化学特征及其成因[J],地质与勘,2005,1(1):33-37
    [5]董云鹏,张国伟,朱炳泉.北秦岭构造属性与古元古代构造演化[J].地球学报,2003,24(1):3-10
    [6]樊双虎,张维吉,金符实,等.甘肃陇山地区葫芦河群变质玄武岩及大地构造环境恢复{[J].西安地质学院学报, 1993,15(4):80-84
    [7]冯益民,曹宣铎,张二朋,等.西秦岭造山带结构、造山过程及动力学[M].西安地图出版社, 2002,1-263.
    [8]甘肃省地质矿产局.甘肃省区域地质志[M].地质出版社, 1989.5-140
    [9]何世平,王洪亮,徐学义,等.北祁连东段红土堡基性火山岩和陈家河中酸性火山岩地球化学特征及构造环境[J].岩石矿物学杂志,2007(4):295-309
    [10]何世平,王洪亮,徐学义,等.北祁连东段红土堡基性火山岩锆石LA-ICP-MSU-Pb年代学及其地质意义[J].地球科学进展,2007,22(2):143-151
    [11]何世平,王洪亮,陈隽璐,等.北祁连东端陇山岩群斜长角闪岩锆石LA-ICP-MS测年及其地质意义[J].地质学报,2006,80(11):1688-1675
    [12]何艳红,孙勇,陈亮等.陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].岩石学报, 2005,21(1):126-134
    [13]洪大卫.花岗岩研究的最新进展及发展趋势[J].地学前缘,1994,1(1):79-86
    [14]胡波,裴先治,丁仨平,等.甘肃天水地区红土堡变基性岩的地球化学特征及其构造意义[J].地质通报, 2005.24(3):258-263
    [15]杨学明,李石,王彤.火山岩[M],地质出版社,1981,9
    [16]李廷栋.我国地层和岩浆岩研究上若干新进展[J].地质科技, 1973,(1):1-14
    [17]李永军.西秦岭泥盆纪古生物分区及古地理演变初探[J].西安地质学院学报, 1988,10(3):14-18
    [18]李伍平,路凤香.钙碱性火山岩构造背景的研究进展[J],地质科技情报,1999,(6):15-18
    [19]刘国惠,张寿广,游振东等.秦岭造山带主要变质岩群及变质演化[J].地质出版社,1993,63-89
    [20]陆松年,李怀坤,陈志宏,等.秦岭中—新元古代地质演化及对RODINIA超级大陆事件的响应.地质出版社, 2003,1-194
    [21]陆松年,陈志宏,李怀坤,等.秦岭造山带中—新元古代(早期)地质演化[J].地质通报, 2004,23(2):107-112
    [22]毛景文,谢桂青等,大陆动力学演化与成矿研究-历史与现状兼论省略南地区在地质历史演化期间大陆增[J],矿床地质,2005,(3):193-205
    [23]裴先治,丁仨平,李佐臣,等.西秦岭北缘关子镇蛇绿岩的形成时代:来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J].地质学报,2007,11:1150-1161
    [24]裴先治,丁仨平,李佐臣,等.西秦岭天水地区新生代酸性火山岩地球化学特征及其构造意义[J].岩石矿物学杂志, 2004b.23(3):227-236
    [25]裴先治,李勇,陆松年,等.西秦岭天水地区关子镇中基性岩浆杂岩锆石U-Pb同位素年龄及其地质意义[J].地质通报,2005a,24(1):23-29
    [26]裴先治,李佐臣,丁仨平,等.西秦岭天水地区岛弧型基性岩浆杂岩的地球化学特征及形成时代[J].中国地质, 2005b,32(4):529-540
    [27]裴先治,丁仨平,张国伟,等..西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报, 2007b, 81(6):772-786
    [28]沈谓洲.同位素地质学[M].原子能出版社,1997,11
    [29]宋志高.祁连山东段的元古宙陇山群[J].地球学报, 1995,(2):204-209
    [30]宋志高,贾群子,张治洮,等.北秦岭—北祁连(天水—宝鸡间)早古生代火山岩系及其构造连接关系的研究[J].中国地质科学院西安地质矿产研究所所刊,1991b(34号):1-82
    [31]苏』科普切弗-德沃尔尼科夫等,火山岩及其研究方法[M],北京,地质出版社1978,7
    [32]王德滋,周新民,火山岩岩石学[M].北京:科学出版社,1982
    [33]王德滋,周金城,我国花岗岩研究的回顾与展望[J].岩石学报,1999,15(2):161-169
    [34]王德滋,周新民,中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化[M],北京;科学出版社, 2002,1-295
    [35]王洪亮,何世平,陈隽璐,等.甘肃马衔山花岗岩LA-ICP-MS锆石U-Pb测年及其构造意义[J].中国地质,2007,81(1):72-78
    [36]王洪亮,陈亮,孙勇,等.北秦岭西段奥陶纪火山岩中发现近4.1 Ga的捕虏锆石[J].科学通报,2007,52(14):1685-1693
    [37]王洪亮,何世平,陈隽璐,等.北秦岭西段红花铺俯冲型侵入体LA-ICPMS定年及其地质意义[J].现代地质,2006,20(4):536-544
    [38]王洪亮,何世平,陈隽璐,等.北秦岭西段胡店片麻状二长花岗岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].中国地质,2007,34(1):17-25
    [39]王建,李建平.西秦岭礼县地区新生代钾霞橄黄长岩系地球化学特征及地质意义[J].岩石矿物杂志,2003,22(1):11-19
    [40]吴茂炳,傅碧宏,刘春燕.甘肃东部陇山群中斜长角闪岩的形成时代和构造背景[J].地质地球化学, 2000,28(2):45-50
    [41]夏林圻.造山带火山岩研究[J].岩石矿物学杂志,2001,20(3):225-232
    [42]夏林圻.造山带火山岩浆作用[J].西北地质,2001,34(3):18-28
    [43]夏林圻,夏祖春,任有祥,等.祁连、秦岭山系海相火山岩[M].中国地质大学出版社,1991,1-304.
    [44]肖林、邓颖晖.东祁连兴隆山岩群划分及构造特征[J].甘肃地质学报(增刊),1997,(6):6-7.
    [45]杨晓勇,陈双喜译,岩石地球化学[M].中国科学技术大学出版社,2000,1-275
    [46]喻学惠,莫宣学,Martin Flower,等.甘肃西秦岭新生代钾霞橄黄长岩火山作用及其构造意义[J].岩石学报[J],2001,17(3):366-377
    [47]喻学惠.甘肃礼县地区新生代钾质碱性超基性火山岩的特征及成因[J].特提斯地质,1994(18):114-125
    [48]张本仁,傅家谟,地球化学进展[M].化学工业出版社,2005,4-127
    [49]张本仁,高山,张宏飞,等.秦岭造山带地球化学[M].科学出版社,2002,1-187
    [50]张国伟,张本仁,袁学诚,秦岭造山带造山过程与大陆动力学[M].科学出版社, 2001,1-855
    [51]张国伟,董云鹏,姚安平,关于中国大陆动力学与造山带研究的几点思考[J].中国地质,2002,(1):8-13
    [52]张宏斌,余晓红,刘斌.华家岭花岗质侵入岩体的地质特征[J].甘肃地质学报,2004,13(2):45-49
    [53]张彦杰,邓亚萍,马惠萍,等.祁连造山带东段葫芦河蛇绿岩的厘定及其地质意义[J].甘肃地质学报,2004,13(2):13-18
    [54]张宏飞,靳兰兰,张利,等.西秦岭花岗岩类地球化学和Pb-Sr-Nb同位素组成对基底性质及其构造属性的限制[J].中国科学(D辑), 2005,35(10):914-926
    [55]张维吉,孟宪恂,胡健民,等.祁连—北秦岭造山带接合部位构造特征与造山过程[M].陕西:西北大学出版社,1994,1-189
    [56]张宗清,张国伟,刘敦一,等.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学[M].地质出版社,2006,1-348
    [1] Andersen T. Correction of common lead inU-Pb analyses thatdonot report204Pb [J].ChemicalGeology,2002, 192: 59-79
    [2] Anderson T. 2002. Correction of common Pb in U-Pb analyses thatdo not report204Pb. Chemical Geology,192:59-79
    [3] Allegre C J, Lewin E and Dupre B. 1988. A coherent crust-mantle model for the uranium-thorium-lead isotopic system[J]. Chem. Geol,70: 211-234
    [4] Boynton W V. 1984. Geochemistry of the rare earth elements: mete-orite studies [A]. Henderson P. Rare Earth Element Geochemistry[C]. Elsevier, 63-114
    [5] Boynton W V. 1984. Geochemistry of the rare earth elements:meteorite studies. In:Henderson P(ed.). Rare Earth Element Geochemistry. Elesevier Science Publishers B.V.,63-114
    [6] Condie K C. 1989. Geochemical changes in basalts and andesites acrossthe Archaean-Proterozoic boundary: identification and significance[J]. Lithos, 23:1-18
    [7] Crawford A J, Beccaluva L and Serri G. 1981. Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites[J]. Earth Planet Sci. Lett. , 54:346-356
    [8]Dunning G R,Peterson R P. U/Pb ages of ophiolites and arcrelated cratons of the Norwegian Caledonides:Implications for thedevelopment of impetus. Contribution to Mineralogy and Petrology, 1988.98:12-23
    [9] Gao Shan, Liu Xiaoming, Yuan Honglin. Analysis of forty-twomajor and trace elements of USGS and NISTSRM Glassesby LA-ICPMS[J].GeostandNewsletter, 2002, 22: 181-195
    [10] LudwigK R. Isoplot-A plotting and regression program for radio-genic-isotope data[ J].US Geological Survey Open-File Report,1991, 39: 91-445
    [11]Miyashiro A. 1975. Classification, characteristics and origin of ophiolites[J]. Journal of Geology, 83: 249-281
    [12]Pearce J A, Harris N B W and Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984. 25: 956~983
    [13]Yuan H L, Wu F Y, Gao S,et al. Determination of U-Pb age and rare earth element concentrationof zircons from Cenozoic intrusions in northeastern China by laserablation ICP-MS. Chinese Science Bulletin, 2003.48(22):2411-2421
    [14]Vavra G,Schmid R,Gebauer D.Internal morphology,habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Ivren Zone ( Southern Alps).Contribution to Mineralogy and Petrology, 1999. 134:380-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700