用户名: 密码: 验证码:
电动轮椅差速转向与驱动控制器的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动轮椅是面向老龄化社会的一种新型交通工具,具有较广阔的市场前景和社会意义。其差速转向技术应用及其驱动控制方法的研究具有重要的现实意义和应用价值。
     本论文针对电动轮椅差速转向的理论和技术问题以及其运行过程的速度波动问题展开了较深入的研究,并结合现代数字信号处理与控制方法,对其差速转向与驱动控制器进行了实验研究和开发。主要研究内容如下:
     ①对电动轮椅差速转向运动学与动力学模型进行了论述和分析,在此基础上设计了其差速转向与驱动控制总体方案,并对该方案的精度控制策略进行了研究与分析;
     ②基于dsPIC30F6010A的电机控制PWM与输出比较两模块,探讨了只用一个单片机同时实现双轮轮毂电机驱动与差速控制的方法和设计方案;
     ③探讨了上述方案下的控制器硬件设计,包括控制器各功能模块电路设计、元器件选择、印制电路板的制作以及控制器的散热设计;④基于上述方案的控制器软件设计与开发,包括轮毂电机驱动、电枢通电换向、轮毂电机差速、手柄操纵等模块的程序开发,以及基于PID算法的双轮毂电机转速闭环控制策略与软件抗干扰方法措施的分析与设计;⑤基于MATLAB下电动轮椅轮毂电机参数的仿真结果,在集成开发环境下对上述软硬件设计进行调试和分析,进而对电动轮椅差速转向与驱动控制器进行改进和优化。
     通过上述电动轮椅差速转向与驱动控制的理论研究和软硬件设计试验,实现了电动轮椅差速转向与驱动控制技术,验证了上述设计和方法的正确性和可行性,并能满足现代电动轮椅使用和控制精度要求,为进一步研究开发适合老龄化社会新型电动轮椅产品奠定了一定的技术和理论基础。
Electric wheelchair, which has relatively broad market prospect and social significance, is a kind of new type of vehicle facing aging society. The application of differential steering technology and the research about driving control method of electric wheelchair have important actual significance and value.
     This paper carries out the study about the theoretical and technical issues of differential steering of electric wheelchair and the problem of its speed fluctuation while running in depth, researching and developing the differential steering and driving controller of electric wheelchair combined with modern processing and control method of digital signal. The main contents are as follows:
     ①Based on the treatise and analysis for the kinematic and dynamic models of electric wheelchair, this paper designs its overall scheme of differential steering and driving control, researching and analyzing the strategy of precision control of the scheme;
     ②This paper carries out the simultaneous driving and differential speed control method and design scheme of two hub motors based on the motor control PWM module and output compare module of sole singlechip dsPIC30F6010A;
     ③Discussion about the design of hardware of differential steering and driving controller of electric wheelchair according to the scheme above, including the schematic diagram design of circuit of controller’s each function module, the selection of components, the making of printed circuit board and the thermal design of controller;
     ④The design and development of software of differential steering and driving controller of electric wheelchair based on the scheme above, including the development of programs such as driving of hub motor, commutation of the armature’s galvanization, differential of hub motor, manipulation of handle and so forth, the analysis and the design of the strategy of hub motor’s speed closed-loop control based on the PID algorithm and the methods and measures of anti-interference through software;⑤This paper debugs and analyzes of the hardware and software above through integrated development environment based on the simulation on the parameters of hub motor for electric wheelchair conducted by MATLAB, improving and optimizing the differential steering and driving controller further.
     Through the theoretical research of differential steering and driving control for electric wheelchair and the design and experiment of hardware and software, this paper achieves the electric wheelchair’s differential steering and driving control, verifies the validity and correctness of the design and method described above, meets the requirement of control precision and usage of modern electric wheelchair, and lays certain technical and theoretical basis for the further research and development of new type of electric wheelchair which is suitable for aging society.
引文
[1]方军军.构建和谐社会,关爱老年人—基于我国人口老龄化的现状之视角[J].科协论坛,2007,2:122-123.
    [2]国务院新闻办公室.《中国老龄事业的发展》白皮书[N].新华社,2006-12-12.
    [3]毛瑛,李娇风.人口老龄化呼唤城市社区卫生服务建设[J].中国卫生事业管理,2005,(11):697~699.
    [4]杨先碧.电动智能轮椅[J].新发明新产品,2007,(4):44.
    [5]李胜利.老年康复工程与辅助器具的海外研究[J].现代医学仪器与应用,2006,(3):60-61.
    [6]林华.国内外高技术电动轮椅简介[J].国外产品与技术,1989,(2):17-18.
    [7]李优新,王鸿贵,何鸿肃.永磁方波无刷直流最佳逻辑解析结构的研究[J].微电机,1999,(4):3-7
    [8]井科伟.基于DSP的直流无刷电机控制系统的研究[D].哈尔滨:哈尔滨工程大学,2003.12.
    [9]邓灿.基于DSP的无位置传感器直流无刷电动机控制系统[D].浙江:浙江大学,2003.2.
    [10]赵艳娥,张建武.轮毂电机驱动电动汽车电子差速系统研究[J].系统仿真学报,2008,(18):4767-4771,4775.
    [11]尹衍辰,范瑜.基于DSP的永磁无刷直流电机控制器设计[J].微特电机,2005,(2):43-45.
    [12]吴雪梅,景占荣,史永奇.基于DSP的直流无刷电机控制技术研究[J].机械与电子,2005,(3):50-52.
    [13] Ko,J.S. Asymptotically stable adaptive load torque observe for precision position control of BLDC motor. IEE Proceedings:Electric Power Applications 1998,145(4):383-386.
    [14] dsPIC30F系列参考手册.Microchip Technology Inc.
    [15]李波,夏秋华.差速技术在汽车转向系统中的应用[J].设计与研究,2003.2:100-102.
    [16] Patrick M.Kelecy Pobert D.Lorenz. Control methodology for singleinverter Parallel connected dual induction motor Drives for electricvehicles. In Proc. of IEEE, PESC Conf., June 20-24,1994,Taipei, Taiwan,pp.987-991.
    [17] F.Carricchi, F.Crescimbini, E.santini. Axial Flux Electromagnetic Differential induction motor. Electric Machines and drives; Conference Publication No.412,11-13 September 1995, IEEE,P1-5.
    [18] A.Kawanura, N.hoshi, T.Kim, T.Yokoyama,“Anti directional twin rotor motor drive characteristics for Electric vehicles”, IEEE trans On IE,Vol44,No.1,pp64-70,1997.
    [19] Lee JS, Ryoo YJ, Lim YC, et al. A neural network model of electric differential system for electric vehicle. In: 26th Annual Conference of the IEEE Industrial Electronics Society (2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation) (IECON 2000), Nagoya, Aichi, Japan, October 22-28,2000, 1: 83-88.
    [20] Gair S, Cruden A, McDonald J, et al. Electronic differential with sliding mode controller for a direct wheel drive electric vehicle. In: Mechatronics, ICM '04. Proceedings of the IEEE International Conference on, June 3-5, 2004: 98-103.
    [21] Setlak R. HAULAGE TRUCKS MODEL with Four Electric Separate Wheel Drives [J]. TRANSPORT, 2005(1): 51-54.
    [22] L.Boquete,P.Martín,M.Mazo,R.García,R.Barea,F.J.Rodríguez,I.Fernández.Hardware implementation of a new neurocontrol wheelchair-guidance system.Neurocomputing 47(2002) 145-160.
    [23]沈勇,吴新文.基于复合神经网络模型的四轮独立驱动电动车控制[J].汽车工程,2004,(4).
    [24]葛英辉,李春生,倪光正.新的轮毂电机驱动电动车电子差速控制系统研究[J].中小型电机,2003,(60):30.
    [25]葛英辉,倪光正.新型电动车电子差速控制策略研究[D].浙江:浙江大学学报(工学版),2005.12.
    [26]谭国俊,钱苗旺,赵忠祥,赵忆.双电机独立驱动电动车辆电子差速控制[J].微特电机,2009,(6):33-36,52.
    [27]陈竹.电动代步车行驶控制系统的研究与开发[D].重庆:重庆大学,2008,4.
    [28]张琛.直流无刷电动机原理及应用[M].机械工业出版社.1996.
    [29]秦曾煌主编.电工学(第六版).上册,电工技术[M].北京:高等教育出版社,2004.7.
    [30] Padmaraja Yedamale. Brushless DC Motor Fundamentals. Microchip Technology Inc. 2005.
    [31]毕海悦,张东来.一种无刷直流电动机的在线转速估计方法[J].微特电机,2008,36(11):7-8.
    [32]许永亮.电动代步车无位置传感器轮毂电机控制系统的研究与开发[D].重庆:重庆大学,2010,5.
    [33] IRF2807 datasheet. International Rectifier Co. 2004.
    [34]乐晓蓉,王念春.基于IR2103的方波逆变电路设计与分析[J].电源技术应用,2009,12(2):30-32.
    [35] IR2103S datasheet. International Rectifier Co. 2001.
    [36] TDA2003 datasheet. STMicroelectronics Co. 1998.
    [37]杜冲.电动代步车驱动控制系统的改进与研究[D].重庆:重庆大学,2009,5.
    [38]江思敏.PCB和电磁兼容设计[M].北京:机械工业出版社,2006.3:3-10.
    [39]王赋攀,杨鹏.MOSFET功率开关器件的散热计算[J].电源技术应用.2005.2:31-33.
    [40] MPLAB IDE集成开发环境用户指南.Microchip Technology Inc. 2000.
    [41] MPLAB IDE快速入门指南.Microchip Technology Inc. 2003.
    [42] MPLAB C30 C COMPILER USER’S GUIDE. Microchip Technology Inc. 2005.
    [43] MPLAB ICD 2在线调试器用户指南.Microchip Technology Inc. 2004.
    [44]谭浩强著.C程序设计(第二版)[M].北京:清华大学出版社,1999.12.
    [45]张皆喜主编.PIC系列单片机C语言编程与应用实例[M].北京:电子工业出版社,2008.6.
    [46] dsPIC语言工具入门. Microchip Technology Inc. 2005.
    [47]张红涛,闫林,徐晓辉,温阳.基于单片机PID算法的无刷直流电机控制系统的研究[J].现代电子技术,2007,(10):53-54.
    [48] MATLAB2007b User’s Guide. Mathworks Co. 2007.
    [49]郑国章.电动代步车操纵控制系统的设计与开发[D].重庆:重庆大学,2007,5.
    [50] dsPIC30F6010A datasheet. Microchip Technology Inc. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700