用户名: 密码: 验证码:
大气传输特性对激光探测性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光具有高相干度、高亮度、方向性好等普通光源无法比拟的优点使它在各个学科与技术领域的应用无所不在、与日俱增。但当激光在大气中长距离传输时,大气严重限制了各种激光工程(如激光通信、激光雷达、激光测距等)系统的使用性能。激光大气传输对激光雷达探测目标的能力具有重要的影响。因此,在对激光雷达系统进行设计、研制和定标时,必须考虑到大气传输的影响。
     本论文对1. 06μm激光大气传输特性进行了理论研究,主要讨论了影响激光雷达探测性能的两个大气效应:衰减效应和由湍流引起的闪烁效应。分析了对流层中影响激光传输的各种因素;阐述了大气对激光传输的各种衰减效应,包括大气中气体分子和气溶胶粒子对激光信号的吸收和散射;在晴朗、云、雾、霾、雨等各种天气情况下,利用一些经验公式计算了1 .06μm激光在大气传输中的衰减。结果表明,在近红外波段对于对流层大气中霾粒子的衰减预测应用Mie理论计算更合理;云雾引起的衰减一般较大,并且随着能见度的减小,衰减增加较快。因此,当Vb < 15km时,霾引起的衰减就需要考虑;当V b较小时,云、雾的激光衰减是限制系统性能的主要因素。
     以激光雷达距离方程为基础,根据具体要求,选定系统参数,在一定能见度条件下,研究单基地激光雷达的最小接收功率、正常检测时接收机的输入端所需的最小信噪比随最大探测距离之间的关系。
     叙述了湍流对激光传输的影响,重点研究了大气弱湍流效应中的闪烁效应对直接探测激光雷达系统的影响,这些研究对激光雷达系统的设计具有一定的参考价值。
The applications of laser are increasing and omnipresent because of its high coherent, brightness, directivity, which general light sources can’t compare to it. Performances of various laser engineering systems (such as laser communication, laser radar, laser detecting) are restricted seriously by the atmosphere for long span laser transmission. The transmission of laser plays an important role in the ability of laser radar when it detecting target. Therefore, atmospheric transmission must be taken into account when in the designing, development and calibration of laser radar system.
     In this paper, the atmospheric propagation characteristic of 1.06μm laser is theoreticly investigated, the two effects: attenuation and scintillation induced by turbulence, are discussed which influence the performance of the laser radar’s detection. The influence of atmospheric attenuation upon laser radar, including the absorption and scattering induced by gas molecule and aerosol are discussed. Various factors which influence the transmission of laser are analyzed. In different weathers, such as clearness, fog, haze, rain and snow etc, the attenuation and atmospheric transmission at 1.06μm are calculated with several experiential formulas. The results show that Mie theory is more reasonable than experiential model for atmospheric hazes attenuation prediction in the troposphere. The attenuation induced by clouds and fog increase quickly with the visibility decrease. Therefore, for Vb < 15km, the haze attenuation must be considered. For lower V b, the performance of laser system is limited by the attenuation of clouds and fog.
     On the base of range equation of laser radar and parameters of laser radar system desired,on some visibility, the minimal receiver power and the minimal input SNR of general detection as a function of the maximal detection range are researched.
     In addition, the influence of weakly turbulence on laser transmission is depicted, the scintillation of the turbulence influence on the direct detect system for laser radar is studied. These researches are helpful for designing laser systems for laser radar.
引文
[1] Lord Rayleigh, On the light from the sky, its polarization and color, Phil. Mag., 1871, 41, 107~120.
    [2] Lord Rayleigh, On the scattering of light by small particles, Phil. Mag., 1871, 41, 447~454.
    [3] G. Mie, A contribution to the optics of turbid media, especially colloidal metallic suspensions, Ann. Phys., 1908, 25(4), 377~445. (In German)
    [4] G. V. Rozenberg, Light scattering in the earth’s atmosphere, Usp. Fiz. Nauk, 1960, 71, 173~213.
    [5] E. J. McCartney, Optics of the atmosphere Scattering by molecules and particles, John Wiley & Sons, Inc. 1976.
    [6] A. Ishimaru, Wave propagation and scattering in random media [M]. Academic Press, New York, 1978.
    [7]宋正方.应用大气光学基础.北京:气象出版社, 1990.
    [8] Y. Sasano and E. V. Browell, Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations, Applied Optics, 1989, 28(9), 1670~1679.
    [9]吴健等.大气中的光传输理论.北京:北京邮电大学出版社, 2005.
    [10]宋正方, 1. 06μm激光的斜程大气传输衰减,激光技术, 1997, 21(6), 343~345.
    [11]周军等,大气气溶胶光学特性激光雷达探测,量子电子学报, 1998, 15(2), 140-148.
    [12] S.Tsitomeneas and E.Voglis, Free atmospheric broadcasting of radio, TV and teletext with laser radiation, SPIE, 1998, 3423, 276~180.
    [13]甘新基等, 1. 06μm激光在对流层传输中的衰减预测,长春理工大学学报, 2006, 29(2), 8~13
    [14]陈敏等,激光雷达斜程能见度的一种探测方法及其分析,红外与激光工程, 2006, 35(2), 156~160.
    [15] Aher Nabouls, Fog attenuation Prediction for optical and infrared waves[J]. Opt Eng, 2004, 43 (2): 319~329.
    [16] V. I. Tatarski, Wave propagation in a turbulent medium, McGRAW-HILL BOOK COMPANY, INC. New York, Toronto London, 1961.
    [17] R.J.Hill, Theory of Saturation of optical scintillation by strong turbulence, plane-wave variance and covariance and spherical-wave covariance [J],J. Opt. Soc. Am. A, 1981, 72(2): 212~222.
    [18] R.J.Hill and S.F.Clifford, Theory of saturation of optical scintillation by strong turbulence for arbitrary refractive-index spectra [J], J.Soc.Am.A., 1981, 71(6):675~686.
    [19] Alexander J. Glass et al, Fractional moments for determining intensity PDFs from experimental data in atmospheric optical scintillation, Proc. SPIE 18th Congress of the International Commission for Optics, 1999, Vol. 3749, 48~49.
    [20] L. C. Andrews, Laser beam propagation through random media, SPIE Optical Engineering Press, Bellingham, Washington, USA, 1998.
    [21] Lambert, H.C; Rickett, B.J. On the theory of pulse propagation and two-frequency field statistics in irregular interstellar plasmas [J], The astrophysical Joural, 1999, 517(1): 299~317.
    [22]张民,吴振森,张延冬,脉冲波在强起伏湍流介质中的传播特征分析[J],物理学报, 2001, 50(6): 45~50.
    [23] L.C.Andrews, et al, Theory of optical scintillation: Gaussian beam wave model, waves in Random media, 2001, 11(1): 271~291.
    [24] Yang Ruike, Wu Zhensen and Zhang Peirong, Study of scintillation for infrared laser beam propagating in atmospheric turbulence on earth-space paths, International Journal Of Infrared And Millimeter Waves, 2004, 25(6), 2163~2172.
    [25] J. C. Ricklin1, et al, Performance loss factors for optical communication though clear air turbulence, Free-Space Laser Communication and Active Laser Illumination III, Proc. of SPIE Vol. 2004, 5160, 1~12.
    [26] A. K. Majumdar and J. C. Ricklin, Effects of the atmospheric channel on free-space laser communications, Free-Space Laser Communications V, Proc. of SPIE 2005, Vol. 5892, K1~16.
    [27] D. Kedar, Adaptive field-of-view receiver design for optical wireless communication through fog, Free-space laser communication and laser imaging II, Proceedings of SPIE, 2002, Vol. 4281, 110~120.
    [28] D. Giggenbach, et al, Measurements at a 61km near-ground optical transmission channel, Free-space laser communication technologies XIV, Proceedings of SPIE, 2002, Vol. 4635, 162~170.
    [29] Tan Ying and Guo Jianzhong, Study of channel model of free-space laser communication system, Free-space laser communication V, Proc. of SPIE, 2005, Vol. 5892, S1-8.
    [30] Xu Guoliang, et al, Influence of atmospheric turbulence on FSO link performance, Optical transmission, switching, and subsystems, Proceedings of SPIE, 2004, Vol. 5281, 816~822.
    [31] [美]Merrill I.Skolnik主编,王军等译.雷达手册(第二版)[M].北京:电子工业出版社, 2003: 964~965.
    [32]胡成.双基地雷达同步技术研究与同步系统设计[D].成都:电子科技大学, 2003: 1~2.
    [33]熊辉丰.激光雷达[M].北京:宇航出版社, 1994: 4~5, 46~47.
    [34]戴永江.激光雷达原理[M].北京:国防工业出版社, 2002, 5~7.
    [35]薛刚国,孙东松,杨昭.直接探测激光雷达模型及其性能模拟[J].红外与激光程, 2003, 32(2): 244~247.
    [36]王永仲.现代军用光学技术[M].北京:科学出版社, 2003: 287~288.
    [37]杨振起,张永顺,骆永军.双(多)基地雷达系统[M].北京:国防工业出社, 1998: 34~39.
    [38]李晓峰.星地激光通信链路原理与技术[M].北京:国防工业出版社, 76~203
    [39] E. J.麦卡特尼著.潘乃先等译.大气光学.北京:科学出版社, 1998.
    [40] ITU-R, Document 3/74-E, 2002, 29 May.
    [41] A. R.杰哈著,张孝霖等译,红外技术应用—光电,光子期间及传感器,化学工业出版社, 2004.
    [42] Chiara Levoni, Et. al, Atmospheric aerosol optical properties: a datebase of radiative characteristics for different com[onents and classes, Applied optics, 1997, 36(30): 8031~8041.
    [43]赵振维,水凝物的电波传播特性与遥感研究,博士研究生论文,西安电子科技大学, 2001, 5.
    [44]杨瑞科,对流层地-空路径电磁(光)波传播的若干问题研究,博士研究生论文,西安电子科技大学, 2003, 5.
    [45]高红燕,蔡新玲,李建科,西安市低能见度特征分析,陕西气象, 2005 (6).
    [46] F. T. Ulaby, R. K. Moore and A. K. fung, Microwave Remote Sensing, Vol1, Addision-Westley Publishing company, 1981.
    [47] Maha Achour. Simulating Atmospheric Free-space Optical Progagation: partⅠ, Rainfall Attenuation [J]. Optical Wireless Communications, 2002, Vol. 4635: 192~201.
    [48]蒋丽娟,近地实用激光大气通信系统设计, 2000, No.24, No.3.
    [49]袁纵横,张文涛.大气湍流对激光信号传输影响的分析研究.激光与红外2006, Vol36, No.4, 272~274.
    [50]杨瑞科,马春林,韩香娥等,激光在大气中传输衰减研究,红外与激光工程增刊,2007年9月, P415-418.
    [51]任浩,魏宏建,谭青春.激光通信中大气闪烁引起探测器噪声的计算机模拟.应用光学, 2003, 24(5): 22~24.
    [52] L. C. Andrews, R, L. Phillips, C. Y. Hopen. Scintillation model for a satellite communication link at large zenith angles [J]. 3272~3280.
    [53] H. T. Yura. Threshold detection in the presence of atmospheric turbulence [J]. Appl Opt. 1995, 34(6): 1097~1102.
    [54]张宇,唐勐,陈锺贤等.直接探测激光雷达系统的建模与仿真[J].红外与激光工程, 2004, 33(6): 572~575.
    [55] Vasseur H, Gibbins C J. Inference of fog Characteristics from Attenuation Measurements at Measurements at Millimeter and Optical Wavelengths [J]. Radio Science, 1996, 31(5): 1089~1097.
    [56] [Zhao zhen wei, Wu zhen sen, Millimeter wave Attenuation Due to Fog and Clouds[J]. International Journal of Infrared and Millimeter Waves, 2000, 20(10): 481~495.
    [57]赵振维,吴振森,沈广德等,雾对10. 6μm红外辐射的衰减特性研究,红外与毫米波学报, 2002, 21(2): 95~98.
    [58] Chylek, P., Extinction and liquid water content of fogs and clouds, J.Atmos. Sci, 1978, 35: 296~300.
    [59] Steward, D.A.and O.M. Essenwanger, A survey of fog and releted optical propagation characteristics, Reviews of Geophys. And space Physics, 1982, 20(3): 481~495.
    [60] L. Wang, S.L. Jacques, L. Zheng. MCML - Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995, 47: 131~146.
    [61] Wulich D, Kazovsky L G. Accuracy of Optical Angle Estimator Operating Turbulent Atmosphere. Appl. Opt., 1983, 22:65.
    [62] Clifford S F, Laling L. Monostatic Diffration-limited Lidars: the Impact of Optical Reffractive Turbulence, Appl. Opt., 1983, 22(11): 1696~1701.
    [63] Phillips R L, Andrews L C. Effects of Atmospheric on Optical Communication System Using a Receiver with Memory. Appl. Opt., 1983, 22(26): 3833~3836.
    [64] Winick K A, Atmospheric Turbulence– induced Signal Fodes on Optical Heterodynej Communication. Appl. Opt., 1986, 25: 1817.
    [65] Garder C S. Effect of Random Path Fluctions on the Accuracy of Laser Ranging System. Appl. Opt., 1976, 15(10): 2539 ~2545.
    [66]乐时晓, 1. 06μm激光海面通信传输特性的初步研究,电子科技大学学报, 1981, No2: 2~8.
    [67]袁纵横,张文涛,大气湍流对激光信号传输影响的分析研究,激光与红外, 2006, Vol. 36, No.4, 172-274.
    [68]韩权,激光雷达距离成像和大气传输特性的研究,哈尔滨工业大学硕士学位论文, 20000701.
    [69]谭宇,战术用脉冲激光测距仪测距方程和测距性能研究及其应用,光电与控制, 1998年第3期, 57-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700