用户名: 密码: 验证码:
ZnO表面光伏行为的Kelvin探针表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体功能材料表面与界面光伏行为的研究是与太阳电池、发光材料、光催化、微/纳米光电子器件、光敏传感器等研究领域密切相关的,是表面和界面科学的前沿课题。对于具有光电互换功能的材料或器件来说,研究其光电活性与光伏行为性质的内在关系,以及影响微观光伏行为的结构与机制,对于新材料和新器件的开发与应用来说至关重要。
     近年来,具有低维结构的材料被引入使得大多数光电功能器件的光电活性与性能显著提高。研究光电功能材料,特别是微/纳米功能材料及其所构建的光电功能器件中表面与界面的光伏行为,是探讨其工作机理的基础,这也为设计电子或光电子器件及进一步优化器件体系的性能提供理论与实验依据。
     本文通过利用英国KP Technology公司制造的扫描Kelvin探针系统表征不同形貌结构ZnO的光伏行为。首先,综述了光电功能材料关于电子功函数与光伏行为的基础知识。接着,关于Kelvin探针在实验操作上提供了方便可行地进行仪器调试与准确测量的实验方法,以及测量结果修正的计算公式;分析了基底上生长稀疏微/纳米结构材料时,基底的表面电子功函数与稀疏微/纳米结构材料表面电子功函数是怎样影响Kelvin探针的测量结果,进而推导出了准确测量基底上稀疏微/纳米结构材料表面电子功函数的理论计算公式和实验方法;根据产生表面光电压的两种机制,建立了表面光电压与Kelvin探针测量结果之间的定量关系,并提供了测量表面光电压的实验方法。最后,用CVD方法在不同条件下制备了不同形貌与结构的ZnO样品和相关物理性质表征,用Kelvin探针对ZnO样品的电子功函数与表面光伏行为及衰减演化过程进行了跟踪测量,得出了CVD法制备的ZnO中,ZnO的表面电子功函数随蒸发区温度升高而减少、ZnO表面光电压的绝对值随着蒸发区温度升高而增大的结论;通过对ZnO样品表面光电压衰减演化过程测量数据的分析,得出了ZnO中不同的局域能级捕获的被激发光电子对稳定表面光电压有很大的贡献,以及ZnO中局域能级分布等相关的物理性质。
The functional materials of the semiconductor with photoelectric properties will play a crucial role in the development of advanced science and technology in future, such as solar cells, luminscene materals, photocatalysis, micro/nano photoelectronic devices, optical sensor, etc, and those also are forward subjects. As far as the photoelectronic functional materials with function to transfer the energy between the optical energy and electric energy, the performance of the photoelectric functional materials is essentially determined by the intrinsic structure of the materials, which is mainly reflected by the photo-induced electron transition and transfer behavior in microscopic view, especially for developing the advanced materials with photo-to-electric converting function, it is of great significance to study the relationship between the photoelectric activity and the characteristics of the photo-induced charges and explore the mechanisms of influencing the behavior of the charges.
     In recent years, the introduction of low dimensional materials into various photoactive devices has been proved to promote their performance significantly. Therefore, it is essential to study the behaviors of the photo-induced charges at the interface and surface of the photoactive devices with low dimensional structure for exploring their novel operating mechanisms and constructing and optimizing the photoelectric devices with higher performance.
     The main thesis work is that the photovoltaic revolution of the ZnO with various structures and patters are characterized using the Kelvin probe(SKP, purchased from KP technology, UK). Firstly, basing on the principle and the system structure of Kelvin probe and the mechanism of forming surface photovoltage, explore a way to characterize quantitatively surface photovoltage simply and conveniently using Kelvin probe system; propose a theoretical and experimental way to measure precisely the work function and photovoltage revolution of the sparse micro/nano-structure materials grown on the substrate; the various ZnO samples are prepared by CVD method, their surface work function, stable photovoltage and its decay revolution are measured using Kelvin probe system, furthermore, the relevant photoelectric properties especially for the local levels of the samples are analyzed.
引文
[1]周馨我,张公正,范广裕.功能材料学[M]. 1版.北京:北京理工大学出版社, 2002.
    [2]赵连城,国凤云.信息功能材料学[M].哈尔滨:哈尔滨工业大学出版社, 2004.
    [3]朱建国,孙小松,李卫.电子与光电子材料[M].北京:国防工业出版社,2007.
    [4] Klingshirn C F. Semiconductor Optics[M]. 3rd Edition.北京:科学出版社, 2007.
    [5] ?zgürü, Alivov Y I, Liu C, Teke A, Reshchikov M A and Do?an S. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005, 98(4):1-103.
    [6] Look D C. Progress in ZnO Materials and Devices[J]. Journal of Electronic Materials, 2006, 35(5): 1299-1238.
    [7]杨德仁.太阳电池材料[M].北京:化学工业出版社,2006.
    [8] Chen J, Lei W, Chai W Q, Zhang Z C, Li C and Zhang X B. High field emission enhancement of ZnO-nanorods via hydrothermal synthesis[J]. Solid-State Electronics, 2008, 52(2): 294-297.
    [9] Major S, Satyendra K and Bhatnagar M. Effect of hydrogen plasma treatment on transparent conducting oxides[J]. Appl. Phys. Lett.,1998,49:395-397.
    [10]Mcller J,Kluth O,Wieder S. Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates[J]. Solar Energy Materials and Solar Cells, 2001,66:275-280.
    [11]徐步衡,薛俊明,赵颖. MOCVD制备用于薄膜太阳电池的ZnO薄膜研究[J].光电子.激光, 2005,16(5):515-518.
    [12]Wilson W W, Akira Y and Kiyoshi T. Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition[J]. J Appl Phys, 1991,70:7119-7111.
    [13]Masahiro Y, Wilson W W and Akira Yamada. Large-area ZnO thin films for solar cells prepared by photo-induced metalorganic chemical vapor deposition[J]. J. Appl. Phys., 1993,32:729-735.
    [14]陈新亮,薛俊明,孙建.绒面ZnO薄膜的生长及其在太阳电池前电极的应用[J].半导体学报, 2007,28(7):1072-1077.
    [15]陈新亮,徐步衡,薛俊明. MOCVD制备的ZnO薄膜及其在太阳电池背电极应用[J].半导体学报,2005,26(12): 2363-2368.
    [16]Banerjee A and Guha S. Study of back reflectors for amorphous silicon alloy solar cells application[J]. J. Appl. Phys.,1991,69: 1030-1035.
    [17]Müller J, Rech B and Springer J. TCO and light trapping in silicon thin film solar cells[J]. Solar Engery, 2004,77:917-922.
    [18]Akira Y and Makoto K. Application of transparent conducting ZnO film toα-Si solar cells[J]. technical digest of the international PVSEC-7, Nagoya, Japan,1993,34:321-29.
    [19]Jinsu Y, Jeonghul L and Seokki k. High transmittance and low resistive ZnO:Al films for thin film solar cells[J]. Thin Solid Films, 2005,213:480-481.
    [20]Lokhande B J, Patil P S and Uplane M D. Studies on structural、optical and electrical properties of boron doped zinc oxide filma prepared by spray pyrolysis technique[J]. Physica B, 2001, 59:302-303.
    [21]Chitra A, Oliver K and Gunnar S. Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications[J]. Thin Solid Films, 2003,442:167-172.
    [22]李微,孙云,敖建平.中频对向靶磁控溅射制备超薄ZnO薄膜及其在太阳电池中的应用[J].人工晶体学报, 2007,36(3):584-588.
    [23]Nawalage C F, Katsumi K and Atsushi F. Large Area ZnO Films Optimized for Graded Band-gap Cu ( In, Ga) Se2-based Thin-film Mini-modules[J]. Solar Energy Materials and Solar Cells,1997,49: 291-297.
    [24]李伟,何青. ZnO薄膜对CIGS太阳电池性能的影响[J].太阳能学报, 2004,25(4): 419-424.
    [25]Delahoy A E, Ruppert A and Contreras M. Thin Solid Films,2000,140:361-362.
    [26]Platzer B C, Lu J and Kessler J. Patterned growth and field emission of ZnO nanowires[J]. Thin Solid Films, 2003, 321:431-432.
    [27]Jeong S S, Mittiga A, Salza E, Masci A and Passerini S. Electrodeposited ZnO/Cu2O heterojunction solar cells[J]. Electrochimica Acta, 2007,34:43-47.
    [28]段理,林碧霞,傅竹西. ZnO/p-Si异质结的光电转换特性[J].半导体学报, 2005, 26(10): 1963 -1966.
    [29]周健伟,覃东欢,罗潺.纳米ZnO-共轭聚合物MEH-PPV异质结太阳能电池的制备和研究[J].真空与低温, 2006,12(1):9-14.
    [30]盛显良,赵勇,翟锦.基于ZnO光阳极的染料敏化太阳电池[J].化学进展, 2007,19(1): 59-65.
    [31]Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H and Lee H J. Field emission from well-aligned zinc oxide nanowires grown at low temperature[J]. Appl. Phy. Lett., 2002, 81(18): 3646-3648.
    [32]Law M, Greene L E, Johnson J C, Saykally R and Yang. P d. Nanowire dye-sensitized solar cells[J]. Nature Materials, 2005, 4(6):455-459.
    [33]刘贵民.无损检测技术[M].北京:国防工业出版社, 2006.
    [34]黄惠忠.论表面分析及其在材料研究中的应用[M].北京:科学技术文献出版社,2002.
    [35]金伟,齐世清,王建国.现代检测技术[M].第2版.北京:北京邮电大学出版社, 2007.
    [36]张浩,刘善鹏,黄伟,委福祥,曹进,蒋雪茵,张志林.基于接触势差的表面电子功函数测试方法[J].发光学报. 2008, 28(4): 505-509.
    [37]林宗涵.热力学与统计物理学[M].北京:北京大学出版社, 2007.
    [38]黄昆原著,韩汝琦改编.固体物理学[M].北京:高等教育出版社, 1988.
    [39]Kronik L, Leibovitch M, Fefer E, Burstein L and Shapira Y. Quantitative surface photovoltage spectroscopy of semiconductor interfaces. Journal of electronic materials[J], 1995, 24:379-384.
    [40]Alan D, Naught M and Wilkinson A. Compendium of Chemical Terminology-The Gold Book[M], 2nd Edition. Blackwell Science,1997.
    [41]季振国.半导体物理[M].杭州:浙江大学出版社, 2005.
    [42]Li S S. Semiconductor Physical Electronics[M]. 2nd Edition. New York: Spring Science and Business Media, LLC, 2006.
    [43]钱佑华,徐至中.半导体物理[M].第一版.北京:高等教育出版社,1999.
    [44]Robert G S, Kalman K and Bernard K. Dember-effect theory[J]. Journal of Applied Physics, 1978, 49: 2849-2854
    [45]Jin K J, Zhao K, Lu H B, Leng L and Yang G Z. Dember effect induced photovoltage in perovskite p-n heterojunctions[J]. APPLIED PHYSICS LETTERS, 2007, 91:081906.
    [46]刘善鹏,黄伟,曹进,蒋雪茵.表面电子功函数测量[J].光学学报, 2008, 28(4):505-509
    [47]舒启清.电子隧穿原理[M].北京:科学出版社,1998.
    [48]程洁,朱文清,委福祥,蒋雪茵,张志林.用Fowler-Nordheim公式测定ITO电子功函数的研究[J].光电子.激光, 2007,18(8): 907-910.
    [49]曾葆青,杨中海.场致发射体的局域电子功函数研究[J].真空科学与技术, 1999, 19(3):85-89.
    [50]鄣可珍,万梅香.用XPS方法测量导电高聚物的电子功函数[J].物理测试,1990,2: 64-67.
    [51]张滨,孙玉珍,王文皓.关于用UPS测量功函数[J].物理测试, 2007,25(4): 21-23.
    [52]Kim J S, L?gel B, Moons E, Johansson N, Baikie I D, Salaneck W R, Friend R H and Cacialli F. Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison[J]. Synthetic Metals, 2000, 111(112): 311–314.
    [53]Dieter K S. Surface voltage and surface photovoltage: history, theory and applications[J]. Meas.Sci.Technol.,2001,12(16):55-61.
    [54]Leeor K and Yoram S. Surface photovoltage spectroscopy of simiconductor structures:the crossroads of physics,chemistry and electrical engineering[J]. Surf. Interf. Ana1. 2001, 31: 954-965.
    [55]Kronik L and Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications[J]. Surface Science Reports, 1999, 254:1-205.
    [56]Kronik L, Leibovitch M, Fefer E, Burstein L and Shapira Y. Quantitative surface photovoltage spectroscopy of semiconductor interfaces[J]. Journal of electronic materials,1995,24:379-384.
    [57]萨茹拉,韩元春.半导体表面态的研究与展望[J].内蒙古民族大学学报(自然科学版),2003,18: 13-17.
    [58]L?gel B, Baikie I D and Petermann U. A novel detection system for defects and chemical contamination in semiconductors based upon the Scanning Kelvin Probe[J]. Surface Science, 1999,433:622–626.
    [59]朱履冰,包兴.表面与界面物理[M].第1版.天津:天津大学出版社,1992.
    [60]Kui J J, Zhao K, Lu H B, Liao L and Yang G Z. Dember effect induced photovoltage in perovskite p-n heterojunctions[J]. APPLIED PHYSICS LETTERS, 2007, 91:081906 .
    [61]徐金杰,王献伟,王德军,张兴堂,黄亚彬,杜祖亮,李铁津.稳态光电压测量技术[J].河南大学学报(自然科学版), 2005,35(3):15-18.
    [62]庞山,张兴堂,陈柯,李蕴才,黄亚彬,杜祖亮.表面光电压测量中的最佳相位[J].物理化学学报, 2005,21:42-46.
    [63]Wang B H, Wang D J and Zhang L H. Surface Photovoltaic Characterizations of Porous Silicon Layers[J]. Thin Solid Films, 1997,293:40-44.
    [64]晏于模,王魁香.近代物理实验[M].长春:吉林大学出版社, 1995.
    [65]Manual Version SKP 4.5[S]. KP Technology Ltd, www.kptechnology.ltd.uk, 2005.
    [66]Baikie I D, Smith P J S, Porterfield D M and Estrup P J. Multitip scanning bio-Kelvin probe[J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70(3):1482-1450.
    [67]Olivier J, Servet B, Vergnolle M, Mosca M and Garry G. Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum Measurements by the four-probe method and by Kelvin force microsco[J]. Synthetic Metals, 2001,122(6): 87-93.
    [68]Bai X D, Wang E G, Gao P X and Zhong L W. Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface[J]. NANO LETTERS, 2003,3(8):1147-1150.
    [69]Reynolds D C, Look D C, Jogai B, Hoelscher J E, Sherriff R E, Harris M T and Callahan M J. Time-resolved photoluminescence lifetime measurements of theΓ5 andΓ6 free excitons in ZnO[J]. J. Appl. Phys., 2000, 88(5): 2152-2155.
    [70]Wang R Z and Jiang D H. Photoreflectance spectroscopy of semi-insulating GaAs[J]. J. Appl. Phys. , 1992, 72(4): 3826-3830.
    [71]Olivier J, Servet B, Vergnolle M, Mosca M and Garry G. Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum Measurements by the four-probe method and by Kelvin force microsco[J]. Synthetic Metals, 2001,122(6): 87-93.
    [72]Ding S L,Guo J, Yan X H, Lina T J and Kai X. Radial spherical ZnOstructures with nanorods grown on both sides of a hollow sphere-like core[J]. Journal of Crystal Growth, 2005, 284:142–148.
    [73]丁书龙,郭建,颜晓红,宣凯,林铁军.定向ZnO纳米线的制备和生长机理[J].材料导报“纳米与新材料专辑”J 19, 2005, 74:19-24.
    [74]heusden K V, Warren W L, Seager C H, Tallant D R, Voigt J A and Gnade B E. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J. Appl. Phys. ,1996, 79(12):7983-7987.
    [75]俞允强.电动力学简明教程[M].第一版.北京:北京大学出版社, 1999.
    [76]Park C H, Zhang S B and Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective[J]. Phys. Rev. B., 2002, 66(5): 073202.
    [77]Yan Y and Zhang S B. Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO[J]. PHYSICAL REVIEW LETTERS,2001,86(25):5723-5726.
    [78]Nunes P,Fortunato and Tonello E. Effect of different dopant element on the properties of ZnO thin films[J]. Vacuum, 2002,64:281-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700