用户名: 密码: 验证码:
基于活动轮廓模型的图像分割
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分割是对图像进行区域划分的处理过程,通常作为一种基础性操作为更高层的图像处理与计算机视觉操作提供准备性工作。近年来,基于活动轮廓模型的图像分割算法凭借其多样的形式、灵活的结构以及优越的性能受到了国内外学者的广泛关注,本文针对这一类图像分割算法进行了较为深入的研究。根据活动轮廓模型轮廓线的表示形式的不同,本文将研究内容分为以下三个部分:
     首先,研究了基于参数活动轮廓模型的图像分割算法。参数活动轮廓模型采用点集或B-样条曲线来表示模型的轮廓线,具有运算效率高的特点。本文介绍了最为经典的参数活动轮廓模型——Snake模型,及其改进模型——气球Snake模型和GVF Snake模型。通过结合气球Snake模型和GVF Snake模型的优点,提出了GVF-Balloon Snake模型,实验表明该新模型在图像分割中既保持了GVF Snake模型的双向运动的特点,同时,在提取形状比较复杂的目标边界时又具有气球Snake模型优异的性能。
     其次,研究了基于传统水平集活动轮廓模型的图像分割算法。传统水平集活动轮廓模型采用传统水平集函数的零水平集来表示模型的轮廓线,其中传统水平集函数被设置为关于其零水平集的符号距离函数。传统水平集活动轮廓模型具有自动处理轮廓线拓扑变化的优点。本文介绍了三种经典的传统水平集活动轮廓模型,即几何活动轮廓模型、测地活动轮廓模型和Chan-Vese模型。在此基础上,分别提出了有向测地活动轮廓模型和双重Chan-Vese模型,实验表明这两个改进模型均在一定程度上提高了原始的经典模型在图像分割中的性能。并且,本文还将基于形状的Chan-Vese模型成功地应用于圆形目标的分割,即圆检测。
     最后,研究了基于二值水平集活动轮廓模型的图像分割算法。二值水平集活动轮廓模型采用二值水平集函数的分界线来表示模型的轮廓线,其中二值水平集函数被设置为仅取1和-1的二值函数。二值水平集活动轮廓模型既可以自动地处理轮廓线的拓扑变化,又具有较高的运算效率。本文介绍了Tai等人提出的基于区域的二值水平集活动轮廓模型。针对Tai等人所提出的模型丧失了曲线演化的渐进性这一缺点,本文提出了一种改进的基于区域的二值水平集活动轮廓模型,该改进模型的轮廓线能够以逐渐演化的方式向目标边界运动,从而保持了传统水平集活动轮廓模型轮廓线的运动方式。并且,在几何活动轮廓模型的框架下,提出一种新的二值水平集活动轮廓模型,该新模型将二值水平集方法的应用从基于区域的图像分割进一步推广到基于边界的图像分割。
Image segmentation is the process that divides the whole image region into several parts. As a fundamental operation, image segmentation provides the preparative works for the high-level operations in image processing and computer vision. Recently, the segmentation algorithms based on active contours have been widely paid attention by many internal and foreign researchers due to their variable form, flexible structure and excellent performance, this paper has performed in-depth researches on the kind of segmentation algorithms. According to the representation of active contours, the content of this paper is partitioned into the following three parts:
     Firstly, this paper has studied the segmentation algorithms based on parametric active contours. Parametric active contours represent their contours by the point sets or B-splines, and they have the efficient performance on image segmentation. This paper has introduced the most classical parametric active contour, i.e., snake model, and its improved models, i.e., balloon snake model and GVF snake model. Through combining the good properties of balloon snake model and GVF snake model, this paper has proposed GVF-balloon snake model. The segmental experiments show that the proposed model not only preserves the GVF snake model’s property of bidirectional motion, but also has the excellent performance on extracting the objects with complex shapes like the balloon snake model.
     Secondly, this paper has studied the segmentation algorithms based on traditional level set active contours. Traditional level set active contours represent their contours by the zero level sets of the level set functions, which is set to be signed distance functions. Traditional level set active contours have the ability of automatically handling the topology change. This paper has introduced three classical traditional level set active contours, i.e., geometric active contour, geodesic active contour and Chan-Vese model. Based on these works, we propose directional geodesic active contour and dual Chan-Vese model, respectively. The experiments conducted on image segmentation show that the two proposed models improve the performances of the original models. Moreover, this paper has applied the shape based Chan-Vese model to the extraction of circular objects, i.e., circle detection.
     Lastly, this paper has studied the segmentation algorithms based on binary level set active contours. Binary level set active contours represent their contours by the interface of the binary level set functions, which just take -1 and 1. Binary level set active contours not only have the ability of automatically handling the topology change, but also have high computational efficiency. This paper has introduced the region based binary level set active contour proposed by Tai et al. Aim at the shortcoming that the model proposed by Tai et al lost the gradual property of curve evolution, this paper proposed an improved region based binary level set active contour, the contour of improved model can conform to the object in the gradual evolution form, thus it preserves the motion form of the contour of traditional level set active contours. And, under the framework of geometric active contour, this paper proposed a novel binary level set active contour, which extend the application of the binary level set method from the region based image segmentation to the boundary based image segmentation.
引文
1 H. A. Hegt, R. J. De la Haye, N. A. Khan. A High Performance License Plate Recognition System. IEEE International Conference on Systems, Man, and Cybernetics. 1998, 5: 4357~4362
    2 T. Naito, T. Tsukada, K. Yamada, K. Kozuka, S. Yamamoto. Robust License-Plate Recognition Method for Passing Vehicles under Outside Environment. IEEE Transactions on Vehicular Technology. 2000, 49(6): 3209~2319
    3 C. R. Wern, A. Azarbayejani, T. Darrell, A. P. Pentland. Pfinder: Real-Time Tracking of Human Body. IEEE Transactions Pattern Analysis and Machine Intelligence. 1997, 19(7): 780~785
    4 A. Elgammal, R. Duraiswami, L. S. Davis. Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(11): 1499~1504
    5 W. Demin, C. Labit, J. Ronsin. Segmentation-Based Motion-Compensated Video Coding Using Morphological Filters. IEEE Transactions on Circuits and Systems for Video Technology. 1997, 7(3): 549~555
    6 H. Hase, T. Shinokawa, M. Yoneda, C. Y. Suen. Character String Extraction from Color Documents. Pattern Recognition. 2001, 34(7): 1349~1365
    7 C. Zhu, R. Wang. A Fast Automatic Extraction Algorithm of Elliptic Object Groups from Remote Sensing Images. Pattern Recognition Letters. 2004, 25(13): 1471~1478
    8 B. Appleton, H. Talbot. Globally Minimal Surfaces by Continuous Maximal Flows. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006, 28(1): 106~118
    9 杨晖, 曲秀杰. 图像分割方法综述. 电脑开发与应用. 2005, 18(3): 21~23
    10 A. K. C.Wong, P. K. A Sahoo. Gray-Level Threshold Selection Method Based on Maximum Entropy Principle. IEEE Transactions on Systems, Man andCybernetics. 1989, 19(4): 866~871
    11 P. K. Saha, J. K. Udupa. Optimum Image Thresholding via Class Uncertainty and Region Homogeneity. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001, 23(7): 689~706
    12 J. Canny. A Computational Approach to Edge Detection. IEEE Transactions Pattern Analysis and Machine Intelligence. 1986, 8(6): 679~698
    13 F. Y. Shih, S. Cheng, Adaptive Mathematical Morphology for Edge Linking. Information Sciences. 2004, 167(1-4): 9–21.
    14 R. Adams, L. Bischof. Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 1994, 16(6): 641~647
    15 S.A. Hojjatoleslami, J. Kittler. Region Growing: A New Approach. IEEE Transactions on Image Processing. 1998, 7(7): 1079~1084.
    16 A. Tremeau, N. Bolel. A Region Growing and Merging Algorithm to Color Segmentation. Pattern Recognition. 1997, 30(7): 1191~1203.
    17 S. L. Horowitz, T. Pavlidis. Picture Segmentation by a Directed Split-and-Merge Procedure. Proceedings of the Second International Joint Conference on Pattern Recognition. 1974, 424~433
    18 R. Ohlander, K. Price, D. R. Reddy. Picture Segmentation Using a Recursive Region Splitting Method. Computer Graphics and Image Processing. 1978, 8: 313~333
    19 D. P. Mukherjee, P. Pal, J. Das. Sonar Image Segmentation by Fuzzy C-Means. Signal Processing. 1996, 54(3): 295~301.
    20 B-K Jeon, Y-B Jung, K-S Hong. Image Segmentation by Unsupervised Sparse Clustering. Pattern Recognition Letters. 2006, 27(14): 1650~1664
    21 S. Geman, D. Geman. Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984, 6(6): 721~741
    22 J. Besag. On The Statistical Analysis of Dirty Pictures, Journal of the Royal Statistical Society, Series B. 1986, 48(3): 259~302
    23 J. Zhang. The Mean Field Theory in EM Procedures for Markov Random Fields. IEEE Transactions on Signal Processing. 1992, 40(10): 2570~2583
    24 L. Vincent, P. Soille. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis andMachine Intelligence. 1991, 13(6): 583~598
    25 J. B. T. M. Roerdink, A. Meijster. The Watershed Transform: Definitions, Algorithms and Parallelization Strategies. Fundamenta Informaticae. 2000, 41(1): 187~228
    26 J. Shi, J. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(8): 888~905
    27 Y. Boykov, O. Veksler, R. Zabih. Fast Approximate Energy Minimization via Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001, 23(11): 1222~1239
    28 V. Kolmogorov, R. Zabih. What Energy Functions Can Be Minimized via Graph Cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004, 26(2): 147~159
    29 M. Kass, A. Witkin, D. Terzopolous. Snakes: Active Contour Models. International Journal of Computer Vision. 1988, 1(4): 321~331
    30 V. Caselles, F. Catte, T. Coll, F. Dibos. A Geometric Model for Active Contours in Image Processing. Numerische Mathematik. 1993, 66(1): 1~31
    31 R. Malladi, J. Sethian, B. Vemuri. Shape Modeling with Front Propagation: A Level Set Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995, 17(2): 158~175
    32 S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi. Conformal Curvature Flows: From Phase Transitions to Active Vision. Archive for Rational Mechanics and Analysis. 1996, 134: 275~301
    33 V. Caselles, R. Kimmel, G. Sapiro. Geodesic Active Contours, International Journal of Computer Vision. 1997, 22(1): 61~79
    34 T. Chan, L. Vese. Active Contours without Edges. IEEE Transactions on Image Processing. 2001, 10(2): 266~277
    35 R. Kimmel, A. M. Bruckstein. Regularized Laplacian Zero Crossings as Optimal Edge Integrators. International Journal of Computer Vision. 2003, 53(3): 225~243
    36 F. Leymarie, M. D. Levine. Tracking Deformable Objects in the Plane Using an Active Contour Model. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1993, 15(6): 617~634
    37 N. Peterfreund, Robust Tracking of Position and Velocity with Kalman Snakes.IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(6): 564~569
    38 N. Paragios, R. Deriche. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(3): 266~280
    39 A.-R. Mansouri, Region Tracking via Level Set PDEs without Motion Computation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(7): 947~961
    40 P. Li, T. Zhang, A. E. C. Pece. Visual Contour Tracking Based on Particle Filters. Image and Vision Computing. 2003, 21(1): 111~123
    41 H. Jiang, M. S. Drew. Shadow Resistant Tracking using Inertia Constraints. Pattern Recognition. 2007, 40(7): 1929~1945
    42 A.-R. Mansouri, J. Konrad. Multiple Motion Segmentation with Level Sets. IEEE Transactions on Image Processing. 2003, 12(2): 201~220
    43 D. Cremers, S. Soatto. Motion Competition: A Variational Framework for Piecewise Parametric Motion Segmentation. International Journal of Computer Vision. 2005, 62(3): 249~265
    44 N. Paragios, R. Deriche. Geodesic Active Regions and Level Set Methods for Motion Estimation and Tracking. Computer Vision and Image Understanding, 2005, 97(3): 259~282
    45 R. Feghali. Multi-Frame Simultaneous Motion Estimation and Segmentation. IEEE Transactions on Consumer Electronics. 2005, 51(1): 245~248
    46 C. Vazquez, A. Mitiche, R. Laganiere. Joint Multiregion Segmentation and Parametric Estimation of Image Motion by Basis Function Representation and Level Set Evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006, 28(5): 782~793
    47 H-K Zhao, S. Osher, B. Merriman, M. Kang. Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method. Computer Vision and Image Understanding. 2000, 80(3): 295~314
    48 S. Morigi, F. Sgallari. 3D Long Bone Reconstruction Based on Level Sets. Computerized Medical Imaging and Graphics. 2004, 28(7): 377~390
    49 J.E. Solem, H. Aanaes, A. Heyden. Variational Surface Interpolation from Sparse Point and Normal Data. IEEE Transactions on Pattern Analysis andMachine Intelligence. 2007, 29(1): 181~184
    50 G. Zeng, S. Paris, L. Quan, F. Sillion. Accurate and Scalable Surface Representation and Reconstruction from Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007, 29(1): 141~158
    51 S. Menet, P. Saint-Marc, G. Medioni. B-Snakes: Implementation and Application to Stereo. Proceedings of the Seventh Israeli Conference on Artificial Intelligence and Computer Vision. 1990, 323~236
    52 A. Klein, F. Lee, A. Amini. Quantitative Coronary Angiography with Deformable Spline Models. IEEE Transactions on Medical Imaging. 1997, 16(5): 468~482
    53 P. Brigger, J. Hoeg, M. Unser. B-Spline Snakes: A Flexible Tool for Parametric Contour Detection. IEEE Transactions on Image Processing. 2000, 9(9): 1484~1496
    54 Y. Wang, E. K. Teoh, D. Shen, Lane Detection and Tracking Using B-Snake. Image and Vision Computing. 2004, 22(4): 269~280
    55 L. Zagorchev, A. Goshtasby, M. Satter. R-Snakes. Image and Vision Computing. 2007, 25(6): 945~959
    56 R. G. N. Meegama, J. C. Rajapakse. NURBS Snakes, Image and Vision Computing. 2003, 21(6): 551~562
    57 L. Staib, J. Duncan. Model-based Deformable Surface Finding for Medical Images. IEEE Transactions on Medical Imaging. 1996, 15(6): 859~870
    58 S. Derrode, M. A. Charmi, F. Ghorbel. Fourier-Based Invariant Shape Prior for Snakes. IEEE International Conference on Acoustics, Speech and Signal Processing. 2006, 2: 101~104
    59 A. A. Amini, T. E. Weymouth, R. C. Jain. Using Dynamic Programming for Solving Variational Problems in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990, 12(9): 855~867
    60 D. Geiger, L. A. Costa, J. Vlontzos. Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995, 17(3): 294~302
    61 D. Schonfeld, N. Bouaynaya. A New Method for Multidimensional Optimization and Its Application in Image and Video Processing. IEEE Signal Processing Letters. 2006, 13(8): 485~488
    62 D. J. Williams, M. Shah. A Fast Algorithm for Active Contours and Curvature Estimation. CVGIP: Image Understanding. 1992, 55(1): 14~26
    63 K.M. Lam, H. Yan. Fast Greedy Algorithm for Active Contours. Electronics Letters. 1994, 30(1): 21~22
    64 L. Ji, H. Yan. Attractable Snakes Based on the Greedy Algorithm for Contour Extraction. Pattern Recognition. 2002, 35(4): 791~806
    65 L. D. Cohen, I. Cohen. Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1993, 15(11): 1131~1147
    66 J. Liang, T. McInerney, D. Terzopoulos. United Snakes. Medical Image Analysis. 2006, 10(2): 215~233
    67 H. Shah-Hosseini, R. Safabakhsh. A TASOM-Based Algorithm for Active Contour Modeling. Pattern Recognition Letters. 2003, 24(9-10): 1361~1373
    68 Y. V. Venkatesh, S. K. Raja, N. Ramya. Multiple Contour Extraction from Graylevel Images Using an Artificial Neural Network. IEEE Transactions on Image Processing. 2006, 15(4): 892~899
    69 A. Mishra, P. K. Dutta, M. K. Ghosh. A GA Based Approach for Boundary Detection of Left Ventricle with Echocardiographic Image Sequences. Image and Vision Computing. 2003, 21(11): 967~976
    70 T. McInerney, D. Terzopoulos. Topologically Adaptable Snakes. Proceedings Fifth International Conference on Computer Vision. 1995, 840~845
    71 L. Ji, H Yan. Robust Topology-Adaptive Snakes for Image Segmentation. Image and Vision Computing. 2002, 20(2): 147~164
    72 F. A. Velasco, J. L. Marroquin. Growing Snakes: Active Contours for Complex Topologies. Pattern Recognition. 2003, 36(2): 475~482
    73 C. Li, J. Liu, M. D. Fox. Segmentation of External Force Field for Automatic Initialization and Splitting of Snakes. Pattern Recognition. 2005, 38(11): 1947~1960
    74 D. Terzopoulos, A. Witkin, M. Kass. Constrains on Deformable Models: Recovering 3D Shape and Non-Rigid Motion. Artificial Intelligence. 1988, 36(1): 91~123
    75 L. D. Cohen. On Active Contour Models and Balloons. CVGIP: Image Understanding. 1991, 53(2): 211~218
    76 C. Xu, J. L. Prince. Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on Image Processing. 1998, 7(3): 359~369
    77 C. Xu, J. L. Prince. Generalized Gradient Vector Flow External Forces for Active Contours. Signal Processing. 1998, 71(2): 131~139
    78 X. Xie, M. Mirmehdi. RAGS: Region-Aided Geometric Snake. IEEE Transactions on Image Processing. 2004, 13(5): 640~652
    79 C. Li, J. Liu, M. D. Fox. Segmentation of External Force Field for Automatic Initialization and Splitting of Snakes. Pattern Recognition. 2005, 38(11): 1947~1960
    80 J. Tang, S. Millington, S. T. Acton, J. Crandall, S. Hurwitz. Surface Extraction and Thickness Measurement of the Articular Cartilage from MR Images Using Directional Gradient Vector Flow Snakes. IEEE Transactions on Biomedical Engineering. 2006, 53(5): 896~907
    81 J. Cheng, S. W. Foo. Dynamic Directional Gradient Vector Flow for Snakes. IEEE Transactions on Image Processing. 2006, 15(6): 1563~1571
    82 H. K. Park and M. J. Chung. External Force of Snake: Virtual Electric Field. Electronics Letters. 2002, 38(24): 1500~1502
    83 K. W. Sum, P. Y. S. Cheung. Boundary Vector Field for Parametric Active Contours. Pattern Recognition. 2007, 40(6): 1635~1645
    84 R. Ronfard, Region-Based Strategies for Active Contour Models. International Journal of Computer Vision. 1994, 13(2): 229~251
    85 S. C. Zhu, A.Yuille. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multi-Band Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996, 18(9): 884~900
    86 C. Chesnaud, P. Refregier, V. Boulet. Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(11): 1145~1157
    87 S. Osher, J. A. Sethian. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics. 1988, 79(1): 12~49
    88 K. Siddiqi, Y. B. Lauziere, A. Tannenbaum, S. W. Zucker. Area and Length Minimizing Flows for Shape Segmentation. IEEE Transactions on Image Processing. 1998, 7(3): 433~443
    89 A. Vasilevskiy, K. Siddiqi. Flux Maximizing Geometric Flows. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(12): 1565~1578
    90 R. Goldenberg, R. Kimmel, E. Rivlin, M. Rudzsky. Fast Geodesic Active Contours. IEEE Transactions on Image Processing. 2001, 10(10): 1467~1475
    91 D. Mumford, J. Shah. Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems. Communication on Pure and Applied Mathematics. 1989, 42(5): 577~685
    92 N. Paragios, R. Deriche. Geodesic Active Regions: A New Framework to Deal With Frame Partition Problems in Computer Vision. Journal of Visual Communication and Image Representation. 2002, 13(1): 249~268
    93 G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson. Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients? SIAM Journal on Applied Mathematics. 2003, 63(6): 2128~2154
    94 S. Jehan-Besson, M. Barlaud, G. Aubert, O. Faugeras. Shape Gradients for Histogram Segmentation using Active Contours. Proceedings of the 9th International Conference on Computer Vision. Nice, France. 2003, 408~415
    95 D. Freedman, T. Zhang. Active Contours for Tracking Distributions. IEEE Transactions on Image Processing. 2004, 13(4): 518~526
    96 J.-F. Aujol, G. Aubert, L. Blanc-Féraud. Wavelet-Based Level Set Evolution for Classification of Textured Images. IEEE Transactions on Image Processing. 2003, 12(12): 1634~1641
    97 B. Sumengen, B. Manjunath. Graph Partitioning Active Contours (GPAC) for Image Segmentation. Transactions on Pattern Analysis and Machine Intelligence. 2006, 28(4): 509~521
    98 J.-F. Aujol, T. F. Chan. Combining Geometrical and Textured Information to Perform Image Classification. Journal of Visual Communication and Image Representation, 2006, 17(5): 1004~1023
    99 Y. Chen, H. D. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. S. Gopinath, R. W. Briggs, E. A. Geiser, Using Prior Shapes in Geometric Active Contours in a Variational Framework. International Journal of Computer Vision. 2002, 50(3): 315~328
    100 A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W. E. Grimson, A.Willsky. A Shape-Based Approach to the Segmentation of Medical Imagery Using Level Sets. IEEE Transactions on Medical Imaging. 2003, 22(2): 137~154
    101 D. Cremers, T. Kohlberger, C. Schnorr. Shape Statistics in Kernel Space for Variational Image Segmentation. Pattern Recognition. 2003, 36(9): 1929~1943
    102 X. Bresson, P. Vandergheynst, J. P. Thiran. A Variational Model for Object Segmentation Using Boundary Information and Shape Prior Driven by the Mumford-Shah Functional. International Journal of Computer Vision. 2006, 28(2): 145~162
    103 W. Fang, K. L. Chan. Incorporating Shape Prior into Geodesic Active Contours for Detecting Partially Occluded Object. Pattern Recognition. 2007, 40(8): 2163~2172
    104 L. Vese, T. F. Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision. 2002, 50(3): 271~293
    105 S. Gao, T. D. Bui. Image Segmentation and Selective Smoothing by Using Mumford-Shah Model. IEEE Transactions on Image Processing. 2005, 14(10): 1537~1549
    106 I. B. Ayed, A. Mitiche, Z. Belhadj. Polarimetric Image Segmentation via Maximum-Likelihood Approximation and Efficient Multiphase. Transactions on Pattern Analysis and Machine Intelligence. 2006, 28(9): 1493~1500
    107 Y. Shi, W. C. Karl. A Fast Level Set Method without Solving PDEs. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2005, 2: 97~100
    108 S. Zhang. A Fast Level Set Implementation Method for Image Segmentation and Object Tracking. Proceedings of SPIE, 2006, Vol. 6312
    109 J. Lie, M. Lysaker, X.-C. Tai. A Binary Level Set Model and Some Applications to Mumford-Shah Image Segmentation. IEEE Transactions on Image Processing. 2006, 15(5): 1171~1181
    110 J. Lie, M. Lysaker, X.-C. Tai. A Variant of the Level Set Method and Applications to Image Segmentation. Mathematics of Computation. 2006, 75(255): 1155~1174
    111 X.-C. Tai, O. Christiansen, P. Lin, I. Skj?laaen. Image Segmentation UsingSome Piecewise Constant Level Set Methods with MBO Type of Project. International Journal of Computer Vision. 2007, 73(1): 61~76
    112 B. Merriman, J. K. Bence, S. Osher. Motion of Multiple Functions: A Level. Set Approach. Journal of Computational Physics. 1994, 112(2): 334~363
    113 S. P. Awate, T. Tasdizen, R. T. Whitaker. Unsupervised Texture Segmentation with Nonparametric Neighborhood Statistics. Proceedings of the Ninth European Conference on Computer Vision. 2006, 2: 494~507
    114 C. Xu, D. L. Pham, J. L. Prince. Medical Image Segmentation Using Deformable Models. Handbook of Medical Imaging-Vol. 2: Medical Image Processing and Analysis. SPIE Press. 2000, 2: 129~174
    115 周昌雄. 基于活动轮廓模型的图像分割方法研究. 南京航空航天大学博士论文. 2005
    116 N. Ray, S. T. Acton, Motion Gradient Vector Flow: An External Force for Tracking Rolling Leukocytes with Shape and Size Constrained Active Contours. IEEE Transactions on Medical Imaging. 2004, 23(12): 1466~1478
    117 N. Paragios, O. Mellina-Gottardo, V. Ramesh. Gradient Vector Flow Fast Geometric Active Contours. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004, 26(3): 402~407
    118 G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge. 2001
    119 J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge, U.K.: Cambridge University Press. 1966
    120 D. Adalsteinsson, J. A. Sethian. A Fast Level Set Method for Propagating Interfaces. Journal of Computational Physics. 1995, 118(2): 269~277
    121 J. A. Sethian. A Marching Level Set Method for Monotonically Advancing Fronts. Proceedings of the National Academy of Sciences. 1996, 93(4): 1591~1595
    122 H. W. Park, T. Schoepflin, Y. Kim. Active Contour Model with Gradient Directional Information: Directional Snake. Transactions on Circuits and Systems for Video Technology. 2001, 11(2): 252~256
    123 M. Jacob, T. Blu, M. Unser. Efficient Energies and Algorithms for Parametric Snakes. IEEE Transactions on Image Processing. 2004, 13(9): 1231~1244
    124 R. Kimmel, A. M. Bruckstein. Regularized Laplacian Zero Crossings as Optimal Edge Integrators. International Journal of Computer Vision. 2003, 53(3): 225~243
    125 S. R. Gunn, M. S. Nixon. A Robust Snake Implementation: A Dual Active Contour. Transactions on Pattern Analysis and Machine Intelligence. 1997, 19(1): 63~68
    126 T. Chan, W. Zhu. Level Set Based Shape Prior Segmentation. Proceedings of the 10th International Conference on Computer Vision. 2005, 1164~1170
    127 M. T. El-Melegy, N. H. Al-Ashwal, A. A. Farag. Variational-Based Method to Extract Parametric Shapes from Images. Proceedings of the 10th International Conference on Computer Vision. 2005, 1786~1791
    128 P.-L. Lions, B. Mercier. Splitting Algorithms for the Sum of Two Monotone Operators. SIAM Journal on Numerical Analysis. 1979, 16(6): 964~79
    129 G. Marchuk. Splitting and Alternating Direction Methods. Handbook of Numerical Analysis. Vol. I, Finite Difference Methods (Part 1). 1990, 197~462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700