用户名: 密码: 验证码:
酿酒酵母甜高梁汁发酵生产乙醇研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜高粱是一种低成本的生物乙醇生产原料。本文在分析甜高粱汁成分基础上,运用均匀设计实验优化了甜高粱汁发酵产乙醇的条件,包括磷酸、尿素、维生素B1、EDTA浓度以及初始pH值。并且运用5种回归分析方法分析均匀设计实验结果,包括二次多项式逐步回归分析、多因子及互作项逐步回归、多因子及平方项逐步回归、偏最小二乘(考虑互作项)回归、偏最小二乘(考虑平方项)回归分析方法,分别得到相应的数学模型。验证实验结果表明,由偏最小二乘(考虑平方项)回归分析方法得到的培养方案为最优组合:磷酸3g/l、尿素1g/l、EDTA1.2g/l、维生素B1 2mg/l pH4.4。2.51罐验证实验乙醇产量达到了13.5%(v/v),糖醇转化率达到92%,同时证明,维生素B1通过增强丙酮酸的分解代谢从而维持了发酵过程pH稳定。在前述所得最优培养条件基础上对于种子和通气策略等工艺条件也进行了初步研究,结果表明16h种龄的二级种子和阶段性通气策略较适合甜高粱汁乙醇的发酵。
     本文还对于乙醇发酵酵母细胞中辅因子NAD+和NADH的提取和测定方法进行了研究。发现珠磨破碎细胞后加酸碱提取胞内辅因子,随后利用酶循环原理测定辅因子浓度是高效的胞内NAD+和NADH检测方法。
Sweet sorghum juice is a potential low-cost substrate for ethanol production. In this paper a uniform design method was applied to optimize the concentrations of phosphate, urea, thiamin, EDTA and pH of medium for ethanol production by Saccharomyces cerevisiae, based on analyzing components of sweet sorghum juice. Five predictive mathematical models were established according to different regression methods, including Multinomial Stepwise Regression, Multinomial Stepwise Regression (mutual), Multinomial Stepwise Regressions (square), Partial Least Squares Regression (mutual), Partial and Least Squares Regression (square). The results from respective validated experiments showed that the highest ethanol production was recorded with the optimized conditions based on the Partial and Least Squares Regression, which were phosphate 3 g/1, urea 1 g/1, thiamin 2 mg/1, EDTA 1.2 g/1 and pH 4.4. In the further validated experiments in a 2.51 fermentor, higher ethanol production 13.5%(v/v) and glucose-ethanol conversion 92%were observed; meanwhile it was verified that thiamin played a crucial role in maintaining the stability of pH in the ethanol fermentation process with the optimized conditions by enhancing the catabolism of pyruvate. The seed culture and aeration conditions have been discussed in the paper, which showed that the secondary seed culture of 16 h and changing aeration conditions in stages were suitable for ethanol production from sweet sorghum juice. The initial concentration of the total sugar in the optimum was also investigated and the results exhibited that the higher inhibition on yeast cells growth and ethanol production was obtained under the higher initial concentration of total sugar.
     The methods for the determination of the concentrations of the NAD+and NADH in yeast cells have been investigated in the paper. We acquired a series of efficient methods including: yeast cells were disrupted by shaking bead, at the same time NAD+and NADH were extracted by acid and alkali respectively, which were then determined by enzymatic cycling.
引文
[1]白璐,南方.燃料乙醇的现在和未来.太阳能.2008,10:32-34.
    [2]黄晶.浅析中国燃料乙醇的生产状况.能源与环境.2008,4:26-27.
    [3]孙丽英,赵立欣.我国生物燃料乙醇产业发展条件分析.中国高校科技与产业化.2008,3:72-75.
    [4]高德忠,王昌东,李丽华,张金生.燃料乙醇的性能及生产工艺.辽宁石油化工大学学报.2004,24:23-26.
    [5]Kadiman OK. Crops:beyond foods. In:Proceedings of the 1st international conference of crop security, Malang, Indonesia, September 20-23,2005.
    [6]Lin Y, Tanaka S. Ethanol fermentation from biomass resources:Current state and prospects. Appl Microbiol Biotechnol 2006,69:627-642.
    [7]苏小军,熊兴耀,谭兴和,刘明月.燃料乙醇发酵技术研究进展.湖南农业大学学报.2007,33:480-485.
    [8]Malc-a J, Freire F. Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE):assessing the implications of allocation. Energy 2006,31:3362-3380.
    [9]张敏华,吕惠生.我国非粮燃料乙醇生产技术进展.酿酒科技.2008,9:91-95.
    [10]周爱萍.国内外燃料乙醇的生产与研究进展.安徽农业科学.2008,36:8768-8700.
    [11]李志军.生物燃料乙醇的发展现状、问题与政策建议.技术经济.2008,27:50-53.
    [12]Global Subsidy Initiative of the International Institute for Sustainable Development (IISD). Biofuels at what cost?-government support for ethanol and biodiesel in (the) PRC.2008,78.
    [13]Chinn MS, Nokes SE, Strobel HJ. Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. Bioresource Technology.2007,98:2184-2193.
    [14]Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology Letters. 2008,30:1515-1524.
    [15]Zhang ZH, Qu YB, Zhang X, Lin JQ. Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602. Applied Biochemistry and Biotechnology.2008,145:39-51.
    [16]Agbogbo FK, Wenger KS. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. Journal of Industrial Microbiology& Biotechnology. 2007,34:723-727.
    [17]Zhao L, Zhang X, Tan TW. Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass& Bioenergy.2008,32:1156-1161.
    [18]Zhao XQ, Bai FW. Yeast flocculation:New story in fuel ethanol production. Biotechnology Advances.2009,27:849-856.
    [19]Mobini-Dehkordi M, Nahvi I, Zarkesh-Esfahani H, Ghaedi K, Tavassoli M, Akada R. Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. Journal of Bioscience and Bioengineering.2008,105:403-408.
    [20]高学,张国俊,纪树兰,杜姗.燃料乙醇制备技术及其发展现状.高科技与产业化.2008,8:73-74.
    [21]中国木薯种植前景广阔.农业工程技术.2007,11:47.
    [22]李军,田益农.泰国木薯优良新品种的引进和区试报告.广西热带农业.2005,5:1-4.
    [23]宁启文.木薯产业将成为我国最大能源农业.农家参谋.2007,2:32.
    [24]王莹,张峰龙,贾茹珍.甜高粱茎汁酒精发酵研究与应用进展.可再生能源.2007,2:51-55.
    [25]李杨瑞,谭裕模,李松.甘蔗作为生物能源作物的潜力分析.西南农业学报.2006,19:742-745.
    [26]邱晓娜.中国能源甘蔗-燃料乙醇产业的发展研究.福建农林大学.2006,
    [27]吴松海,林一心,潘世明.甘蔗生产燃料乙醇的发展前景.中国糖料.2006,2:58-61.
    [28]窦克军,孙春宝.玉米秸秆发酵生产乙醇的研究进展.四川食品与发酵.2007,2:30-34.
    [29]Elisson A, Hofmeyr JHS. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilizing Saccharomyces cerevisiae. Enzyme and Microbial Technology.2001,29:288-297.
    [30]Bvochora J, Read J, Zvauya R. Application of very high gravity technology to the cofermentation of sweet stem sorghum juice and sorghum grain. Industrial Crops and Products.2000,11:11-17.
    [31]Grassi G, Moncado P. Promising industrial energy crop:sweet-sorghum. Commission of the European Communities publication, Elsevier, Oxford.1992,
    [32]Sayigh A. Renewable Energy.1993,3:297.
    [33]王建伟.甜高粱的综合开发利用.农业经济.2007,7:86.
    [34]张志鹏,杨镇,朱凯.可再生能源作物甜高粱的开发利用.杂粮作物.2005,25:334-335.
    [35]Semra T, Davut U. The potential use of sweet sorghum as a nonpolluting source of energy. Energy.1997,22:17-19.
    [36]Steduto P, Katerji N, Puertos-Molina H. Water-use efficiency of sweet sorghum under water stress conditions:gas exchange investigations at leaf and canopy scales. Field Crop Res.1997,54:
    [37]Ning X, Ma Z, Li D. Determination of the components in stem juice of sweet sorghum. Journal of Shengyang Agriculture University.1995,26:45-48.
    [38]Buxton D, Anderson I, Hallam A. Performance of sweet and forage sorghum grown continuously, double-cropped with winter rye, or in rotation with soybean and maize. Agron.J.1999,9:93-101.
    [39]Worley J, Cundiff J. System analysis of sweet sorghum harvest for ethanol production in the Piedmont. Trans ASAE.1991,34:539-547.
    [40]Reidenbach V, Coble C. Sugarcane or sweet sorghum processing techniques for ethanol production. Tran ASAE.1985,28:571-575.
    [41]Weitzel T, Cundiff J, Vaughan D. Optimization of sweet sorghum processing parameters. Tran ASAE.1989,32:273-279.
    [42]Day D, Sarkar D. Fuel alcohol from sweet sorghum:microbial aspects Dev. Ind. Microbiol.1982,23:361-366.
    [43]De-Mancilha I, Pearson A, Waller J, Hogaboam G. Increasing alcohol yield by selected yeast fermentation of sweet sorghum:evaluation of yeast strains for ethanol production. Biotechnol. Bioeng.1984,26:632-634.
    [44]Bulawayo B, Bvochora JM, Muzondo MI, Zvauyala R. Ethanol production by fermentation ofsweet-stem sorghum juice using various yeast strains. World Journal of Microbiology & Biotechnology.1996,12:
    [45]Sree NK, Sridhar M, Rao LV, Pandey A. Ethanol production in solid substrate fermentation using thermotolerant yeast. Process Biochemistry.1999,34:115-119.
    [46]Bryan WL, Monroe GE, PM Caussanel1985. rans. ASAE 28. Solid-phase fermentation and juice expression systems for sweet sorghum. Tran ASAE.1985,28:268-274.
    [47]Gibbons W, Westby C, Dobbs T. Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. Appl. Environ. Microbiol.1986,51:115-122.
    [48]Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P. Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World Journal of Microbiology& Biotechnology.2007,23:1497-1501.
    [49]Wua X, Staggenborgb S, Propheterb JL, Rooneyc WL, Yub J, Wanga D. Features of sweet sorghum juice and their performance in ethanol fermentation. Industrial Crops and Products.2010,31:
    [50]Liu RH, Li JX, Shen F. Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation. Renewable Energy.2008,33:1130-1135.
    [51]Swain MR, Kar S, Sahoo AK, Ray RC. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiological Research.2007,162:93-98.
    [52]Liu RH, Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource Technology.2008,99:847-854.
    [53]Laopaiboon L, Nuanpeng S. Ethanol production from sweet sorghum juice using very high gravity technology:Effects of carbon and nitrogen supplementations. Bioresource Technology.2009,3:1-7.
    [54]Mei XY, Liu RH, Shen F, Wu HJ. Optimization of Fermentation Conditions for the Production of Ethanol from Stalk Juice of Sweet Sorghum by Immobilized Yeast Using Response Surface Methodology. Energy& Fuels.2009,23:487-491.
    [55]Shen F, Liu R, Wang T. Effects of Temperature, pH, Agitation and Particles Stuffing Rate on Fermentation of Sorghum Stalk Juice to Ethanol. Energy Sources Part a-Recovery Utilization and Environmental Effects.2009,31:646-656.
    [56]Yu JL, Zhang X, Tan TW. Optimization of media conditions for the production of ethanol from sweet sorghum juice by immobilized Saccharomyces cerevisiae. Biomass& Bioenergy.2009,33:521-526.
    [57]M B. Scale-up of citric acid fermentation by redox potential control. BIOTECHNOLOGY AND BIOENGINEERING.1999,64:552-557.
    [58]Miller RH, Loffhagen N, Babel W. Rapid extraction of (di)nucleotides from bacterial cells and determination by ion-pair reversed-phase HPLC. Journal of Microbiological Methods.1996,25:29-35.
    [59]Yamada K, Hara N, Shibata T, Osago H, Tsuchiya M. The simultaneous measurement of nicotinamide adenine dinucleotideand related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Analytical
    Biochemistry.2006,352:282-285.
    [60]Zhang YP, Huang ZH, Du CY, Li Y, Cao ZA. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metabolic Engineering.2009,11:101-106.
    [61]Mailinger W, Baumeister A, Reuss M, Rizzi M. Rapid and highly automated determination of adenine and pyridine nucleotides in extracts of Saccharomyces cerevisiae using a micro robotic sample preparation-HPLC system. Journal of Biotechnology.1998,63:
    [62]Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. In Vivo Analysis of Metabolic Dynamics in Saccharomyces cerevisiae:I. Experimental Observations. Biotechnol and Bioeng.1996,55:305-316.
    [63]Verduyn C, Postma E, Dijken J. Physiology of Saccharornyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol.1990,136:395-403.
    [64]Bernfeld P. Amylases a and b. Methods Enzymol.1959,2:27-29.
    [65]Bertolini M, Erlandes J, Laluse C. New yeast strains for alcoholic fermentation of high sugar concentration. Biotechnology and Bioengineering.1991,13:197-202.
    [66]Thomas K, Hynes S. Production of fuel alcohol from wheat by VHG technology:effect of sugar concentration and fermentation temperature. Appl Biochem Biotechno. 1993,143:211-226.
    [67]Wolniewiez J, Ngang E. Alcoholic fermentation of beer molasses:study on stillage recycle. Biotechnol Lett.1990,12:73-78.
    [68]Devantier R, Scheithauer B. Metabolite Profiling for Analysis of Yeast Stress Response During Very High Gravity Ethanol Fermentations. Biotechnology and Bioengineering. 2005,90:703-714.
    [69]Oderinde RA, Ngoka LC, Adesogan EK. Comparative study of the effect of ferrocyanide and EDTA on the production of ethyl alcohol from molasses by Saccharomyces cerevisiae. Biotechnol. Bioeng.1986,28:62-65.
    [70]Oderinde RA, Okogun JI, Esuoso KO. he influence of CDTA and DPTA on ethanol production from sugar cane molasses using Saccharomyces cerevisiae. DieNahrung. 1990,34:171-175.
    [71]Ergun M, Mutlu SF. Improved Ethanol Production by Saccharomyces cerevisiae with EDTA, Ferrocyanide and Zeolite X Addition to Sugar Beet Molasses. J. Chem. Tech. Biotechnol.1997,68:147-150.
    [72]Pronk JT, Steensma HY. Pyruvate Metabolism in Saccharomyces cerevisiae. Yeast. 1996,12:
    [73]Alfenore S, Molina-Jouve C, Guillouet S, Uribelarrea J, Goma G, Benbadis L. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol.2002,60:67-72.
    [74]Zhang W, Yu X, Yuan Q. Uniform design:a new approach of designing fermentation media. Biotechnol Tech.1993,7:379-384.
    [75]Wang F-Q, Gao C-J. Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett.2007,29:233-236.
    [76]Maiorella B, Wilke C, Blanch WH. Alcohol production and recovery. Adv. Biochem. Eng.1981,20:43.
    [77]Jones R, Greeneld PF. Batch ethanol fermentation with dual organisms. Biotechnol. Lett.
    1981,3:325-332.
    [78]Thatipamala R, Rohani S, Hill G Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentations. Biotechnol. Bioeng.1992,40:289-297.
    [79]Stehlik-Tomas V, Zetic VG, Stanzer D, Grba S, Vahcic N. Zinc, Copper and Manganese Enrichment in Yeast Saccharomyces cerevisae. Food. Technol. Biotechnol. 2004,42:115-120.
    [80]Falih AM. Comparative toxicity of heavy metals to some yeasts isolated from Saudi Arabian soil Bioresource Technology.1998,64:193-198.
    [81]Chen AK-L, Breuer M, Hauer B, Rogers PL, Rosche B. pH Shift Enhancement of Candida utilis Pyruvate Decarboxylase. Biotechnology and bioengineering. 2005,92:183-188.
    [82]Rosenfeld E, Beauvoit B, Blondin B, Salmonl J-M. Oxygen Consumption by Anaerobic Saccharomyces cerevisiae under Enological Conditions:Effect on Fermentation Kinetics. Applied and Enviromental Microbiology.2003,69:113-121.
    [83]Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea J, Goma G, Molina-Jouve C, Guillouet SE. Aeration strategy:a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol. 2004,63:537-542.
    [84]Canelas AB, VanGulik WM, Heijnen JJ. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions [J]. Biotechnol Bioeng.2008,100:734-743.
    [85]Pham TH, Mauvais G, Vergoignan C, et al. Gaseous enviroments modify physiology in the brewing yeast Saccharomyces cerevisiae during batch alcoholic fermentation. [J]. J Appl Microbiol.2008,105:858-874.
    [86]Bakker BM, Overkamp KM, VanMaris AJ, et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae [J]. FEMS Microbiol.2001,25:15-37.
    [87]Rigoulet M, Aguilaniu H, Averet N, et al. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae [J]. Mol Cell Biochem. 2004,256:73-81.
    [88]Franzen CJ. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae [J]. Yeast.2003,20:117-132.
    [89]Du CY, Zhang YP, Li Y, Cao ZA. Use oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae [J]. Appl Microbiol Biotechnol.2006,69:554-563.
    [90]Menzel K, Ahrens K, Zeng A, et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:IV. enzymes and fluxes of pyruvate metabolism [J]. Biotechnol Bioeng.1998,60:617-626.
    [91]T JW, Wimpenny, Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen [J]. J Bacteriol.1972,111:24-32.
    [92]Bernowsky C, Swan M. An improved cycling assay for nicotinamide adenine dinucleotide [J]. Anal Biochem.1973,53:452-458.
    [93]李建,陈可泉,黄秀梅等.厌氧发酵有机酸体系中NAD+和NADH测定方法的建立[J].食品科技.2008,33(12):254-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700