用户名: 密码: 验证码:
柴达木盆地东南缘热年代学与构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原北部的柴达木盆地是世界屋脊青藏高原内部最大的山间盆地,其构造变形研究与盆地周缘造山带岩浆活动和热演化历史的精确定年和热年代学研究将有利于增强对青藏高原的构造演化过程和印-亚碰撞远程效应的认识。
     柴北缘地区的岩浆活动主要分为两期:第一期发生在奥陶纪-志留纪(~493~420 Ma);第二期发生在晚二叠世(257.8±4.0 Ma)。柴达木盆地东南缘的岩浆活动时间相对比较集中,均发生在晚二叠世-中三叠世(~250~230 Ma),如果不考虑采样位置的因素,柴北缘的第二期岩浆活动时间也可以归到晚二叠世-中三叠世(P-T)。利用本研究在柴达木盆地东南缘、柴北缘得到的LA-ICP MS锆石U-Pb年龄,并结合前人在东昆仑山、阿尔金山东南缘等地的研究,可以认为在晚二叠世-晚三叠世期间,整个柴达木盆地周缘都经历了广泛的岩浆侵入活动。从晚二叠世-晚三叠世(P-T)花岗岩类侵入岩分布范围来看,柴达木盆地东端基底相对于西部基底的地壳缩短量可能在50%左右。
     柴达木盆地东部都兰一带,由于一系列北东倾的、向南西推覆的逆冲断层作用和温泉断裂的右行走滑作用,将柴达木盆地的变质基底和前中生界沉积基底翘起,从而使得柴达木盆地与共和盆地分隔开来。逆冲断层系磷灰石裂变径迹(FT)测年结果反映了柴达木盆地基底断层作用的规律性。从FT测年结果可以看出,FT年龄分为2组,也就是2个活动时期:第1期为108 Ma至61 Ma:第2期为26.6 Ma至17.8 Ma。第1期反映的断裂活动具有明显的规律性:从柴达木盆地南缘的东昆仑开始,向柴北缘方向,逆冲推覆的断层作用时间逐渐变年轻,从东昆仑的108.0±9.6 Ma(柴达木南缘断裂)变为63.7±4.4 Ma(柴北缘断裂),之后可能有小的跳动。第2期,在原有的一些逆冲断层上形成了新的活动,或形成了一些新的逆冲断层,总体上具有无序或跳跃式变动的特点。该期活动也对应于青藏高原的气候变化事件。
     东昆仑山基底的逆冲断层具有3个活动时期:第1期为52.9 Ma;第2期为16.3 Ma至10.0 Ma;第3期为5.1 Ma至0.9Ma。第1期反映了青藏高原的一次隆升作用是印-亚陆陆碰撞的最先反映,但隆升后即被剥蚀、夷平成为其南侧可可西里群与北侧路乐河地层的物源区;第2期为发生住中新世中期(~15 Ma)的隆升活动,它精确反映了青藏高原的初次整体隆升,此次隆升事件导致青藏高原的气候变化和埃达克火山岩的大量喷发;第3期活动与有些学者提出的青藏高原面貌的末次快速隆升发生的时间是吻合的。柴东和东昆仑地区裂变径迹热年代学,反映了柴达木盆地东南缘中新世构造挤压变形作用,是从柴东都兰-乌兰一带开始,并向西扩展的。
Qaidam basin is one of largest intramontane basins throughout China which is located to the north of Tibetan Plateau,deformation studies within basin,accurate constraints on magmatic activities and thermal histories of its surrounding mountains,are definitely conductive in better understanding of Tibetan Plateau in terms of its tectonic evolution processes,as well as far-field effects resulting from Indo-Eurasian collisions.
     Two phases of magmatic activities have recorded in Northern Qaidam Basin by LA-ICP MS zircon U-Pb dating.PhaseⅠoccurred during approximately 493~420 Ma between Ordovician and Silurian.PhaseⅡoccurred during late Permian(257.8±4.0 Ma).Ages of magmatic events in Southeastern Qaidam focused primarily on ages between 250~230 Ma(P-T),regardless of sampling localities,the PhaseⅡhappened in Northern Qaidam can be included in the time interval of Southeastern Qaidam.Based on dating results of this study,in conjunction with previous work in Eastern Kunlun Shan,as well as Southeastern Altyn Shan, we can conclude that entire mountains surrounding the Qaidam basin have undertaken thoroughly magmatic activities during time interval ranging from late Permian to late Triassic time.
     In eastern Qaidam Basin,the metamorphic and sedimentary Pre-Mesozoic basement had been uplifted due to faulting of the East Qaidam Thrust System and then was separated from the Gonghe Basin due to dextral strike-slip faulting of Wenquan Fault.Apatite fission track analyses and thermochronology from eastern Qaidam Basin show two phases exhumation and thrusting since Mesozoic.PhaseⅠspans from 108 Ma to 61 Ma,showing a reduction of AFT cooling ages from south to north,and could be interpreted as the tilting exhumation of the Qaidam basement and thrusting before and at the beginning of Cenozoic. PhaseⅡoccurs during 26.6~17.8 Ma between Paleogene and Neogene,which is expressed as the out-of-sequence Cenozoic thrusting of East Qaidam Thrust System.
     According to apatite fission track analyses and thermochronology from Eastern Kunlun shan,three phases exhumation and thrusting events have been indicated since Cenozoic.PhaseⅠoccurred in 52.9 Ma, demonstrating a uplifting event accross Tibetan Plateau subsequent to the Indo-Eurasian collisions, however,it had been eroded shortly after it exhumation and became source areas of sedimentary rocks Kekexili Fm.to the south,Lulehe Fm.to the north.PhaseⅡoccurred between 16.3 Ma and10.0 Ma,the uplifting event mainly centered on the middle Miocene(~15 Ma) accurately witnessed the entire uplifting of Tibetan Plateau for the first time,subsequently,significant climate change and Adakitic rocks eruptions have been recorded.The timing of PhaseⅢ,namely spanning 5.1 Ma to 0.9Ma is consistent with the final uplifting event throughout Tibetan Plateau suggested by some researchers.
     According to the distribution patterns of granitoids intruded during late Permian to late Triassic times, shortening rate of Eastern Qaidam basement is as much as 50%that of the western Qaidam.
     Apatitie fission track dating in both Eastern Qaidam and Western Qaidam suggest that tectonically compressional deformation in Miocene initiated from Dulan-wulan in Southeastern Qaidam then propagated westernward.
引文
[1]陈丹玲,刘良,车自成等.2001.祁漫塔格印支期铝质A型花岗岩的确定及初步研究.地球化学,30(6):540-546.
    [2]蔡海磊,蔡雄飞,顾延生.2007.昆仑山何时开始隆升.海洋地质动态,23(5):7-10.
    [3]陈刚,赵重远,李丕龙等.2005.合肥盆地构造热演化的裂变径迹证据.地球物理学报,48(6):1366-1374
    [4]崔军文,唐哲民,邓晋福,等.1999.阿尔金断裂系[M].北京:地质出版社.39-49.
    [5]杜治利,王清晨.2007.中新生代天山地区隆升历史的裂变径迹证据.地质学报,81(8):1081-1101.
    [6]葛肖虹,任收麦,马立祥,等.2006.青藏高原多期次隆升的环境效应.地学前缘,13(6):118-130.
    [7]宫红良,陈正乐,胡远清等.2007.伊犁盆地白垩纪剥露事件的裂变径迹证据.地质力学学报,13(1):42-50
    [8]黄汉纯,黄庆华,马寅生.1996.柴达木盆地地质与油气预测.北京:地质出版社.1-146.
    [9]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992.59-78.
    [10]李海兵,万渝生,Ireland T R,许志琴,杨经绥,Liou J G,史仁灯,吴才来,Tapponnier P.2001a.阿尔金断裂带印支期走滑活动的地质及年代学证据.科学通报,46(16):1333-1338.
    [11]李海兵,杨经绥,许志琴,等.2001b.阿尔金断裂带的形成时代--来自于同构造生长锆石U-Pb SHRIMP定年数据.地质论评,47(3):315-316.
    [12]刘成东,莫宣学,罗照华,喻学惠,谌宏伟,李述为,赵欣.2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报,49(6):596-602.
    [13]刘志飞,王成善,伊海生等.2001.可可西里盆地新生代沉积演化历史重建.地质学报,75(2):250-257.
    [14]刘志飞,王成善,金帏等.2005.青藏高原沱沱河盆地渐新-中新世沉积环境分析.沉积学报,23(2):210-216.
    [15]陆松年,王惠初,李怀坤,袁桂邦,辛后田,郑健康.2002.柴达木盆地北缘“达肯大坂群”的再厘定.地质通报,21(1):19-23.
    [16]罗照华,柯珊,曹永清等.2002.东昆仑印支晚期幔源岩浆活动.地质通报,21(6):292-297.
    [17]孟繁聪,张建新,杨经绥.2005.柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件--花岗岩和片麻岩的同位素与岩石地球化学证据.岩石学报,21(1):45-56.
    [18]裴军令,孙知明,赵越,王喜生,李海兵.2007.始新统-渐新世界线全球变冷时间在柴达木盆地中的记录.地质通报,26(10):1380-1384.
    [19]青海地质矿产局.青海省区域地质志[M].北京:地质出版社,1991.569p.
    [20]青海地质矿产局.1983.1:20万格尔木东农场幅、东温泉幅区域地质调查报告.
    [21]青海地质矿产局.1981.1:20万格尔木市幅、纳赤台幅区域地质调查报告.
    [22]青海省区调综合地质大队.2000.1:5万托莫尔日特幅、沃日格达瓦幅幅区调说明书(内部).
    [23]青海省地质局地质八队.1989.1:5万夏日哈乡幅、南戈泉幅、乌龙滩幅、巴硬格莉山幅四幅联测区调报告.
    [24]青海省区调综合地质大队.1999.1:5万野马滩幅.哈莉哈德山幅区调联测报告(内部).
    [25]青海省区调综合地质大队.1999.1:5万查查香卡幅、曲录幅区调联测报告(内部).
    [26]史仁灯,杨经绥,吴才来.2003.柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义.岩石矿物学杂志,22(3):229-236.
    [27]施小斌,丘学林,刘海龄等.滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据.2006.地球物理学报,49(1):135-142
    [28]孙延贵,张国伟,郑健康等.2001.柴达木地块东南缘岩浆弧(带)形成的动力学背景.华南地质与矿产,第4期:16-21.
    [29]天津地质矿产研究所.2004.1:25万都兰县幅区域地质调查报告.
    [30]王国灿,向树元,Garver J I,Wintsch R P,Roden-Tice M.2003.东昆仑东段哈拉郭勒-哈图一 带中生代的岩石隆升剥露--锆石和磷灰石裂变径迹年代学证据.地球科学,28(6):645-652.
    [31]王治顺,朱大岗,熊成云,赵剑畏,蒋镇亚,李锦蓉,梁云海,等.1999.构造体系各论(中国典型构造体系分论).北京:地质出版社.1-377.
    [32]吴才来,杨经绥,Wooden J,Liou J G,李海兵,孟繁聪,Persing H,Meibom A.2001a.柴达木山花岗岩锆石SHRIMP定年.科学通报,46(20):1743-1747.
    [33]吴才来,杨经绥,Ireland T,Wooden J,李海兵,万渝生,史仁灯.2001b.祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义.岩石学报,17(2):215-221.
    [34]杨藩,马志强,许同春等.1991.柴达木盆地第三纪磁性地层柱.石油地质,13(2):97-101.
    [35]尹安,党玉琪,陈宣华等.2007.柴达木盆地新生代演化及其构造重建-基于地震剖面的解释.地质力学学报,13(3):399-419.
    [36]袁桂邦,王惠初,李惠民,郝国杰,辛后田,张宝华,王青海,田琪.2002.柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义.前寒武纪研究进展,25(1):36-40.
    [37]袁洪林,吴福元,高山,柳小明,徐平,孙德有.东北地区新生代侵入体的锆石激光探针U-Pb 年龄测定与稀土元素成分分析.2003.科学通报,48(14):1511-1520.
    [38]袁万明,张雪亭,董金泉,汤云晖,王世成.2004.东昆仑隆升作用的裂变径迹研究.原子能科学技术,38(2):166-168.
    [39]翟光明,宋建国,靳久强,高维亮.2002.板块构造演化与含油气盆地形成和评价.北京:石油工业出版社.1-461.
    [40]张建新,杨经绥,许志琴,张泽明,陈文,李海兵.2000.柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb及Ar-Ar同位素测定的证据.地球化学,29(3):217-222.
    [41]张一伟,党玉琪,刘震,汤良杰,朱筱敏,金强,李潍莲.2004.柴达木盆地油气分布基本规律.见:张一伟,党玉琪,熊继辉,刘震.主编.柴达木盆地油气勘探论文集.北京:石油工业出版社.8-16.
    [42]张志诚,王雪松.2004.裂变径迹定年资料应用中的问题及其地质意义.北京大学学报(自然科学版),40(6).
    [43]赵风清,郭进京,李怀坤.2003.青海锡铁山地区滩间山群的地质特征及同位素年代学.地质通报,22(1):28-31.
    [44]郑德文,张培震,万景林.2000.碎屑颗粒热年代学-一种揭示盆山耦合过程的年代学方法.地震地质,22(增刊):25-36.
    [45]郑德文,张培震,万景林等.2005.六盘山盆地热历史的裂变径迹证据.地球物理学报,48(1):157-164.
    [46]周显强,宋友贵,邓军,陈正乐,郑健康,尹华仁,徐守礼,许书火,徐炳川,刘晓峰,杨农,尚玲.1996.青海都兰地区矿田构造与控矿特征.北京:地质出版社.1-238.
    [47]朱文斌,万景林,舒良树,孙岩,赵忠岩.2005.裂变径迹定年技术在构造演化研究中的应用.高校地质学报,11(4):593-600.
    [48]Andersen T.Correction of common lead in U-Pb analyses that do not report 204Pb.Chem Geol.,2002,192(1/2):59-79.
    [49]Bally A W,Chou I-M,Clayton R,Eugster H P,Kidwell S,Meckel L D,Ryder R T,Watts A B,Wilson A A.1986.Notes on sedimentary basins in China--Report of the Amerian Sedimentary Basins delegation to the People's Republic of China.U.S.G.S Open File Report 86-327,1-108.
    [50]Brandon M T,Vance J A.1992.Tectonic evolution of the Cenozoic Olympic Subduction Complex,Washington State,as deduced from fi ssion-track ages for detrital zircons.Am.J.Sci.,292:565-636.
    [51]Brandon M T,Roden-Tice M K,Garver J I.1998.Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains,northwest Washington State.Geol.Soc.Am.Bull.,110:985-1009.
    [52]Burchfiel B C,Deng Q,Molnar P,Royden L H,Wang Y,Zhang P,and Zhang W.1989.Intraerustal detachment within zones of continental deformation.Geology,17:448-452.
    [53]Carrie Menold.2006.Tectonic and Metamorphic Evolution of the North Qaidam Ultrahigh-Pressure Metamorphic Terrane,Western China.[Ph.D.Dissertation]:University of California,49p.
    [54]Chemiak D J.1993.Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport.Chem.Geol.,110:177-194.
    [55]Coward M P,Kidd W S F,Pan Y,Shackleton R M,Zhang H.1988.The structure of the 1985 Tibet Geotraverse,Lhasa to Golmud.Philosophical Transactions of the Royal Society of London,Series A, 327: 307-336.
    [56] Cowgill E, Yin A, Harrison T M, Wang X. 2003. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J. Geophys. Res., 108(B7), 2346, doi: 10.1029 / 2002 JB002080.
    [57] Dodson M H. 1973. Closure temperature in cooling geochronologicaland petrological systems. Contrib. Mineral. Petrol, 40: 259-274.
    [58] Dupont-Nivet G, Butler R F, Yin A, Chen X. 2002. Paleomagnetism indicates no Neogene rotation of the Qaidam basin in northern Tibet during Indo-Asian collision. Geology, 30(3): 263-266.
    [59] Dupont-Nivet G, Butler R F, Yin A, Chen X. 2003. Paleomagnetism indicates no Neogene vertical axis rotations of the northeastern Tibetan Plateau. J. Geophys. Res., 108 (B8), 2386, doi: 10.1029 /2003 JB 002399.
    [60] Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene -Oligocene transition [J]. Nature, 2007,445: 635-638.
    [61] Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin? Geological Society of America Bulletin, 2007, 118: 651-671.
    [62] Fitzgerald P G, Gleadow A J W. Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chem. Geol. (Isot. Geosci. Sect.), 1988,73:169-198.
    [63] Fitzgerald P, Gleadow AJW. 1990. New approaches in fission track geochronology as a tectonic tool: Examples from the Transantarctic Mountains. Nucl. Tracks. Radiat. Meas., 17: 351-357.
    [64] Galbraith R F. On statistical models for fission track counts. Mathematical Geology, 1981, 13: 471-478.
    [65] Gehrels G E, Yin A, Wang X F. 2003a. Magmatic history of the northeastern Ttibetan Plateau. J. Geophys. Res., 108 (B9), 2423, doi: 10.1029 / 2002 JB001876.
    [66] Gehrels G E, Yin A, Wang X F. 2003b. Detrital-zircon geochronology of the northeastern Ttibetan Plateau. GSA Bulletin, 115 (7): 881-896.
    [67] Gleadow A J W, Duddy I R. A natural long-term annealing experiment for apatite. Nuclear Tracks and Radiation Measurements, 1981,5: 169-174.
    [68] Gleadow A J W, Duddy I R, Lovering J F. 1983. Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Petrol. Explor. Assoc. Aust. J., 23: 9-102.
    [69] Gleadow A J W, Brown R W. Fission Track Thermochronology and the Longterm Denudation Response to Tectonics. In: Summerfield M J (Ed) .Geomorphology and Global Tectonics. Wiley, Newyork, 2000. 57-75.
    [70] Green P F, Duddy I R, Laslett G M, et al. Thermal annealing of fission track in apatite (IV): Quantitative modeling technique and extention to geological time scales. Chemical Geology (Isotope Geoscience Section), 1989, 79: 155-182.
    [71] Hanson A D. 1999. Organic geochemistry and petroleum geology, tectonics and basin analysis of southern Tarim and northern Qaidam basins, northwest China. PhD thesis. Stanford University, Stanford. 1-388.
    [72] Harris N B W, Xu R, Lewis C L, Hawkesworth C J, Zhang Y. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philos. Trans. R. Soc. London, Ser. A, 327: 263-285.
    [73] Hu S, Raza A, Min K, et al. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the north China craton through the Qinling orogen into the Yangtze craton, central China. Tectonics, 2006, 25, TC6009, doi:10.1029/2006TC001985.
    [74] Hurford A J, Green P F. The zeta age calibration of fission-track dating. Isot. Geosci., 1983, 1: 285-317.
    [75] Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints. Tectonophysics, 343: 111-134.
    [76] Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Roger F, Leloup A, Arnaud N, Wu C. 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun fault. Tectonics, 22, 1052, doi: 10.1029/2002 TC 001428.
    [77] Ketcham R A, Donelick R A, Carlson W D. 1999. Variability of apatite fission track annealing kinetics III: Extrapolation to geological time scales. American Mineralogist, 84: 1235-1255.
    [78] Ketcham R A, Donelick R A, Donelick M B. AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research, 2000, 2: 1-32
    [79]Kidd W S F,Molnar P.1988.Quatemary and active faulting observed on the 1985 Academia Sinica-Royal Society Geotraverse of Tibet.Philosophical Transactions of the Royal Society of London,Series A,327:337-363.
    [80]Kosler J and Sylvester P J.2003.Present trends and the future of zircon in geochronology:laser ablation ICP MS.Reviews in Mineralogy and Geochemistry,53:243-275.
    [81]Laslett G M,Green P F,Duddy I R,Gleadow A J W.1987.Thermal annealing of fission tracks in apatite.2.A quantitative analysis.Chem.Geol.,65:1-13.
    [82]Liu Y J,Genser J,Neubauer F,Jin W,Ge X H,Handler R,Takasu A.2005.~(40)Ar/~(39)Ar mineral ages from basement rocks in the Eastern Kunlun Mountains,NW China,and their tectonic implications.Tectonophysics,398:199-224.
    [83]Ludwig,K.R.,2003,Isoplot 3.00.Berkeley Geochronology Center,Special Publication 4:70.
    [84]Malusà M G,Polino R,Zattin M,et al.Miocene to Present differential exhumation in the Western Alps:Insights from fission track thermochronology.Tectonics,2005,24:TC3004,doi:10.1029/2004TC001782.
    [85]Metivier F,Gaudemer Y,Tapponnier P,et al.Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins,China.Tectonics,1998,17:823-842.
    [86]Meyer B,Tapponnier P,Bourjot L,Metivier F,Gaudemer Y,Peltzer G,Shunmin G,Zhitai C.1998.Crustal thickening in Gansu-Qinghai,lithospheric mantle subduction,and oblique,strike-slip controlled growth of the Tibet plateau.Geophysical Journal of International,135:1-47.
    [87]Mock C,Arnaud N O,Cantagrel J-M.1999.An early unroofing in northeastern Tibet? Constraints from ~(40)Ar/~(39)Ar thermochronology on granitoids from the eastern Kunlun range(Qianghai,NW China).Earth and Planetary Science Letters,171:107-122.
    [88]Qiu Nansheng.2002.Tectono-thermal evolution of the Qaidam Basin,China:evidence from Ro and apatite fission track data.Petroleum Geoscience,8:279-285.
    [89]Rasmussen B and Fletcher I R.2004.Zirconolite:A new U-Pb chronometer for mafic igneous rocks.Geology,32:785-788.
    [90]Reiners P W.2005.Zircon(U-Th)/He thermochronometry.Rev.Mineral Geochem.,58:151-179.
    [91]Reiners P W,Brandon M T.Using thermochronology to understand orogenic erosion.Annu.Rev.Earth Planet.Sci.,2006,34:419-466.
    [92]Rieser A B,Liu Y J,Genser J,Neubauer F,Handler R,Friedl G,Ge X H.2006a.~(40)Ar/~(39)Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin.Geological Society of America Bulletin,118:1522-1534.
    [93]Rieser A B,Liu Y J,Genser J,Neubauer F,Handler R,Ge X H.2006b.Uniform Permian ~(40)Ar/~(39)Ar detrital mica ages in the eastern Qaidam Basin(NW China):where is the source? Terra Nova,18:79-87.
    [94]Sobel E R,Hilley G E,Strecker M R.2003.Formation of internally drained contractional basins by aridity-limited bedrock incision.Journal of Geophysical Research,108:2344,doi:10.1029/2002JB001883.
    [95]Song T,Wang X.1993.Structural styles and stratigraphic patterns of syndepositional faults in a contractional setting:examples from Qaidam basin,northwestern China.American Association of Petroleum Geologists Bulletin,77:102-117.
    [96]Song S,Zhang L,Niu Y,Su L,Jian P,Liu D.2005.Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt,Northern Tibetan Plateau:A record of complex histories from oceanic lithosphere subduction to continental collision.Earth and Planetary Science Letters,234:99-118.
    [97]Spotila J A.Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts.Reviews in Mineralogy & Geochemistry,2005,58:449-466
    [98]Stockli D F.2005.Application of low-temperature thermochronometry to extensional tectonic settings.Reviews in Mineralogy & Geochemistry,58:411-448.
    [99]Sun Z M,Yang Z,Pei J,Ge X,Wang X,Yang T,Li W,Yuan S.2005.Magneto- stratigraphy of Paleogene sediments from northern Qaidam Basin,China:Implications for tectonic uplift and block rotation in northem Tibetan plateau.Earth and Planetary Science Letters,237:635-646.
    [100]Sun Z M,Yang Z,Pei J,Yang T,Wang X.2006.New Early Cretaceous paleomagnetic data from volcanic and red beds of the eastern Qaidam Block and its implications for tectonics of Central Asia.Earth and Planetary Science Letters,243:268-281.
    [101]Tapponnier P,Xu Z,Roger F,et al.Oblique stepwise rise and growth of the Tibet Plateau.Science, 2001,294: 1671-1677.
    [102] Wagner G A, Gleadow A J W, Fitzgerald P G The significance of the partial annealing zone in apatite fission-track analysis: Projected track length measurements and uplift chronology of the Transantarctic Mountains. Chem. Geol. (Isot. Geosci. Sect.), 1989, 79: 295-305.
    [103] Wang E, Burchfiel B C. 2004. Late Cenozoic right-lateral movement along the Wenquan fault and associated deformation: Implications for the kinematic history of the Qaidam Basin, northeastern Tibet Plateau. International Geology Review, 46: 861-879.
    [104] Wang E, Xu F Y, Zhou J X, et al. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems. Geological Society of America Bulletin, 2006, 118: 349-365.
    [105] Wetherill G W. 1956. An interpretation of the Rhodesia and Witwatersrand age patterns. Geochimica et Cosmochimica Acta, 9(5-6): 290-292.
    [106] Wu C, Yang J, Wooden J L, Shi R, Chen S, Meibom A, Mattinson C. 2004. Zircon U-Pb SHRIMP dating of the Yematan Batholith in Dulan, north Qaidam, NW China. Chinese Sci. Bull, 49: 1736-1740.
    [107] Xia W, Zhang N, Yuan X, Fan L, Zhang B. 2001. Cenozoic Qaidam basin, China: A stronger tectonic inversed, extentional rifted basin. AAPG Bulletin, 85 (4): 715-736.
    [108] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. J. Annu. Rev. Earth Planet. Sci., 28: 211-280.
    [109] Yin A, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Q, Zhou X-Q, Wang X-F, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114 (10): 1257-1295.
    [110] Yuan W, Dong J, Wang S, Carter A. 2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27: 847-856.
    [111] Zheng D, Zhang P-Z, Wan J, et al. Rapid exhumation at -8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 2006, 248: 198-208.
    [112] Zhong J H, Wen Z F, Guo Z Q, Wang H Q, Gao J B. 2004. Paleogene and early Neogene lacustrine reefs in the western Qaidam Basin, China. Acta Geologica Sinica - English Edition, 78 (3): 736-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700