用户名: 密码: 验证码:
InSb/InAsSb超晶格红外探测薄膜结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用分子束外延法在半绝缘GaAs(001)衬底上成功生长了InSb/InAsSb超晶格薄膜材料,并对薄膜表面形貌、断面形貌、晶体结构、元素扩散和光电性能等进行了研究。
     对所生长薄膜的能带结构进行模拟计算,结果表明:无论是压应力还是拉应力,均使材料的禁带宽度减小。
     设计并生长了InSb/InAsSb超晶格薄膜样品,并通过试验方法确定出缓冲层生长工艺参数,结果表明:在570℃、Ga束流为2×10~(-7)torr时生长的GaAs缓冲层质量较好。
     采用原子力显微镜观察分析薄膜的表面形貌,结果表明:与420℃相比,在450℃所生长的InAsSb薄膜的表面粗糙度较小,但个别地方有条形缺陷。采用扫描电子显微镜观察薄膜的断面形貌,得出元素分布情况,结果显示薄膜断面从基体到表面的解理条纹连续分布,说明薄膜各层间共格良好。利用双晶X射线衍射方法对薄膜晶体质量进行评价,分析结果显示出了尖锐的衍射峰,表明薄膜的结晶质量良好。
     采用XPS方法对薄膜的成分分布与元素扩散进行分析,结果表明:薄膜各层间存在元素的扩散,450℃生长的薄膜Ga的扩散层深达100nm左右,As的扩散层深则达到120nm之多。且超晶格InAsSb层中,As:Sb值稍小,不掺杂层中有少量Si扩散。研究还表明在420℃生长的样品中,在超晶格界面处Sb除了有一个纯Sb的峰外,还有Sb-As共价键的峰,且超晶格中As也发生了一定的扩散。
     采用红外吸收光谱法对样品的红外吸收性能进行分析,结果表明在10~17μm长波段薄膜红外响应性能良好。使用霍尔测试方法对样品的电学性能如迁移率、载流子浓度等进行测试,结果显示:随着温度升高,电子扩散程度和载流子浓度增大,表面电阻率减小,霍尔系数变小;在室温下和在液氮温度下材料的迁移率差别不大。
Molecular Beam Epitaxy (MBE) method has been used to grow InSb/InAsSb SLS epitaxial layer on GaAs (001) substrate.Furthermore, surface appearance, cross-surface appearance, crystal structure, diffusion of elements and photoelectric properties were studied.
     The Eg of each layer was calculated by using quantum mechanics calculator of simulation software of Materials Studio. The results indicated that the Eg of the material was lessened either pressed or pulled,which laid a theoretical foundation for the design of the film structure.
     We also designed two film samples and growed them using MBE method.Moreover,the parameter of growth condition of buffer layer and epitaxial layer was also given from experimentation.The results showed that buffer layer of GaAs had a good performance when growed at 570℃and pressure of Ga was 2x10-7torr.
     Atomic force microscope (AFM) was used to research the surface appearance.The results showed surface roughness of InAsSb film growed at 450℃was smaller compared with the one growed at 420℃, but some places had strip flaws. Scan electron microscope (SEM) was used to research the cross-surface appearance.Distribution of elements was achieved.The results showed that cleavage stripes of cross-surface from epitaxial layer to the surface of the substrate distributed continuously,which indicated each layers of the film matched well. The crystal quality of specimen has been investigated by means of double crystals X-ray diffraction (DXRD).The sharp diffraction apices showed in the result indicated the crystal quality of the film was comparatively good. The distributing and diffusing of film component was studied by means of XPS method.The results showed there were diffusing of elements between layers of the film. As for specimen growed at 450℃, diffusing depth of Ga was as deep as 100nm, which of As was round about 120nm. Moreover,the value of As:Sb was a bit small in the SLS layer,and a few Si was diffused in the undoped layer. There were peak of Sb-As covalent bond apart from peak of pure Sb as for specimen growed at 420℃,and As in the superlattice was diffused.
     The method of Infrared absorption spectrum was adopted to investigate optic capability of the specimen.The results indicated that infrared responding ability of the specimen was good when wave range was about 10~17μm. The Electric behavior was researched by Hall effect measurement.The results showed that as the temperature increased, e-diffusion level and carrier concentration improved, surface resistivity decreased and Hall coefficient got smaller. The electric behavior of specimen made no obvious difference at 300K compared with 77K.
引文
1陈伯良.红外焦平面成像器件发展现状.红外与激光工程. 2005, 34(1):4~6
    2康昌鹤,杨树人.半导体超晶格材料及其应用.国防工业出版社. 1995:19~26
    3高新江. MBE生长长波InAsSb应变层超晶格材料研究.红外与激光技术. 1994, 5:9~13
    4 Wei Yajyn, Hood Andrew, Yau Haiping, et al. Ucooled operation of type-II InAs/GaSb superlattice photodiodes in the midwavelength infreared range. Appl Phys Lett. 2005, 86(233106):1~3
    5 Costard E, Bois Ph, Marcadet X, Nedelcu A. QWIP and third generation IR imagers. Proc of SPIE. 2005, 5978(59781C):1~9
    6刘犀.新一代长波长红外探测器.半导体光电. 1994, 15(2):101~108
    7 Paul Norton. Third-generation sensors for night vision. Proc of SPIE. 2005, 5957(59571Z):1~15
    8 Smith E P G, Bornfreund R E, Kasai I, et al. Status of Two-Corlor and Large Format HgCdTe FPA Technology at Raytheon Vision Systems. Proc of SPIE. 2006, 617(61271F):1~10
    9 Latika Becker. Current and Future Trends in Infrared Focal Plane Array Technology. Proc of SPIE. 2005, 5881(588105):1~15
    10 Sergey A Dvoretsky, Vasiliy SVaravin, Nikolay N Mikhailov, et al. MWIR and LWIR detectors based on HgCdTe/CdZnTe/GaAs heterostructures. Proc of SPIE. 2005, 5964(59640A): 1~12
    11高国龙.非致冷InAsSb光电探测器的应用.红外. 2005, 7:46~47
    12 Piotrowski J, Orman Z, Nowak Z, et al. Uncooled long wave infrared photodetectors with optimized spectral response at selected spectral ranges. Proc of SPIE 2005, 5783:616~624
    13 Latika Becker. Current and Future Trends in Infrared Focal Plane Array Technology. Proc of SPIE. 2005, 5881(588105):1~15
    14 Bethea C G, Levine B F. Infrared imaging using a 128×128 pixel array of GaAs/AlGaAs quantum well infrared photodetectors. SPIE InfraredDetectors.Stat of the Art. 1992, 17(35):198~203
    15 Bandara S V, Gunapala S D, Liu J K, et al. 10-16μm Broadband quantum well infrared photodetector. Appl Phys Lett. 1998, 72(19):2427~2429
    16 Bethea C G, Yen M Y, Levine B F, et al. Long wavelength InAs1-xSbx/GaAs detectors prepared by molecular beam epitaxy. Appl Phys Lett. 1987, 51(18): 1431~1432
    17 Kim J D, Wu D, Wojkowski J, et al. Long-wavelength InAsSb photoconductors operated at near room temperatures (200-300K). Appl Phys Lett. 1996, 68(1):99~101
    18 J.P. vander Ziel, T.H. Chiu, W.T.Tsang. Optically Pumped Laser Oscillation at 3.82μm from InAs1-xAbx Grown by Molecular Beam Epitaxy on GaSb. App.Phys.Lett. 1985, 47:1139
    19 Piotrowaki J, Rogalski A. Uncooled long wavelength infrared photon detectors. Proc of SPIE.2004, 5359:10~22
    20 Bethea C G, Levine B F, Yen M Y, Cho A Y. Photoconductance measurements on InAs0.22Sb0.78/GaAs grown using molecular beam epitaxy. Appl Phys Lett. 1988, 53(4):291~292
    21 C.J.Collins, T.Li, A.L.Beck,R.D.Dupuis, J.C.Campbell, J.C.Carrano, M.J.Schurman, I.A.Ferguson. Improved device performance using a semi transparent p-contact AlGaN/GaN heterojunction positive-intrinsic-negative photodiode. Appl.Phys.Lett. 1999, 75:2138~2140
    22 T.Elliott. New infrared and other applications of narrow gap semiconductors, Proceedings of SPIE. Infrared Technology and Applications XXIV. 1998, 3436:763~775
    23 Yen M Y, People R, Wecht K W. Long wavelength (3-5 and 8-12μm) Photoluminescence of InAs1-xSbx grown on (100) GaAs by Molecular-Beam Epitaxy. J Appl Phys. 1988, 64(2):952~955
    24 Yen M Y, Levine B F, Bethea C G, et al. Molecular beam epitaxial growth and properties of InAs1-xSbx in 8-12μm wavelength range. Appl Phys Lett. 1987, 50(14): 927~929
    25 Bethea C G, Yen M Y, Levine B F, et al. Long wavelength InAs1-xSbx/GaAs detectors prepared by molecular beam epitaxy. Appl Phys Lett. 1987, 51(18): 1431~1432
    26 Yen M Y. Molecular-beam epitaxial growth and electrical properties of lattice mismatched InAs1-xSbx on (100) GaAs. J Appl Phys. 1988, 64(6):3306~3309
    27 C.G. Bethea, B.F. Levine, M.Y. Yen, A.Y. Cho. Photoconductance Measurements on InAs0.22Sb0.78/GaAs Grown Using Molecular Beam Epitaxy. Appl. Phys.Lett. 1988, 53:291
    28 M.Y. Yen, R. People, K.W. Wecht, A.Y. Cho. Long Wavelength InAs1-xSbx/GaAs Deectors Prepared by Molecular Beam Epitaxy. Appl. Phys. Lett. 1987, 51:1431~1432
    29 Bethea C G, Levine B F, Yen M Y, Cho A Y. Photoconductance measurements on InAs0.22Sb0.78/GaAs grown using molecular beam epitaxy. Appl Phys Lett. 1988, 53(4):291~292
    30 M.Y.Yen. Molecular-Beam Epitaxial Growth and Electrical Properties of Lattice Mismatched InAs1-xSbx on GaAs by Molecular Beam Epitaxy. J. Appl.Phys. 1988, 64:3306
    31 H. Kremer. Polare-on-Nonpolar Epitaxy. J.Cryst.Growth. 1987, 81:193
    32 Dobbelaere W, Boeck J De, Borghs G.. Growth and Optical Characterization of InAs1-xSbx 0≤x≤1 on GaAs and on GaAs-Coated Si by Molecular Beam Epitaxy. Appl Phys Lett. 1989, 55:1856~1858
    33 J.D. Kim. Investigation of InAsSb Material System for Long-wavelength Infrared Photodetector Applications. Ph.D. Thesis of Northwestern University. 1999
    34 E. Michel, M. Razeghi. Recent advances in Sb-based materials for uncooled infrared photodetectors. Opto-Electr. Rev. 1998, 6:11~23
    35 E. Michel. Sb-based Materials for Photodetectors: Growth, Characterization, Fabrication and Analysis. Ph.D. Thesis of Northwestern University. 1998
    36 Moiseev K D, Ivanov E V, Zegrya GG, et al. Room-temperature electroluminescence of AlSb/ InAsSb single quantm wells grown by metalorganic vapor phase epitaxy. Appl Phys Lett. 2006, 88(132102): 1~3
    37 Lindle J E. Meyer J R, Hoffman C A, et al. Auger lifetime in InAs, InAsSb, and InAsSb- InAlAsSb quantum wells. Appl. Phys Lett. 1995, 67(21):3153~3155
    38 Cooley W T, Hengehold R L, Yeo Y K, et al. Recombination dynamics in InAsSb quantum-well diode lasers measured using photoluminescence upconversion. Appl Phys Lett. 1998, 73(20):2890~2892
    39 Kurtz S R, Biefeld R M, Zipperian T E. MOCVD-grown InAsSb strained- layer superlattice infrareddetectors with photoresponses≥10μm. SemicondSci Technol. 1995, 5: 24~26
    40 Kurtz S R, Dawson L D, Biefekl R M, et al. Ordering-induced band-gap reduction in InAs1-xSbx (x≈0.4) alloys and superlattices. Phys Rev B. 1992, 46(3):1909~1912
    41 Kurtz S R, Biefeld R M, Dawson L R, et al. High photoconductive gain in lateral InAsSb strained-layer superlattice infrared detectors. Appl Phys Lett. 1988, 53(20):1961~1963
    42 W.M.Coderre, J.C. Woolley. Normal-Inverted Band Transition with Temperature in InAs1-xSbx Alloys. J. Phys. Chem. 1971, 32(1):353
    43 Woolley J C, Warner J. Optical Energy-Gap Variation in InAs-InSb AlloysCan J Phys. 1964, 42:1879~1885
    44 Stringfellow G B, Greene P E. Liquid Phase Epitaxial Growth of InAs1-xSbx. J Electrochem Soc. 1971, 118(5): 805~810
    45 Wieder H H, Clawson A R. Photo-electronic properties of InAs0.07Sb0.93 films. Thin Solid Films.1973, 15(2): 217~221
    46 Fang Z M, Ma K Y, Jaw D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy. J Appl Phys. 1990, 67(11):7034~7039
    47 Yen M Y, People R, Wecht K W. Long wavelength (3-5 and 8-12μm) Photoluminescence of InAs1-xSbx grown on (100) GaAs by Molecular-Beam Epitaxy. J Appl Phys. 1988, 64(2):952~955
    48 Yen M Y, Levine B F, Bethea C G et al. Molecular beam epitaxial growth and properties of InAs1-xSbx in 8-12μm wavelength range. Appl Phys Lett. 1987,
    50(14):927~929
    49 Giani A, Podlecki J, Pascal-Delannoy F, et al. Elaboration and characterization of InAsSb grown on GaSb and GaAs substrates. J Cryst. Growth. 1995, 148:25~30
    50 Kim J D, Wu D, Wojkowski J, et al. Long-wavelength InAsSb photoconductors operated at near room temperatures (200-300K). Appl Phys Lett.1996, 68(1):99~101
    51 Rogalski A, Jó?wikowski K. Intrinsic carrier concentration and effective masses in InAs1-xSbx. Infrared Phys. 1989, 29(1): 35~42
    52 Bethea C G, Levine B F, Yen M Y, Cho A Y. Photoconductance measurementson InAs0.22Sb0.78/GaAs grown using molecular beam epitaxy. Appl Phys Lett. 1988, 53(4):291~292
    53 Dixit V K, Bansal Bhavtosh, Vnkataraman V, et al. Studies on high resolution x-ray diffraction, optical and transport properties of InAsxSb1-x/GaAs (x≤0.06) heterostructure grown using liquid phase epitaxy. J Appl Phys. 2004, 96(9):4989~4997
    54 Varshni Y P. Physica(Utrecht). 1967, 34:149
    55 V.W.L.Chin, R.J.Egan, T.L. Tansley. Electro Mobility in InAs1-xSbx and the Effect of Alloy Scattering. J.Appl.Phys. 1991, 69:3571
    56 M.Y.Yen. Molecular-Beam Epitaxial Growth and Electrical Properties of Lattice Mismatched InAs1-xSbx on GaAs by Molecular Beam Epitaxy. J.Appl.Phys. 1988, 64:3306
    57 Coderre W M, Woolley J C. Electrical Properties of InAsxSb1-x Alloys. Can J Phys. 1968, 46:1207
    58 Aubin M J, Woolley J C. Electron Scattering in InAsxSb1-x Alloys. Can J Phys. 1968, 46:1191
    59 Besikci C, Choi Y H, Labeyrie G, et al. Detailed analysis of carrier transport in InAs0.3Sb0.7 layers grown on GaAs substrates by metalorganic chemical-vapor deposition. J Appl Phys. 1994, 76(10):5820~5828
    60 Chyi J H, Kalem S, Kumar N S, et al. Growth of InSb and InAs1-xSbx on GaAs by molecular beam eptaxy. Appl Phys Lett. 1988, 53(12):1092~1094
    61 Tsukamoto S, Bhattacharya P, Chen Y C, Kim J H. Transport properties of InAsxSb1-x(0≤x≤0.55) on InP grown by molecular-beam epitaxy. J Appl Phys. 1990, 67(11):6819~6822
    62 Bansal Bhavtosh, Dixit V K, Venkataraman V, Bhat H L. Transport, optical and magnetotransport properties of hetero-epitaxial InAsxSb1-x/GaAs(x≤0.06) and bulk InAsxSb1-x(x≤0.05) crystals: experiment and theoretical analysis.Physica E. 2004, 20:272~277
    63 Ejeckam F E, Seaford M L, Lo Y H, et al. Dislocation-free InSb grown on GaAs compliant universal substrates. Appl Phys Lett. 1997, 71(6):776~778

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700