用户名: 密码: 验证码:
微波辅助法合成碳化硅一维纳米材料及其性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC一维纳米材料不仅可以用来构筑纳米电子器件,尤其适合于构筑在高温、强辐射等恶劣环境下工作的电子器件,更重要的是其可以用来深入地理解低维材料的基本现象。因此研究SiC一维纳米材料的合成方法、结构特征和光电性质具有重要的意义。
     通过微波辅助碳热还原制备技术,我们合成了多种SiC一维纳米材料,分别制备出了超薄3C–SiC纳米带;6H–SiC纳米线、纳米带及量子线;3C–SiC-SiO2纳米链异质结。实验证明这种制备技术具有设备简单、参数容易控制、成本低、反应时间短、产率高等优点。论文得到了如下创新性成果:
     1)合成了超薄3C–SiC纳米带,其厚度仅为几个纳米。这种超薄纳米带具有优异的光学和场发射性能,其光致发射峰位于391 nm,开启电场为3.2 V/μm。
     2)合成了Al掺杂的6H–SiC纳米线、纳米带和量子线,观测到了强烈的本征发光和量子限域效应。
     3)合成了SiC-SiO2纳米链异质结、纳米链X结和Y结。通过对光致发光谱的研究,分别观测到了SiC纳米线和SiO2的发射峰,显示了其光谱具有独特的可调性。
SiC material is regarded as a very excellent semiconductor, due to its wide bandgap, high work temperature, high thermal conductivity, high saturated drift rate, high critical broken voltage, low intrinsic carrier, high high irradiation, and high chemical stability. It can be used for producing high temperature, high frequency, high pressure resistant, high irradiation, and high power electronic devices, especially those suitable for operation under harsh environment. SiC one dimension (1D) nanomaterials (nanowire, nanotube, nanobelt, nanocable et al.) not only have the above mentioned virtues of bulk SiC but also have many excellent nanomaterial’properties, such as mechanical, optical, field emission properties caused by quantum confinement effects. In addition, SiC 1D nanomaterial can be compatible with the mature silicon planner technology. Thus, we can not only use them to understand the basis concept of low dimension nanomaterial, but also more importantly use them as function module to build nanoelectronic devices. They can be widely used in light emitting diode, high power transistor, field emission materials, photocatalyst, reinforced composites, new type lighting source, sensor and optical-electronic devices field.
     For the moment, much effort has been devoted to the preparation and characterization of SiC 1D nanomaterials. Although the SiC 1D nanomaterials change with each passing day, it was still in the initial stage for the most study. There are quite many problems, such as most 3C–structure; most nanowire morphology; low yield, long reaction time, high cost, expensive equipment, reaction condition rigour, quantum wire, and so on. The above problems have greatly limited the industry development of SiC 1D nanomaterial and electronic devices applications. Therefore, it is signality to find a method to fabricate SiC 1D nanomaterial by a simple, large-scale and low cost method, and these reasons decide SiC 1D nanomaterial can be widely industry and commercial applications.
     Compared with the common method, microwave-assisted carbon thermal reduction method (MAXTR) has some merits and can overcome disadvantage of other reported synthesizing methods, such as simple experimental equipment, easy and control experiment parameter, cheap reactive raw materials, and large-scale yield. In this paper, MAXTR was employed to prepare various SiC 1D nanomaterials and the optical and electronic properties of such materials have been primarily studied. SiC 1D nanomaterials, such as ultrathin 3C–SiC nanobelts, 6H–SiC nanowires, 6H–SiC nanobelts, 6H–SiC quantum wire, 3C–SiC-SiO2 nanochain heterojunction, have been prepared by change of experimental conditions. MAXTR has been proved to be a good and efficient method to synthesize SiC 1D nanomaterial with large-scale yield, low cost, short reaction time, size and morphology-controlled and further industry applications. The compositions, morphologies, and microstructures of SiC 1D nanomaterials were successively characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy dispersion spectroscopy (EDS). The optical and electronic properties of the SiC 1D nanomaterials were studied by Raman spectroscopy,photoluminescence spectrum (PL), and the field emission measurements. Based on the investigation, the growth mechanism for different SiC 1D nanomaterials and the relationships between the structure and properties have been studied. Some innovative achievements have been obtained and important conclusions are dawn. We hope that the study of SiC 1D nanomaterials can be used for establishing and supplying a solid foundation for the practical applications of SiC nanowires in nano-devices.
     The main productions are described as follows:
     1) By using a simple and low-cost MAXTR, single-crystalline, ultrathin 3C–SiC nanobelts have been synthesized in large scale. Morphological analysis indicates that the nanobelts are tens of micrometers in length, tens of nanometers in width and only several nanometers in thickness. Based on the experimental data, the growth mechanism of 3C–SiC nanobelts was proposed. Under 325 nm excitation, a broad emission peaked at 391 nm has been observed in the spectrum of the nanobelts, which reveals an obvious blueshift of bandgap and direct band gap property. Field-emission (FE) measurements show that the nanobelts are promising field-emitting materials with a low turn-on field of ~3.2 V/μm. The FE properties were also analyzed by applying with the first-order approximation of Fowler-Nordheim (F–N) theory and the electron emission were confirmed by the F–N tunneling emission mechanism. SiC nanobelts can be an excellent blue-light source and field emission material. The interesting photoluminescence and FE properties make the ultrathin nanobelts attractive for photonic and electronic applications.
     2) Al-doped 6H–SiC nanowires, nanobelts, and quantum wires have been largely synthesized by a novel and low-cost MAXTR. Structural, morphological, and elemental analysis revealed that the products were consisted of Al-doped 6H–SiC nanowires/nanobelts/quantum wires with a diameter of 5-200 nm and a length of tens to hundreds of micrometers. It is noted that the content of quantum wires is more than 20%. Stacking fault, planar defect and twin were also observation in such 6H–SiC nanostructures. Based on the experimental data, V–L–S gorwth mechanism was proposed to elucidate the growth process. We also pointed out that the nano Al powder was the key factor for the 6H–SiC nanostructures. Some unique properties are found in the Raman and photoluminescence spectra of the 6H–SiC nanostructures. An ultraviolet emission band from the 6H–SiC nanostructures and clear evidence of quantum confinement in 6H–SiC nanostructures have been observed. Photoluminescence spectrum shows clear evidence for the quantum confinement of 6H–SiC nanostructures with the emission peak above the energy gap. Moreover, the present results may inspire great interest in exploring other polytypes SiC nanowires, such as 4H–SiC nanowires, 2H–SiC nanowires, 15R–SiC, and so on, and their potential applications in building blocks for nanodevices in the future.
     3) SiC/SiO2 one-dimensional nanochains and SiC/SiO2 two-dimensional X-junction and Y-junction nanochains were synthesized by using a simple and low-cost MAXTR. Structural, morphological, and elemental analysis revealed that the SiC/SiO2 nanochains were consisted of 3C–SiC strings with diameters of 20-80 nm and periodic SiO2 beads with diameters of 100-400 nm. Based on the experimental characterizations, a two-step growth mechanism of the nanochains was proposed to elucidate the growth process. The nanochains with X-junction or Y-junction are gaining increasing interest as building blocks for two-dimensional or three-dimensional network structure. Theoretically, we can use such junctions to build any complicated form nanostructures. Spectral analysis indicated that both of SiC strings and SiO2 beads produced significant photoluminescence and the presence of SiO2 beads enhanced the emissions from SiC strings. Compared with the PL of SiC-SiO2 nanocables, the current nanochains not only have interesting violet-blue light emission, but also have waveguide properties. The optical properties of SiC nanowires can be tailored by the SiO2 beads because of each SiO2 bead may give off violet-blue light. The SiC/SiO2 nanochains provide periodic semiconductor-oxide units for incorporation of different functionalities into a nanoscale system.The special composite structure accompanied with its optical properties may have some potential applications in photoelectricity and nanodevices. We make sure that our approach presented here would be helpful in designing and preparing other Si-related heterostructures, such as Silicon Nitride and Zinc Silicate nanochain, and it is great meaning to build nanodevices in furture. At the same time, the obtained nanochain heterostructures is the foundation of new complicated systems and SiC nanodevices and could meet the growing demands of optical and electronic nanodevices.
引文
[1] Feynman R P. There is a plenty of room at the bottom. Lecture at the annual meeting of the American Physical Society at the California Institute of Technology [R]. 1959.
    [2] Lebedev A A. Heterojunctions and superlattices based on silicon carbide [J]. Semicond. Sci. Technol., 2006, 21:R17-R34.
    [3] Peng X H, Nayak S K, Alizadeh A, et al. First-principles study of the effects of polytype and size on energy gaps in SiC nanoclusters [J]. J. Appl. Phys., 2007, 102:024304-024309.
    [4]郝跃,彭军,王阳元,等.碳化硅宽带隙半导体技术[M].北京:科学出版社, 2000.
    [5] Matsunami H, Kimoto T. Step-controlled epitaxial growth of SiC: High quality homoepitaxy [J]. Mat. Sci. Eng. R, 1997, 20:125-166.
    [6] Von Munch W. Silicon carbide [J]. Landolt-Bounstien: Numerical Data and Functional Relationships in Science and Technology, 1982, 17:132.
    [7] Levinshtein M, Rumyantsev SShur M Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe [M]. John Wiley and Sons, New York, 2001.
    [8] Drowart J, De Maria G, Inghram M. Thermodynamic study of SiC utilizing a mass spectrometer [J]. J. Chem. Phys., 1958, 29:1015.
    [9] Weitzel C, Palmour J, Carter Jr C, et al. Silicon carbide high-power devices [J]. IEEE Trans. Electr. Devices, 1996, 43:1732-1741.
    [10] Cooper Jr J, Agarwal A, Hara K. Foreword-special issue on silicon carbide electronic devices [C]. IEEE, New Yourk, 1999, 442.
    [11]李凤生.纳米功能复合材料及应用[M].北京:国防工业出版社, 2003.
    [12] Theodoropoulou N, Hebard A F, Chu S N G, et al. Magnetic properties of Fe- and Mn-implanted SiC [J]. Electrochem. Solid St. 2001, 4:G119-G121.
    [12] Pearton S J, Lee K P, Overberg M E, et al. Magnetism in SiC implanted with high doses of Fe and Mn [J]. J. Electron. Mater., 2002, 31:336-339.
    [13] Pearton S J, Theodoropoulou N, Overberg M E, et al. Characterization of Ni-implanted GaN and SiC [J]. Mat. Sci. Eng. B-Solid, 2002, 94:159-163.
    [14] Pearton S J, Theodoropoulou N, Overberg M E, et al. Characterization of Ni-implanted GaN and SiC [J]. Mat. Sci. Eng. B 2002, 94:159-163.
    [15] Theodoropoulou N, Hebard A F, Chu S N G, et al. Use of ion implantation to facilitate the discovery and characterization of ferromagnetic semiconductors [J]. J. Appl. Phys., 2002, 91:7499-7501.
    [16] Song B, Bao H, Li H, et al. Observation of Glassy Ferromagnetism in Al-Doped 4H–SiC [J]. J. Am. Chem. Soc., 2009, 131:1376-1377.
    [17] Berzelius J. Untersuchungenuber die Flusspath Faure und deren merkwurdige Verbindungen [P]. Ann. Phys., 1824, 1:169-230.
    [18] Acheson A. Production of artificial crystalline carbonaceous materials [P]. British, 1892, 17:911.
    [19] Tairov Y, Tsvetkov V. Investigation of growth processes of ingots of silicon carbide single crystals [J]. J. Cryst. Growth, 1978, 43:209-212.
    [20]周继承,郑旭强,刘福. SiC薄膜材料与器件最新研究进展[J].材料导报, 2007, 21:112-114.
    [21] Knippenberg W. Growth phenomena in silicon carbide [M]. Valkenburg, 1963.
    [22] Hofmann D, Müller M. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals [J]. Mat. Sci. Eng. B, 1999, 61:29-39.
    [23] Shibahara K, Kuroda N, Nishino S, et al. Fabrication of PN Junction Diodes Using Homoepitaxially Grown 6H–SiC at Low Temperature by Chemical Vapor Deposition [J]. J. Appl. Phys., 1987, 26:1815-1817.
    [24] Matus L, Powell J, Salupo C. High-voltage 6H–SiC p-n junction diodes [J]. Appl. Phys. Lett., 1991, 59:1770-1772.
    [25] Neudeck P, Larkin D, Powell J, et al. 2000 V 6H–SiC p-n junction diodes grown by chemical vapor deposition [J]. Appl. Phys. Lett., 1994, 64:1386-1388.
    [26] Kordina O, Bergman J, Henry A, et al. A 4.5 kV 6H silicon carbide rectifier [J]. Appl. Phys. Lett., 1995, 67:1561-1563.
    [27] Itoh A, Kimoto T, Matsunami H. Excellent reverse blocking characteristics of high-voltage 4H–SiC Schottky rectifiers with boron-implanted edge termination [J]. IEEE Electr. Device L, 1996, 17:139-141.
    [28] Nakamura T, Miyanagi T, Kamata I, et al. A 4.15 kV 9.07-m?·cm2 4H–SiC Schottky-barrier diode using Mo contact annealed at high temperature [J]. IEEE Electr. Device L., 2005, 26:99-101.
    [29] Mihaila A P, Udrea F, Rashid S J, et al. SiC junction-controlled transistors [J]. Microelectron. Eng., 2006, 83:176-180.
    [30] Vassilevski K, Nikitina I, Wright N, et al. Device processing and characterisation of high temperature silicon carbide Schottky diodes [J]. Microelectron. Eng., 2006, 83:150-154.
    [31] Peters D, Schorner R, Friedrichs P, et al. An 1800 V triple implanted vertical 6H–SiC MOSFET [J]. IEEE Trans. Electr. Devices, 1999, 46:542-545.
    [32] Palmour J, Sheppard S, Smith R, et al. Wide bandgap semiconductor devices and MMICs for RF powerapplications [C]. Electron Devices Metting, 2001.
    [33] Ryu S H, Krishnaswami S, O'Loughlin M, et al. 10-kV 123-m ohm.cm (2) 4H–SiC Power DMOSFETS [J]. IEEE Electr. Device L., 2004, 25:556-558.
    [34] Agarwal A, Krishnaswami S, Richmond J, et al. Evolution of the 1600 V, 20 A, SiC bipolar junction transistors [C], Power Semiconductor Devices and ICs, 2005.
    [35] Domeij M, Lee H S, Danielsson E, et al. Geometrical effects in high current gain 1100-V 4H–SiC BJTs [J]. IEEE Electr. Device L., 2005, 26:743-745.
    [36] Vassilevski K V, Zorenko A V, Zekentes K, et al. 4H–SiC IMPATT diode fabrication and testing [C]. Silicon Carbide and Related Materials, 2002.
    [37] Brown D, Downey E, Ghezzo M, et al. Silicon carbide UV photodiodes [J]. IEEE Trans. Electron Devices, 1993, 40:325-333.
    [38]尚也淳,张义门. 6H–SiC反型层电子迁移率的Monte Carlo模拟[J].电子学报, 2001, 29:157-159.
    [39]王守国,张义门. 4H–SiC N+离子注入层的特性[J].半导体学报, 2002, 23:1249-1253.
    [40]杨林安,张义门. SiC功率金属-半导体场效应管的陷阱效应模型[J].物理学报, 2003, 52:302-306.
    [41]张玉明,罗晋生. SiC肖特基势垒二极管的研制[J].半导体学报, 1999, 20:1040-1043.
    [42]张玉明,罗晋生. 6H–SiC MOS场效应晶体管的研制[J].固体电子学研究与进展, 2000, 20:1-6.
    [43] Zhang Y, Alexandrov P, Zhao J. Fabrication of 4H–SiC Merged PN-Schottky Diodes [J]. Chinese J. Semi-Chinese Edition, 2001, 22:265-270.
    [44] Jinxia G, Yimen ZYuming Z. Fabrication of 4H–SiC buried-channel nMOSFETs [J]. Chinese J. Semi., 2004, 25:1561-1566.
    [45]陈刚,柏松,张涛,等. 4H–SiC MESFET器件工艺[J].半导体学报, 2007,28:0565-0567.
    [46]柏松,陈刚,张涛,等. SiC MESFET微波功率器件的研制[J].半导体学报, 2007, 28:10-13.
    [47] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354:56-58.
    [48] Zhou D, Seraphin S. Production of silicon carbide whiskers from carbon nanoclusters [J]. Chem. Phys. Lett., 1994, 3:233-238.
    [49] Zhou X T, Wang N, Lai H L, et al. Beta-SiC nanorods synthesized by hot filament chemical vapor deposition [J]. Appl. Phys. Lett., 1999, 74:3942-3944.
    [50] Zhou X T, Wang N, Au F C K, et al. Growth and emission properties of beta-SiC nanorods [J]. Mat. Sci. Eng. A-Struct., 2000, 286:119-124.
    [51] Zhang H F, Wang C M, Wang L S. Helical crystalline SiC/SiO2 core-shell nanowires [J]. Nano Lett., 2002, 2:941-944.
    [52] Seong H K, Choi H J, Lee S K, et al. Optical and electrical transport properties in silicon carbide nanowires [J]. Appl. Phys. Lett., 2004, 85:1256-1258.
    [53] Yang W, Araki H, Hu Q L, et al. In situ growth of SiC nanowires on RS-SiC substrate(s) [J]. J. Cryst. Growth, 2004, 264:278-283.
    [54] Lin M, Loh K P, Boothroyd C, et al. Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones [J]. Appl. Phys. Lett., 2004, 85:5388-5390.
    [55] Bechelany M, Brioude A, Stadelmann P, et al. Very long SiC-based coaxial nanocables with tunable chemical composition [J]. Adv. Funct. Mater., 2007, 17:3251-3257.
    [56] Dai H, Wong E, Lu Y, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375:769-772.
    [57] Han W, Fan S, Li Q, et al. Continuous synthesis and characterization of silicon carbide nanorods [J]. Chem. Phys. Lett., 1997, 265:374-378.
    [58] Hu J Q, Bando Y, Zhan J H, et al. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes) [J]. Appl. Phys. Lett., 2004, 85:2932-2934.
    [59] Zhou J, Liu J, Yang R S, et al. SiC-Shell nanostructures fabricated by replicating ZnO nano-objects: A technique for producing hollow nanostructures of desired shape [J]. Small, 2006, 2:1344-1347.
    [60] Li Z J, Zhang J L, Meng A, et al. Large-area highly-oriented SiC nanowire arrays: Synthesis, Raman, and photoluminescence properties [J]. J. Phys. Chem. B, 2006,110:22382-22386.
    [61] Meng G W, Cui Z, Zhang L D, et al. Growth and characterization of nanostructured beta-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles [J]. J. Cryst. Growth, 2000, 209:801-806.
    [62] Liang C H, Meng G W, Zhang L D, et al. Large-scale synthesis of beta-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles [J]. Chem. Phys. Lett., 2000, 329:323-328.
    [63] Hao Y J, Jin G Q, Guo X Y. Synthesis of silicon carbide nanowires with different morphologies by carbothermal reduction [J]. Chinese J. Inorg. Chem., 2006, 22:1833-1837.
    [64] Hao Y J, Jin G Q, Han X D, et al. Synthesis and characterization of bamboo-like SiC nanofibers [J]. Mater. Lett., 2006, 60:1334-1337.
    [65] Hao Y J, Wagner J B, Su D S, et al. Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel [J]. Nanotechnology, 2006, 17:2870-2874.
    [66] Wang D H, Wang D Q, Hao Y J, et al. Periodically twinned SiC nanowires [J]. Nanotechnology, 2008, 19:215602-215608.
    [67] Krishnarao R, Godkhindi M, Mukunda P, et al. Direct pyrolysis of raw rice husks for maximization of silicon carbide whisker formation [J]. J. Am. Ceram. Soc, 1991, 74:2869-2875.
    [68] Cutler I. Production of silicon carbide from rice hulls [P]. Google Patents, 1973.
    [69]周祖福.复合材料学[M].武汉工业大学出版社. 1995.
    [70] Wang Z, Dai Z, Gao R, et al. Side-by-side silicon carbide–silica biaxial nanowires: synthesis, structure, and mechanical properties [J]. Appl. Phys. Lett., 2000, 77:3349-3351.
    [71] Zhang Y J, Wang N L, Gao S P, et al. A simple method to synthesize nanowires [J]. Chem. Mater., 2002, 14:3564-3568.
    [72] Ryu Y, Tak Y, Yong K. Direct growth of core-shell SiC-SiO2 nanowires and field emission characteristics [J]. Nanotechnology, 2005, 16:S370-S374.
    [73] Lu Q Y, Hu J Q, Tang K B, et al. Growth of SiC nanorods at low temperature [J]. Appl. Phys. Lett., 1999, 75:507-509.
    [74] Hu J Q, Lu Q K, Tang K B, et al. Synthesis and characterization of SiCnanowires through a reduction-carburization route [J]. J. Phys. Chem. B, 2000, 104:5251-5254.
    [75] Ju Z C, Ma X C, Fan N, et al. High-yield synthesis of single-crystalline 3C–SiC nanowires by a facile autoclave route [J]. Mater. Lett., 2007, 61:3913-3915.
    [76] Xi G C, Peng Y Y, Wan S M, et al. Lithium-assisted synthesis and characterization of crystalline 3C–SiC nanobelts [J]. J. Phys. Chem. B, 2004, 108:20102-20104.
    [77] Shen G Z, Chen D, Tang K B, et al. Silicon carbide hollow nanospheres, nanowires and coaxial nanowires [J]. Chem. Phys. Lett., 2003, 375:177-184.
    [78] Xi G C, Liu Y K, Liu X Y, et al. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures [J]. J. Phys. Chem. B, 2006, 110:14172-14178.
    [79] Seeger T, Kohler-Redlich P, Ruhle M. Synthesis of nanometer-sized SiC whiskers in the arc-discharge [J]. Adv. Mater., 2000, 12:279-282.
    [80] Li Y B, Xie S S, Wei B Q, et al. Aligned small alpha-SiC nanorods on beta-SiC particles grown in an arc-discharge [J]. Solid State Commun., 2001, 119:51-53.
    [81] Li Y B, Xie S S, Zou X P, et al. Large-scale synthesis of beta-SiC nanorods in the arc-discharge [J]. J. Cryst. Growth, 2001, 223:125-128.
    [82] Li Y B, Xie S S, Zhou W Y, et al. Cone-shaped hexagonal 6H–SiC nanorods [J]. Chem. Phys. Lett., 2002, 356:325-330.
    [83]吴旭峰,凌一鸣.电弧放电法制备SiC纳米丝的实验研究[J].真空科学与技术学报, 2005, 25:30-32.
    [84] Liu X M, Yao K F. Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables [J]. Nanotechnology, 2005, 16:2932-2935.
    [85] Chiu S C, Huang C W, Li Y Y. Synthesis of high-purity silicon carbide nanowires by a catalyst-free arc-discharge method [J]. J.Phys. Chem. C, 2007, 111:10294-10297.
    [86] Shi W S, Zheng Y F, Peng H Y, et al. Laser ablation synthesis and optical characterization of silicon carbide nanowires [J]. J. Am. Ceram. Soc., 2000, 83:3228-3230.
    [87] Deng S Z, Li Z B, Wang W L, et al. Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate [J]. Appl. Phys. Lett., 2006, 89:023118-023120.
    [88] Liu H P, Cheng G A, Liang C L, et al. Fabrication of silicon carbidenanowires/carbon nanotubes heterojunction arrays by high-flux Si ion implantation [J]. Nanotechnology, 2008, 19:245606-245612.
    [89] Wong E W, Sheehan P E, Lieber C M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes [J]. Science, 1997, 277:1971-1975.
    [90] Wang Z L, Dai Z R, Gao R P, et al. Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties [J]. Appl. Phys. Lett., 2000, 77:3349-3351.
    [91] Han X D, Zhang Y F, Liu X Q, et al. Lattice bending, disordering, and amorphization induced plastic deformation in a SiC nanowire [J]. J. Appl. Phys., 2005, 98:124307-124310.
    [92] Zhang Y F, Han X D, Zheng K, et al. Direct observation of super-plasticity of beta-SiC nanowires at low temperature [J]. Adv. Funct. Mater., 2007, 17:3435-3440.
    [93] Han X D, Zhang Y F, Zheng K, et al. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism [J]. Nano Lett., 2007, 7:452-457.
    [94] Papanikolaou N. Lattice thermal conductivity of SiC nanowires [J]. J. Phys-Condens. Matt., 2008, 20:135201-135206.
    [95] Shim H W, Kuppers J D, Huang H C. Strong friction of silicon carbide nanowire films [J]. Nanotechnology, 2009, 20:025704-025707.
    [96] Ishimaru M, Hirata A, Naito M, et al. Direct observations of thermally induced structural changes in amorphous silicon carbide [J]. J. Appl. Phys., 2008, 104:033503-033507.
    [97] Zhang S L, Zhu B F, Huang F M, et al. Effect of defects on optical phonon Raman spectra in SiC nanorods [J]. Solid State Commun., 1999, 111:647-651.
    [98] Wu X L, Fan J Y, Qiu T, et al. Experimental evidence for the quantum confinement effect in 3C–SiC nanocrystallites [J]. Phys. Rev. Lett., 2005, 94:026102-026105.
    [99] Zhang L G, Yang W Y, Jin H, et al. Ultraviolet photoluminescence from 3C–SiC nanorods [J]. Appl. Phys. Lett., 2006, 89:143101-143103.
    [100] Wang X J, Tian J F, Bao L H, et al. Large scale SiC/SiOx nanocables: Synthesis, photoluminescence, and field emission properties [J]. J. Appl. Phys., 2007, 102:014309-014314.
    [101] Wu R B, Li B S, Gao M X, et al. Tuning the morphologies of SiC nanowiresvia the control of growth temperature, and their photoluminescence properties [J]. Nanotechnology, 2008, 19:335602-335609.
    [102] Li Y B, Dorozhkin P S, Bando Y, et al. Controllable modification of SiC nanowires encapsulated in BN nanotubes [J]. Adv. Mater., 2005, 17:545-549.
    [103] Zhou W M, Liu X, Zhang Y F. Simple approach to beta-SiC nanowires: Synthesis, optical, and electrical properties [J]. Appl. Phys. Lett., 2006, 89:223124-223126.
    [104] Zhou W M, Fang F, Hou Z Y, et al. Field-effect transistor based on beta-SiC nanowire [J]. IEEE Electr. Device Lett., 2006, 27:463-465.
    [105] Jang C O, Kim T H, Lee S Y, et al. Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors [J]. Nanotechnology, 2008, 19:345203-345207.
    [106] Fang X S, Bando Y, Gautam U K, et al. Inorganic semiconductor nanostructures and their field-emission applications [J]. J. Mater. Chem., 2008, 18:509-522.
    [107] Wong K W, Zhou X T, Au F C K, et al. Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition [J]. Appl. Phys. Lett., 1999, 75:2918-2920.
    [108] Pan Z W, Lai H L, Au F C K, et al. Oriented silicon carbide nanowires: Synthesis and field emission properties [J]. Adv. Mater., 2000, 12:1186-1190.
    [109] Wu Z S, Deng S Z, Xu N S, et al. Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties [J]. Appl. Phys. Lett., 2002, 80:3829-3831.
    [110] Deng S Z, Li Z B, Wang W L, et al. Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate [J]. Appl. Phys. Lett., 2006, 89:023118-023120.
    [111] Lo H C, Das D, Hwang J S, et al. SiC-capped nanotip arrays for field emission with ultralow turn-on field [J]. Appl. Phys. Lett., 2003, 83:1420-1422.
    [112] Tang C C, Bando Y. Effect of BN coatings on oxidation resistance and field emission of SiC nanowires [J]. Appl. Phys. Lett., 2003, 83:659-661.
    [113] Ryu Y, Park B, Song Y, et al. Carbon-coated SiC nanowires: direct synthesis from Si and field emission characteristics [J]. J. Cryst. Growth, 2004, 271:99-104.
    [114] Zhou W M, Wu Y J, Kong E S W, et al. Field emission from nonaligned SiCnanowires [J]. Appl. Surf. Sci., 2006, 253:2056-2058.
    [115] Shen G Z, Bando Y, Ye C H, et al. Synthesis, characterization and field-emission properties of bamboo-like beta-SiC nanowires [J]. Nanotechnology, 2006, 17:3468-3472.
    [116] Kim D W, Choi Y J, Choi K J, et al. Stable field emission performance of SiC-nanowire-based cathodes [J]. Nanotechnology, 2008, 19:225706-225709.
    [117] Jie-Niu J, Wang J NXu N S. Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor-solid reaction [J]. Solid State Sci., 2008, 10:618-621.
    [118] Pham-Huu C, Keller N, Ehret G, et al. The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential [J]. J. Catal., 2001, 200:400-410.
    [119] Zhou W M, Yan L J, Wang Y, et al. SiC nanowires: A photocatalytic nanomaterial [J]. Appl. Phys. Lett., 2006, 89:013105-013107.
    [120] Yamashita H, Nishida Y, Chiyoda O, et al. Design of efficient TiO2/SiC photocatalysts from TiC-SiC nano particles for degradation of organic pollutants diluted in water [J]. Eco-Mater. Proc. Des., 2006, 510:9-12.
    [121] Yamashita H, Nishida Y, Yuan S, et al. Design of TiO2-SiC photocatalyst using TiC-SiC nano-particles for degradation of 2-propanol diluted in water [J]. Catal. Today, 2007, 120:163-167.
    [122]张其土.利用外加SiC改善Si3N4陶瓷材料的抗氧化性能[J].佛山陶瓷, 1995, 3:19-23.
    [123]晏建武,张晨曙,王伟兰,等. Si3N4/SiC (N)纳米复相陶瓷的制备与性能研究[J].工具技术, 2003, 37:3-6.
    [124] Yang W, Araki H, Tang C C, et al. Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites [J]. Adv. Mater., 2005, 17:1519-1523.
    [125] Mpourmpakis G, Froudakis G E, Lithoxoos G P, et al. SiC nanotubes: A novel material for hydrogen storage [J]. Nano Lett., 2006, 6:1581-1583.
    [126] Mukherjee S, Ray A K. An Ab Initio Study of Molecular Hydrogen Interaction with SiC Nanotube-A Precursor to Hydrogen Storage [J]. J. Comp. Theor. Nanosci., 2008, 5:1210-1219.
    [127]李张硕.纳米级交流发电机问世[J].能源研究与信息, 2007, 23:171-171.
    [128] Yang T H, Chen C H, Chatterjee A, et al. Controlled growth of silicon carbide nanorods by rapid thermal process and their field emission properties [J]. Chem. Phys. Lett., 2003, 379:155-161.
    [129] Gao F M, Yang W Y, Wang H T, et al. Controlled Al-doped single-crystalline 6H–SiC nanowires [J]. Cryst. Growth Des., 2008, 8:1461-1464.
    [130] Ning X, Ye H. Experimental determination of the intrinsic stacking-fault energy of SiC crystals [J]. J. Phys. Condens. Mat., 1990, 2:10223-10225.
    [131] Smith J, Yeomans J. Phase diagram of the ANNNI model in a field using a low-temperature series technique [J]. J. Phys. C: Solid State Phys., 1983, 16:5305-5320.
    [132] Tateyama H, Sutoh N, Murakawa N. Quantitative analysis of stacking faults in the structure of SiC by X-ray powder profile refinement method [J]. J. Ceram. Soc. Jpn., 1988, 96:985-994.
    [133] Cheng C, Needs R, Heine V. Inter-layer interactions and the origin of SiC polytypes [J]. J. Phys. C Solid State Phys., 1988, 21:1049-1063.
    [134] Choi H J, Lee J G. Stacking faults in silicon carbide whiskers [J]. Ceram. Int., 2000, 26:7-12.
    [135] Dong C, Zou G F, Liu E K, et al. Synthesis of kelp-like crystalline beta-SiC nanobelts and their apical growth mechanism [J]. J. Am. Ceram. Soc., 2007, 90:653-656.
    [136] Rumyantsev S L, Pala N, Shur M S, et al. Generation-recombination noise in GaN/A1GaN heterostructure field effect transistors [J]. IEEE Trans. Electr. Devices, 2001, 48:530-534.
    [137] Levinshtein M E, Mnatsakanov T T, Ivanov P A, et al. Temperature dependence of turn-on processes in 4H–SiC thyristors [J]. Solid-State Electron., 2001, 45:453-459.
    [138] Agarwal A K, Ivanov P A, Levinshtein M E, et al. Turn-off performance of 2.6 kV 4H–SiC asymmetrical GTO thyristor [J]. Semicond. Sci. Technol., 2001, 16:260-262.
    [139] Zhu H L, Chen X P, Cai J F, et al. 4H–SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain [J]. Solid-State Electron., 2009, 53:7-10.
    [140] Fenjisawa H, Fagananwki G. Microelectronics Devices [M]. Science Press, 1992.
    [141] Yan B H, Zhou G, Duan W H, et al. Uniaxial-stress effects on electronicproperties of silicon carbide nanowires [J]. Appl. Phys. Lett., 2006, 89:023104-023106.
    [142] Yu M B, Rusli, Yoon S F, et al. Hydrogenated nanocrystalline silicon carbide films synthesized by ECR-CVD and its intense visible photoluminescence at room temperature [J]. Thin Solid Films, 2000, 377:177-181.
    [143] Niu J J, Wang J N. A simple route to synthesize scales of aligned single-crystalline SiC nanowires arrays with very small diameter and optical properties [J]. J. Phys. B., 2007, 111:4368-4373.
    [144] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291:1947-1949.
    [145] Wu R B, Wu L L, Yang G Y, et al. Fabrication and photoluminescence of bicrystalline SiC nanobelts [J]. J. Phys. D: Appl. Phys., 2007, 40:3697-3701.
    [146] Ohya K, Ishitani T. Comparative study of depth and lateral distributions of electron excitation between scanning ion and scanning electron microscopes [J]. Jpn Soc Microsc., 2003; 52:291-298.
    [147] Wu R B, Pan Y, Yang G Y, et al. Twinned SiC zigzag nanoneedles [J]. J. Phys. Chem. C., 2007, 111:6233-6237.
    [148] Fan J Y, Wu X L, Kong R, et al. Luminescent silicon carbide nanocrystallites in 3C–SiC/polystyrene films [J]. Appl. Phys. Lett., 2005, 86:171903-171905.
    [149] Chen D H, Liao Z M, Wang L, et al. Photoluminescence from beta-SiC nanocrystals embedded in SiO2 films prepared by ion implantation [J]. Opt. Mater., 2003, 23:65-69.
    [150] Schoonman J. Nanoionics [J]. Solid State Ionics, 2003, 157:319-326.
    [151] Feng D H, Xu Z Z, Jia T Q, et al. Quantum size effects on exciton states in indirect-gap quantum dots [J]. Phys. Rev. B, 2003, 68:033504-033510.
    [152] Zhang X W, Xia J B. Optical properties of GaN wurtzite quantum wires [J]. J. Phys. Cond. Matt., 2006, 18:3107-3115.
    [153] Lipari N O, Altarelli M. Theory of indirect excitons in semiconductors [J]; Phys. Rev. B, 1977; 15:4883-4897.
    [154] Lipari N O, Altarelli M. On the Splitting of the Exciton Ground State in Silicon [J], Solid State Commun., 1979, 32:171-173.
    [155] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283:512-514.
    [156] Fang X S, Bando Y, Shen G Z, et al. Ultrafine ZnS nanobelts as field emitters[J], Adv. Mater., 2007, 19:2593-2593.
    [157] Chueh Y L, Chou L J, Cheng S L, et al. Synthesis of taperlike Si nanowires with strong field emission [J]. Appl. Phys. Lett., 2005, 86:133112-133114.
    [158] Wang W Z, Zeng B Q, Yang J, et al. Aligned ultralong ZnO nanobelts and their enhanced field emission [J]. Adv. Mater., 2006, 18:3275-3278.
    [159] Matsumoto T, Takahashi J, Tamaki T, et al. Blue-green luminescence from porous silicon carbide [J]; Appl. Phys. Lett., 1994, 64:226-228.
    [160] Mimura H, Matsumoto T, Kanemitsu Y. Blue electroluminescence from porous silicon carbide [J]. Appl. Phys. Lett., 1994, 65:3350-3352.
    [161] Petrova-Koch V, Sreseli O, Polisski G, et al. Luminescence enhancement by electrochemical etching of SiC (6H) [J]. Thin Solid Films, 1995, 255:107-110.
    [162] Rossi A M, Murphy T E, Reipa V. Ultraviolet photoluminescence from 6H silicon carbide nanoparticles [J]. Appl. Phys. Lett., 2008, 92:253112-253114.
    [163] Davidson F M, Lee D C, Fanfair D D, et al. Lamellar twinning in semiconductor nanowires [J]. J. Phys. Chem. C, 2007, 111:2929-2935.
    [164] Zhang Z H, Guo W L, Tai G A. Coaxial nanocable: Carbon nanotube core sheathed with boron nitride nanotube [J]. Appl. Phys. Lett., 2007, 90:133103-133105.
    [165] Bykov Y V, Rybakov K I, Semenov V E. High-temperature microwave processing of materials [J]. J. Phys. D Appl. Phys., 2001, 34:R55-R75.
    [166]周伟民.一维碳化硅纳米材料的制备与性能的基础研究[D].上海:上海交通大学微电子学与固体电子学, 2007.
    [167] Dong S S, Hou P, Yang H B, et al. Synthesis of intermetallic NiAl by SHS reaction using coarse-grained nickel and ultrafine-grained aluminum produced by wire electrical explosion [J]. Intermetallics, 2002, 10:217-223.
    [168] Harima H, Nakashima S, Uemura T. Raman scattering from anisotropic LO-phonon–plasmon–coupled mode in n-type 4H–and 6H–SiC [J]. J. Appl. Phys., 1995, 78:1996-2005.
    [169] Rohmfeld S, Hundhausen M, Ley L. Influence of Stacking Disorder on the Raman Spectrum of 3C–SiC [J]. Phys. Status Soli. B, 1999, 215:115-119.
    [170] Frechette J, Carraro C. Resolving radial composition gradients in polarized confocal Raman spectra of individual 3C–SiC nanowires [J]. J. Am. Chem. Soc., 2006, 128:14774-14775.
    [171] Bechelany M, Brioude A, Cornu D, et al. A Raman spectroscopy study ofindividual SiC nanowires [J]. Adv. Funct. Mater., 2007, 17:939-943.
    [172] Sundaresan S G, Davydov A V, Vaudin M D, et al. Growth of silicon carbide nanowires by a microwave heating-assisted physical vapor transport process using group VIII metal catalysts [J]. Chem. Mater., 2007, 19:5531-5537.
    [173] Feldman D W, Parker J H, Choyke W J, Patrick L. Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R [J]. Phys. Rev., 1968, 173:787-793.
    [174] Kim H Y, Bae S Y, Kim N S, et al. Fabrication of SiC-C coaxial nanocables: thickness control of C outer layers [J]. Chem. Commun., 2003,2634-2635.
    [175] Matsumoto T, Takahashi J, Tamaki T, et al. Blue-green luminescence from porous silicon carbide [J]. Appl. Phys. Lett., 1994, 64:226-228.
    [176] Petrova-Koch V, Sreseli O, Polisski G, et al. Luminescence enhancement by electrochemical etching of SiC (6H) [J]. Thin Solid Films, 1995; 255:107-110.
    [177]马晓岚.纳米技术要重视“自下而上”[N].科学时报,2004-1-12.
    [178] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature, 2002, 415:617-620.
    [179] Lauhon L J, Gudiksen M S, Wang C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature, 2002, 420:57-61.
    [180] Wu Y Y, Fan R, Yang P D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires [J]. Nano Lett., 2002, 2:83-86.
    [181] Guo Y B, Tang Q X, Liu H B, et al. Light-controlled organic/inorganic P-N junction nanowires [J]. J. Am. Chem. Soc., 2008, 130:9198-9199.
    [182] Zhang Y, Ichihashi T, Landree E, et al. Heterostructures of single-walled carbon nanotubes and carbide nanorods [J]. Science, 1999, 285:1719-1722.
    [183] Kerdiles S, Berthelot A, Rizk R, et al. Fabrication and properties of low-temperature (<= 600 degrees C) processed n-type nanocrystalline SiC/p-type crystalline Si heterojunction diodes [J]. Appl. Phys. Lett., 2002, 80:3772-3774.
    [184] Li Y B, Bando Y, Golberg D. SiC-SiO2-C coaxial nanocables and chains of carbon nanotube-SiC heterojunctions [J]. Adv. Mater., 2004, 16:93-96.
    [185] Tak Y, Ryu Y, Yong K. Atomically abrupt heteronanojunction of ZnO nanorods on SiC nanowires prepared by a two-step process [J]. Nanotechnology, 2005, 16:1712-1716.
    [186] Cai K F, Zhang A X,Yin J L. Ultra thin and ultra long SiC/SiO2 nanocablesfrom catalytic pyrolysis of poly (dimethyl siloxane) [J]. Nanotechnology, 2007, 18:485601-485605.
    [187] Kohno H, Kikuo I, Oto K. Electron transport in Si nanochains/nanowires [J]. J. Electron Microsc., 2005, 54:I15-I19.
    [188] Rafiq M A, Durrani Z A K, Mizuta H, et al. Room temperature single electron charging in single silicon nanochains [J]. J. Appl. Phys., 2008, 103:053705-053708.
    [189] Ni H, Li X D. Self-assembled composite nano-/micronecklaces with SiO2 beads in boron strings [J]. Appl. Phys. Lett., 2006, 89:053108-053110.
    [190] Tian J F, Wang X J, Bao L H, et al. Boron carbide and silicon oxide hetero-nanonecklaces via temperature modulation [J]. Cryst. Growth Des., 2008, 8:3160-3164.
    [191] Kohno H, Takeda S. Self-organized chain of crystalline-silicon nanospheres [J]. Appl. Phys. Lett., 1998, 73:3144-3146.
    [192] Kohno H, Takeda S. Infusing metal into self-organized semiconductor nanostructures [J]. Appl. Phys. Lett., 2003, 83:1202-1203.
    [193] Cowley J M, Moodie A F. The scattering of electrons by atoms and crystals. I. A new theoretical approach [J]. Acta Crystallogr., 1957; 10: 609.
    [194] Chart O K a T G. Silicon monoxide pressures due to the reaction between solid silicon and silica [J]. J. Chem. Thermodyn., 1974, 6:467-476.
    [195] Guo Y P, Zheng J C, Wee A T S, et al. Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix [J]. Chem. Phys. Lett., 2001, 339:319-322.
    [196] Deak P, Knaup J, Thill C, et al. The mechanism of defect creation and passivation at the SiC/SiO2 interface [J]. J. Phys. D-Appl. Phys. 2007, 40:6242-6253.
    [197] Cai K F, Zhang A X, Yin J L, et al. Preparation, characterization and photoluminescence properties of ultra long SiC/SiOx nanocables [J]. Appl. Phys. A-Mater., 2008, 91:579-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700