用户名: 密码: 验证码:
压缩感知理论及在成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
军事需求对信息的准确性、时效性和多样性提出了越来越高的要求,作为获取信息的主要手段,成像系统需要不断地提升其分辨率等性能指标。在Shannon采样定理的体系中,提升分辨率意味着减少探测器像素尺寸、增加阵元数量,这将造成系统的复杂度和实现难度非线性地增加。
     压缩感知理论提供了一种革命性的解决思路:引入信号的稀疏性,利用少量非相关的压缩采样,通过稀疏优化算法实现信号的高精度重构,避免了盲目追求高分辨率的探测器。本文对压缩感知及其在成像中的应用进行了系统的研究。
     理论方面,研究了基于调和变换和数据驱动的信号稀疏表示方法,并利用典型遥感图像库进行实证分析比较。以最小1范数凸优化为主,详细讨论了稀疏重构模型与算法。提出了基于累加互相关性的重构条件,并给出了稀疏重构的误差理论上界。该重构条件综合了已有的相关性和RIP两种准则的优点。同时,利用累加互相关性推广了基于互相关性的测量矩阵优化设计准则。
     方法方面,不同于传统从信号匹配滤波的角度解释的成像方法,本文将图像重构视为Fredholm第一类积分方程的求解,利用Hilbert空间的算子理论分析了求解过程病态性的原因,研究通过加入稀疏性约束项将其转为良态的,在此基础上,引入测量矩阵以完成压缩采样,从而建立压缩成像方法。通过系统调制传递函数建模和稀疏重构误差分析,建立了压缩成像性能分析模型,定量地分析了信号稀疏度、测量数据量以及测量噪声等因素对图像重构精度的影响。
     应用方面,首先讨论了光学压缩成像的实现模式,包括:1)提出压缩感知量子成像,说明随机热光源符合可重构条件,利用稀疏优化算法显著提高了成像质量。2)研究了焦平面编码的高分辨率成像模式,讨论了基于多路技术和掩膜或DMD编码的压缩采样方式,并提出了变分辨率智能成像模式。3)研究了CMOS低数据率成像模式,通过模拟域向量-矩阵相乘完成投影测量,显著降低了数据率。其次,讨论了压缩成像在雷达系统中的应用,包括1)多测速体制下的高精度雷达目标定位,通过运动轨迹的样条函数表示和节点优化,以及基于稀疏约束的系统误差估计,实现了高精度的弹道解算。2)随机噪声雷达的稀疏重构成像,克服了传统方法背景噪声电平较高的缺陷,在低于Nyquist频率的采样率下,实现无模糊高分辨率成像。3)低数据率ISAR成像,利用随机(0, 1)序列相乘和积分器完成压缩采样,显著降低AD转化的速率,并通过最小1范数方法完成高精度图像重构。
The military applications call for more stringent requirements for the accuracy, timeliness and diversity of information. As a key approach to acquire it, the imaging systems need a substantial performance increase, such as resolution enhancement. In the box of Shannon sampling theorem, raising the resolution means cutting the pixel size of sensor and increasing the number of pixels. This will enlarge the complexity and difficulty of system nonlinearly.
     Compressive sensing (CS) has given a revolutionary solution: Based on the sparsity of signal and sub-Nyquist non-coherent compressed sampling, one can recover the original signal by sparse optimization. It avoids the blind pursuit of an excessively high-resolution sensor. This paper investigates the theory of CS and its application in imaging system.
     In theoretical aspect, we have studied the Harmonic analysis based and data driven method for sparse representation. A contrast analysis of these methods is given by testing them on a typical database of remote-sensing images. Take the 1 -norm minimization as main factor, the models and algorithms of sparse recovery have been discussed. We have proposed a recovery condition based on cumulative mutual coherence (CMC), and given a theoretical upper bound of the recovery error. This recovery condition combines the advantages the mutual coherence (MC) and restricted isometry property (RIP). Meanwhile, we have extended the optimization criterion of measurement matrices by using CMC.
     Unlike the traditional imaging methods which begin with the matched filtering, we take the process of imaging as solving a Fredholm first kind integral equation. The theory of operators Hilbert space in employed to analyze the ill-conditioning of the solution. The constraint of sparsity is introduced to turn it to well-conditioned. After that, the measurement matrix is imported to finish the compressed sampling. Finally, the compressive imaging method is established. We have developed the performance analysis model of compressive imaging via modulation transfer function and error analysis of sparse recovery. The quantitative effects of sparsity of signal, amount of measurements, and noise on the accuracy of image reconstruction are given.
     As for practical aspect, firstly, we have considered several realization modes of optical compressive imaging. 1) We have proposed the compressive quantum imaging, and pointed out that the chaotic thermal lights satisfy the recovery condition. So, the quality of imaging can be enhanced thanks to the sparse recovery. 2) We have studied the high-resolution imaging based on focal plan coding. The technology of multiplexing and amplitude mask or (Digital Micro-mirror Device) DMD is used to complete the compressed sampling. A resolution-varied imaging mode is given. 3) We have discussed a low-data-rate imaging mode by using CMOS. The compressed sampling is finished by vector-matrix multiplication in analog domain, and the data rate is significantly reduced. Secondly, we have investigated the application of CS in radar system. 1) The target poisoning in multi-range-rate radar system. By the spline function modeling with knots optimization of the target trajectory, and systematic error estimation via sparse restriction, we have realized a high-precision trajectory solving method. 2) Random noise radar sparse image reconstruction, which can overcome the shortcoming that traditional imaging methods suffer from high background noise floor. Using the new method, one can achieve high-resolution unambiguous imaging even though the sampling rate is below Nyquist rate. 3) Low-data-rate (Inverse Synthetic Aperture Radar) ISAR imaging, in which compressed sampling is complete by multiplication of echoes with (0, 1) random sequences and integration. This will sufficiently reduce the needed rate for Analog-to-Digital conversion. The 1-norm minimization is utilized to high accuracy image reconstruction.
引文
[1] J. C. Leachtenauer. National image interpretability rating scales: Overview and product description[C]. ASPRS/ASCM Annual Convention Exhibition, 1996, 1: 262-271.
    [2] E. Candes, J. Romberg and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete Fourier information[J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.
    [3] D. L. Donoho. Compressed sensing[J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306.
    [4] W. B. Pennebaker and J. L. Mitchell. JPEG still image data compression standard[M]. New York, NY: Van Nostrand Reinhold, 1993.
    [5] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly and R. G. Baraniuk. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
    [6] D. Mackenzie. Compressed sensing makes every pixel count[J]. What's Happening in the Mathematical Sciences, 2009, 7.
    [7] J. A. Tropp. Computational methods for sparse solution of linear inverse problems[C]. Proc. of the IEEE special issue on applications of sparse representation and compressive sensing, 2009.
    [8]王正明,朱炬波等. SAR图像提高分辨率技术[M].北京:科学出版社, 2006.
    [9]朱炬波.不完全测量数据的建模、处理及应用[D].国防科技大学研究生院博士学位论文, 2004.
    [10] M. Unser. Sampling——50 years after Shannon[C]. Proc. IEEE 2000, 88: 569-587.
    [11] M. Vetterli, P. Marziliano and T. Blu. Sampling signals with finite rate of innovation[J]. IEEE Trans. on Signal Processing, 2002, 50(6): 1417-1428.
    [12] T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano and L. Coulot. Sparse sampling of signal innovations: Theory, algorithms, and performance bounds[J]. IEEE Signal Processing Magazine, 2008, 25(2): 31-40.
    [13] V. Y. F. Tan and V. K. Goyal. Estimating signals with finite rate of innovation from noisy samples: A stochastic algorithm[J]. IEEE Trans. on Signal Processing, 2008, 56(10): 5135-5146.
    [14] P. L. Dragotti, M. Vetterli and T. Blu. Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets strang-fix[J]. IEEE Trans. on Signal Processing, 2007, 55(5): 1741-1757.
    [15] T. Ragheb, S. Kirolos, J. Laska, A. Gilbert, M. Strauss, R. Baraniuk and Y.Massoud. Implementation models for analog-to-information conversion via random sampling[C]. Proc. of 50th Midwest Symposium on Circuits and Systems, 2007: 325 - 328.
    [16] J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk and Y. Massoud. Theory and implementation of an analog-to-information converter using random demodulation[C]. Proc. of IEEE International Symposium on Circuits and Systems 2007: 1959-1962.
    [17] S. Muthukrishnan. Data Streams: Algorithms and Applications[M]. Boston: Now Publishers, 2005.
    [18] Y. Jingyu, P. Yigang, X. Wenli and D. Qionghai. Ways to sparse representation: An overview[J]. Sci. China Ser. F-inf. Sci., 2009, 52(4): 695-703.
    [19] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans. on Signal Processing, 1993, 41(12): 3397-3415.
    [20] J. Tropp. Greed is good: Algorithmic results for sparse approximation [J]. IEEE Trans. on Information Theory, 2006, 50: 2231-2342.
    [21] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans. on Information Theory, 2007, 53(12): 4655-4666.
    [22] D. L. Donoho, Y. Tsaig, I. Drori and J.-L. Starck. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit (StOMP)[ EB/OL]. http://www-stat.stanford.edu/~donoho/Reports/2006/
    [23] D. Needell and R. Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[EB/OL]. http://www.math.ucdavis.edu/~vershynin/papers/ROMP
    [24] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Found. Comput. Math., 2008, 9(3).
    [25] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26: 301-321.
    [26] R. Gribonval and M. Nielsen. Highly sparse representations from dictionaries are unique and independent of the sparseness measure[R]. Aalborg University, Tech. Rep., 2003.
    [27] S. S. Chen, D. L. Donoho and M. A. Saunders. Atomic decomposition by basis pursuit[J]. SIAM Rev., 2001, 43: 129-159.
    [28] D. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition[J]. IEEE Trans. on Information Theory, 47: 2845-2862.
    [29] M. Elad and A. M. Bruckstein. a generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Trans. on Information Theory, 2002,48(9): 2558-2567.
    [30] A. Feuer and A. Nemirovski. on sparse representation in pairs of bases[J]. IEEE Trans. on Information Theory, 2003, 49(6): 1579-1581.
    [31] R. Gribonval and M. Nielsen. sparse representations in unions of bases[J]. IEEE Trans. on Information Theory, 2003, 49(12): 3320-3325.
    [32] J. F. Sturm. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones[EB/OL]. http://www.unimaas.nl/~sturm/papers/guide.ps.gz
    [33] Mathematical Programming System[EB/OL], http://www.mosek.com
    [34] E. J. Candes. l1-magic[EB/OL], http://www.acm.caltech.edu/l1magic/
    [35] SparseLab software[EB/OL], http://sparselab.stanford.edu
    [36] M. A. Saunders. PDCO: Primal-Dual interior method for Convex Objectives [EB/OL], http://www.stanford.edu/group/SOL/software/pdco.html
    [37] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting[J]. SIAM Journal on Multiscale Modeling and Simulation, 2005, 4: 1168-1200.
    [38] I. Daubechies, M. Defrise and C. d. Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57: 1413-1457.
    [39] E. T. Hale, W. Yin and Y. Zhang. Fixed-point continuation for l1-minimization: Methodology and convergence[J]. SIAM Journal on Optimization, 2008, 19: 1107-1130.
    [40] S. J. Wright, R. D. Nowak and M. A. T. Figueiredo. Sparse reconstruction by separable approximation[J]. IEEE Trans. on Signal Processing, 2009, 57: 2479-2493.
    [41] J. M. Bioucas-Dias and M. A. T. Figueiredo. A new TwIST: Tow-step iterative shrinking/thresholding algorithm for image restoration[J]. IEEE Trans. on Image Processing, 2007, 16(12): 2992-3004.
    [42] M. A. Figueiredo, R. Nowak and S. J. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1: 586-597.
    [43] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710.
    [44] R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive sensing[J]. Inverse Problems, 2008, 24: 1-14.
    [45] E. J. Candes, M. B. Wakin and S. P. Boyd. Enhancing sparsity by reweighted l1 minimization[J]. J. Fourier Anal. Appl., 2008, 14(5): 877-905.
    [46] S. Foucart and M.-J. Lai. Sparsest solutions of underdetermined linear systems via lq minimization for 0    [47] E. G. Larsson and Y. Selen. Linear regression with a sparse parameter vector[J]. IEEE Trans. on Signal Processing, 2007, 55(2): 451-460.
    [48] D. Wipf and B. Rao. Sparse bayesian learning for basis selection[J]. IEEE Trans. on Signal Processing, 2004, 52(8): 2153-2164.
    [49] P. Schniter, L. C. Potter and J. Ziniel. Fast bayesian matching pursuit: Model uncertainty and parameter estimation for sparse linear models[EB/OL]. 2008, http://ece.osu.edu/~schniter/pdf/tsp09_fbmp.pdf
    [50] S. Jafarpour, W. Xu, B. Hassibi and R. Calderbank. Efficient compressed sensing using optimized expander graphs[J]. IEEE Trans. on Information Theory, 2009, 55(9): 4299-4308.
    [51] D. Baron, S. Sarvotham and R. G. Baraniuk. Bayesian compressive sensing via belief propagation[J]. IEEE Trans. on Signal Processing, 2009.
    [52] D. L. Donoho, A. Maliki and A. Montanari. Message-passing algorithms for compressed sensing[J]. Proc. Natl. Acad. Sci, 2009, 106(45): 18914-18919.
    [53] E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Trans. on Information Theory, 2006, 52(12): 5406-5425.
    [54] D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[C]. Proc. Natl. Acad. Sci, 2003, 100: 2197-2202.
    [55] Compressive Structured Light for Recovering Inhomogeneous Participating Media[EB/OL], http://www.cs.berkeley.edu/~ravir/jwgu-eccv.pdf
    [56] J. Gu, S. K. Nayar, E. Grinspun, P. N. Belhumeur and R. Ramamoorthi. Compressive Structured Light for Recovering Inhomogeneous Participating Media[C]. Proc. European Conference on Computer Vision 2008: 845-858.
    [57] P. Sen and S. Darabi. Compressive dual photography[C]. Proc. of Eurographics 2009, 2009, 28(2).
    [58] Random Lens Imager[EB/OL], http://dspace.mit.edu/bitstream/1721.1/33962/2/ MIT
    [59] Tranform Imager[EB/OL], http://cadsp.ece.gatech.edu/ti.shtml
    [60] Multiple Optical Non-Redundant Aperture Generalized Sensors[EB/OL], http://www.disp.duke.edu/history/archives/imaging/
    [61] D. J. B. M. Feldman, N. Pitsianis, J. P. Guo, A. Portnoy and M. Fiddy. Compressive Optical MONTAGE Photography[C]. Photonic Devices and Algorithms for Computing VII, Proc. of SPIE, 2005, 5907, 590708.
    [62] A. D. Portnoy, N. P. Pitsianis, D. J. Brady, J. Guo, M. A. Fiddy, M. R. Feldman and R. D. T. Kolste. Thin digital imaging system using focal plane coding[C]. Proc. of SPIE-IS&T Electronic Imaging, SPIE, 2006, 6065: 108-115.
    [63] T. Mirani, D. Rajan, M. P. Christensen, S. C. Douglas and S. L. Wood.Computational imaging systems: joint design and end-to-end optimality[J]. Applied Optics, 2008, 47(10): B86-B103.
    [64] M. Somayaji and M. P. Christensen. Improving photon count and flat profiles of multiplex imaging systems with the odd-sysmmetric quadratic phase modulation mask[J]. Applied Optics, 2007, 46(18): 3754-3765.
    [65] J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Marimoto, N. Kondou, D. Miyazaki and Y. Ichioka. Thin observation module by bound optics (TOMBO): concept and experimental verification[J]. Applied Optics, 2001, 40: 1806-1813.
    [66] S. L. Wood, S.-T. Lee, G. Yang, M. P. Christensen and D. Rajan. Impact of measurement precision and noise on superresolution image reconstruction[J]. Applied Optics, 2008, 47(10): B128.
    [67] M. Shankar, R. Willett, N. P. Pitsianis, R. T. Kolste, C. Chen, R. Gibbons and D. J. Brady. Ultra-thin multiple-channel LWIR imaging systems[C]. Infrared and Photoelectronic Imagers and Detector Devices II Proc. of the SPIE, 2006, 6294: 629411
    [68] P. Milojkovic, J. Gill, D. Frattin, K. Coyle, K. Haack, S. Myhr, D. Rajan, S. Douglas, P. Papamichalis, M. Somayaji, M. Christensen and K. Krapels. Multi-channel, agile, computationally enhanced camera based on the PANOPTES architecture[C]. Unmanned Systems Technology XII. Proc. of the SPIE, 2010, 7692: 76921Z.
    [69] A. Wagadarikar, R. John, R. Willett and D. Brady. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51.
    [70] Coded Aperture Snapshot Spectral Imaging[EB/OL]. http://www.disp.duke.edu /projects/CASSI/index.ptml.
    [71] M. E. Gehm, R. John, D. J. Brady, R. M. Willett and T. J. Schulz. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Opt. Express, 2007, 15(21): 14013-14027.
    [72] S. Uttam, N. A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim and D. Brady. Optically multiplexed imaging with superposition space tracking [J]. Optics Express, 2009, 17(3): 1691-1713.
    [73] M. Cheney and B. Borden. Fundamentals of Radar Imaging[M]. Society for Industrial Mathematics, 2009.
    [74] M. Cetin. Feature-Enhanced Synthetic Aperture Radar Imaging[D]. Ph.D. Thesis Boston University, College of Engineering, 2001.
    [75] M. Cetin and W. C. Karl. Feature-enhanced synthetic aperture radar image formation based on non-quadratic regularization[J]. IEEE Trans. on Image Processing, 2001, 10: 623-631.
    [76] K. R. Varshney, M. Cetin, J. W. Fisher and A. S. Willsky. Sparse representation in structured dictionaries with application to synthetic aperture radar[J]. IEEE Trans. on Signal Processing, 2008, 56(8): 3548-3561.
    [77] R. Baraniuk and P. Steeghs. Compressive radar imaging[C]. Proc. of 2007 IEEE Radar Conference, 2007: 128-133.
    [78] M. Skolnik. Radar Handbook[M]. New York, NY, USA: McGraw Hill, 1970.
    [79] B. Le, T. W. Rondeau, J. H. Reed and C. W. Bostian. Analog-to-Digital Converters[J]. IEEE Signal Processing Magazine, 2005, 22(6): 69-77.
    [80] M. Herman and T. Strohmer. Compressed sensing radar[C]. Proc. of IEEE 2008 International Conference on Acoustics, Speech and Signal Processing, 2008: 1509-1512.
    [81] M. Herman and T. Strohmer. High-Resolution Radar via Compressed Sensing[J]. IEEE Trans. on Signal Processing, 2009, 57(6): 2275-2284.
    [82] S. Bhattacharya, T. Blumensath, B. Mulgrew and M. Davies. Fast Encoding of Synthetic Aperture Radar Raw Data using Compressed Sensing[C]. Proc. of IEEE/SP 14th Workshop on Statistical Signal Processing, 2007: 448-452.
    [83] S. Bhattacharya, T. Blumensath, B. Mulgrew and M. Davies. Synthetic Aperture Radar raw data encoding using Compressed Sensing[C]. Proc. of 2008 Radar Conference, 2008: 1-5.
    [84] A. FannJiang. Compressive inverse scattering I. High frequency SIMO measurements[EB/OL]. arXiv: 0906.5405
    [85] A. C. FannJiang. Compressive inverse scattering II. SISO measurements with born scatterers[EB/OL]. arXiv:0908.4072v4
    [86] A. C. FannJiang. The music algorithm for sparse objects: A compressed sensing analysis[EB/OL]. arXiv:1006.1678v3
    [87] A. C. FannJiang. Exact localization and superresolution with noisy data and random illumination[EB/OL]. arXiv:1008.3146v1
    [88] J. H. G. Ender. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.
    [89] L. Li, Y. Zhang and F. Li. Theoretical analysis of compressive sensing via random filter[EB/OL]. http://arxiv.org/ftp/arxiv/papers/0811/0811.0152.pdf
    [90] L. Li, W. Zhang and F. Li. The design of sparse antenna array[EB/OL]. arXiv:0811.0705v1
    [91]张文吉.电磁逆散射成像方法及压缩感知理论在成像中的应用[D].中国科学院电子学研究所博士学位论文, 2010):
    [92]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报, 2010, 32(1): 12-16.
    [93]屈乐乐,黄琼,方广有.基于压缩感知频率步进探地雷达成像算法[J].系统工程与电子技术, 2010, 32(2): 295-297.
    [94] L. Yun, H. Wen and T. Weixian. Compressed sensing technique for circular SAR imaging[C]. Proc. of 2009 IET International Radar Conference, 2009: 676-679.
    [95] Q. Huang, L. Qu and B. Wu. UWB through-wall imaging based on compressive sensing[J]. IEEE Trans. on Geoscience and Remote sensing, Accepted, 2009.
    [96]谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报, 2010, 32(5): 1234-1238.
    [97] G. Shi, J. Lin, X. Chen, F. Qi, D. Liu and L. Zhang. UWB Echo Signal Detection With Ultra-Low Rate Sampling Based on Compressed Sensing[J]. IEEE Trans. on Circuits and Systems II: Express Briefs, 2008, 55(4): 379-383.
    [98] Q. Wu, M. Xing and C. Qiu. Motion parameter estimation in the SAR system with low PRF sampling[J]. IEEE Geoscience and Remote sensing Letters, Accepted, 2010.
    [99] L. Zhang, M. Xing, C. Qiun, J. Li and Z. Bao. Achieving Higher Resolution ISAR Imaging With Limited Pulses via Compressed Sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 567-571.
    [100] J. Ma. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 199-203.
    [101] J. Ma. Improved iterative curvelet thresholding for compressed sensing and measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2010, PP(99): 1-11.
    [102] C. Chen and P. Vaidyanathan. Compressed sensing in MIMO radar[C]. Proc. of 42nd Asilomar Conference on Signals Systems and Computers, 2008: 41-44.
    [103] A. Petropulu, Y. Yu and H. Poor. Distributed MIMO radar using compressive sampling[C]. Proc. of 42nd Asilomar Conference on Signals Systems and Computers, 2008: 203-207.
    [104] Y. Yu, A. Petropulu and H. Poor. Compressive sensing for MIMO radar[C]. Proc. of 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009: 3017-3020.
    [105] I. Jouny. Compressed Sensing for UWB Radar Target Signature Reconstruction[C]. Proc. of Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009: 714-719.
    [106] A. Gurbuz, J. McClellan and W. Scott. Compressive Sensing for GPR Imaging[C]. Proc. of Signals, Systems and Computers, 2007: 2223-2227.
    [107] A. Gurbuz, J. McClellan and W. Scott. A Compressive Sensing Data Acquisition and Imaging Method for Stepped Frequency GPRs[J]. IEEE Trans. on Signal Processing, 2009, 57(7): 2640-2650.
    [108] C. Berger, S. Zhou and P. Willett. Signal extraction using Compressed Sensing for passive radar with OFDM signals,[C]. Proc. of 11th International Conference on Information Fusion, 2008: 1-6.
    [109] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. on Pattern Anal. and Machine Intell., 1989, 11(7): 674-693.
    [110] D. L. Donoho, M. Vetterli, R. A. DeVore and I. Daubechies. Data compression and harmonic analysis[J]. IEEE Trans. on Information Theory, 1998, 44(6): 2433-2452.
    [111] I. W. Selesnick, R. G. Baraniuk and N. G. Kingsbury. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005: 123-151.
    [112] W. U. Bajwa, R. Calderbank and S. Jafarpour. Why gabor frames? two fundamental measures of coherence and their role in model selection[EB/OL]. arXiv: 1006.0719v3
    [113] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381: 607-609.
    [114] N. G. Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals[J]. Appl. Comput. Harmonic Anal., 2001, 10(3): 234-253.
    [115]焦李成,侯彪,王爽,刘芳.图像多尺度几何分析理论与应用[M].西安:西安电子科技大学出版社, 2008.
    [116] E. J. Candes. Ridgelets: theory and applications[D]. Ph.D. Thesis, Department of Statistics, Stanford University, 1998.
    [117] E. J. Candes and D. L. Donoho. Curvelets[R]. Technical Report of Dept. Statist. Univ. Stanford, 1999.
    [118] F. G. Meyer and R. R. Coifman. Brushlets: a tool for directional image analysis and image compression[J]. Appl. Comput. Harmonic Anal., 1997, 5: 147-187.
    [119] D. L. Donoho and X. Huo. Beamlets and multiscale image analysis[R]. Technical report of Dept. Statist. Univ. Stanford, 2001.
    [120] D. L. Donoho. Wedgelets: nearly minimax estimation of edges[R]. Technical report of Dept. Statist. Univ. Stanford, 1997.
    [121] M. N. Do and M. Vetterli. Framing pyramids[J]. IEEE Trans. on Signal Processing, 2003, 51(9): 2329-2342.
    [122] E. L. Pennec and S. Mallat. Non linear image approximation with bandelets[R]. Technical report of CMAP Ecole Polytechnique, 2003.
    [123] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli and P. L. Dragotti. Directionlets: anisotropic multi-directional representation with separable filtering [J]. IEEE Trans. on Image Processing, 2006, 15(7): 1916-1933.
    [124] D. Labate, W. Q. Lim, G. Kutyniok and G. Weiss. Sparse multidimensional representation using shearlets[C]. Wavelets XI (San Diego, CA, 2005), SPIE Proc. 5914, 2005.
    [125] J. Ma. Compressed sensing by inverse scale space and curvelet thresholding[EB/OL]. 2008, http://dsp.rice.edu/files/cs/ISTcs2.pdf
    [126] W. Alltop. Complex sequences with low periodic correlations[J]. IEEE Trans. on Information Theory, 1980, 26(3): 350-354.
    [127] J.-F. Aujol. Some first-order algorithms for total-variation based image restoration[J]. Journal of Mathematical Imaging and Vision, 2009, 34(3): 307-327.
    [128] K. Engan, S. O. Aase and J. H. Hus?y. Multi-frame compression: Theory and design[J]. EURASIP Signal Processing, 2000, 80(10): 2121-2140.
    [129] M. Aharon, M. Elad and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J]. IEEE Trans. on Signal Processing, 2006, 54(11): 4311-4322.
    [130] k. S. Gurumoorthy, A. Rajwade, A. Banerjee and A. Rangarajan. A method for compact image representation using sparse matrix and tensor projections onto exemplar orthonormal bases[J]. IEEE Trans. on Image Processing, 2010, 19(2): 322-334.
    [131] R. Tibshirani. Regression shrinkage and selection via the Lasso[J]. J. Roy. Statist. Soc. Ser. B., 1996, 58: 267-288.
    [132] E. Hale, W. Yin and Y. Zhang. A fixed-point continuation method for l1-regularized minimization with application to compressed sensing[R]. CAAM Technical Report TR07, 2007.
    [133] S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin. An iterative regularization method for total variation-based image restoration[C]. MMS, 2005, 4: 460-489.
    [134] L. He, T.-C. Chang and S. Osher. MR image reconstruction from sparse radial samples by using iterative refinement procedures[C]. Proc. of the 13th annual meeting of ISMRM, 2006.
    [135] E. v. d. Berg and M. P. Friedlander. Probing the Pareto frontier for basis pursuit solutions[J]. SIAM Journal on Scientific Computing, 2008, 31(2): 890-912.
    [136] D. Malioutov, M. Cetin and A. Willsky. Homotopy continuation for sparse signal representation[C]. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 5: 733-736.
    [137] B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Least angle regression[J]. Annals of Statistics, 2004, 32: 407-499.
    [138] T. GoldStein and S. Osher. The split bregman method for l1 regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.
    [139] W. Yin, S. Osher, D. Goldfarb and J. Darbon. Bregman iterative algorithms forl1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1: 142-168.
    [140] E. G. Birgin, J. M. Martinez and M. Raydan. Nonmontone spectral projected gradient methods on convex sets[J]. SIAM Journal on Optimization, 2000, 10: 1196-1211.
    [141] E. G. Birgin, J. M. Martinez and M. Raydan. Inexact spectral projected gradient methods on convex sets[J]. IMA J. Numer. Anal., 2003, 23: 539-559.
    [142] Y.-H. Dai and R. Fletcher. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming[J]. Numer. Math., 2005, 100: 21-47.
    [143] E. G. Birgin, J. M. Martinez and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets[J]. SIAM Journal on Optimization, 2000, 10: 1196-1211.
    [144] A. Chambolle, R. d. Vore, N.-Y. Lee and B. Lucier. Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage[J]. IEEE Trans. on Image Processing, 1998, 7: 319-335.
    [145] A. Maliki and D. Donoho. Optimally tuned iterative reconstruction algorithms for compressed sensing[EB/OL]. arXiv: 0909.0777
    [146] K. K. Herrity, A. C. Gilbert and J. A. Tropp. Sparse approximation via iterative thresholding[C]. Proc. ICASSP 2006.
    [147] T. Blumensath and M. E. Davies. Iterative thresholding for sparse approximations[J]. Journal of Fourier Analysis and Applications, Special issue on sparsity, 2008, 14(5): 629-654.
    [148] M. Fornasier and H. Rauhut. Iterative thresholding algorithm[J]. Appl. Comput. Harmonic Anal., 2008, 25(2): 187-208.
    [149] T. Blumensath and M. E. Davies. Iterative hadr thresholding for compressed sensing[J]. Appl. Comput. Harmonic Anal., 2009, 27(3): 265-274.
    [150] Y. Nesterov. Smooth minimization of non-smooth functions[J]. Math. Program., Series A, 2005, 103: 127-152.
    [151] A. Beck and M. Teboullle. Fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2008, 2(1): 183-202.
    [152] J. Dahl, C. Hansen, S. H. Jensen and T. L. Jensen. Algorithms and software for total variation image reconstruction via first-order methods[J]. Numerical Algorithms, 2008, 53(1): 67-92.
    [153] P. Weiss, L. Blanc-Feraud and G. Aubert. Efficient schemes for total variation minimization under constraints in image processing[J]. SIAM Journal on Scientific Computing 2009, 31(3): 2047-2080.
    [154] S. Becker, E. J. Candes and M. Grant. Templates for convex cone problems with applications to sparse signal recovery[EB/OL]. arXiv:1009.2065v2
    [155] R. G. Baraniuk, V. Cevher, M. Duarte and C. Hegde. Model-based compressive sensing[J]. IEEE Trans. on Information Theory, 2010, 56(4): 1982-2001.
    [156] M. E. Davies and R. Gribonval. Restricted isometry constants where lp sparse recovery can fail for 0    [157] Z. Xu, H. Zhang, Y. Wang and X. Chang. L1/2 regularizer[J]. Sci. China Ser. F-inf. Sci., 2009, 52(1): 1-9.
    [158] A. Gilbert, M. Strauss, J. Tropp and R. Vershynin. Algorithm linear dimension reduction in the l1 norm for sparse vectors[C]. Proc. of 44th Annual Allerton Conference on Communication, Control, and Computing.
    [159] A. Gilbert, M. Strauss, J. Tropp and R. Vershynin. One sketch for all: Fast algorithm for compressed sensing[C]. Proc. of the 39th ACM Symp. Theory of Computing, 2007.
    [160] G. Cormode and S. Muthukrishnan. Combinatorial algorithm for compressed sensing[R]. Technical report, DIMACS, 2005.
    [161] M. Iwen. A deterministic sub-linear time sparse Fourier algorithm via non-adaptive compressed sensing methods[C]. Proc. ACM-SIAM Symposium on Discrete Algorithm (SODA), 2008.
    [162] W. Yin, S. Morgan, J. Yang and Y. Zhang. Practical compressive sensing with toeplitz and circulant matrices[R]. Technical report of Rice CAAM TR10-01, 2010.
    [163] E. Candes and T. Tao. Decoding by linear programming[J]. IEEE Trans. on Information Theory, vol. 51, pp. , 2006, 51: 4203-4215.
    [164] R. Baraniuk, M. Davenport, R. DeVore and M. Wakin. A simple proof of the restricted isometry property for random matrices[J]. Constr. Approx., 28: 253-263.
    [165] Y. Zhang. A simple proof for recoverability of l1-minimization: go over or under[R]. Rice University CAAM Technical Report TR05-09, 2005.
    [166] Y. Zhang. Theory of compressive sensing via l1-minimization: a non-RIP analysis and extensions[R]. Rice University CAAM Technical Report TR08-11, 2008.
    [167] A. Cohen, W. Dahmen and R. DeVore. Compressed sensing and best k-term approximation[EB/OL]. http://www.igpm.rwth-aachen.de/Download/reports/ pdf/IGPM260.pdf
    [168] A. d'Aspremont and L. E. Ghaoui. Testing the nullspace property using semidefinite programming[EB/OL]. arXiv:0807.3520v5
    [169] T. Cai, G. Xu and J. Zhang. On recovery of sparse signals via l1 minimization[J]. IEEE Trans. on Information Theory, 55: 3388-3397.
    [170] T. Cai, L. Wang and G. Xu. Stable recovery of sparse signals and an oracleinequality[R]. Technical report of Dept. Statist. Univ. Pennsylvania.
    [171] P. Tseng. Further results on a stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Trans. on Information Theory, 2009, 55: 888-899.
    [172] E. Candes and T. Tao. Decoding by linear programming [J]. IEEE Trans. on Information Theory, 2005, 51: 4203-4215.
    [173] E. Candes and T. Tao. The Dantzing selector: statistical estimation when p is much larger than n [J]. Annals of Statistics, 2007, 35(6): 2313-2351.
    [174] T. Cai, L. Wang and G. Xu. Shifting inequality and recovery of sparse signals[J]. IEEE Trans. on Signal Processing, 2010, 58(3): 1300-1308.
    [175] E. Candes, J. Romberg and T. Tao. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59: 1207-1223.
    [176] T. Cai, L. Wang and G. Xu. New bounds for restricted isometry constants[EB/OL]. airXiv: 0911.1564
    [177] A. Cohen, W. Dahmen and R. DeVore. Compressed sensing and best k-term approximation[EB/OL]. http://www.math.sc.edu/~devore/publications /CDDSensing_6.pdf
    [178] E. Candes. The restricted isometry property and its implications for compressed sensing[J]. C. R. Acad. Sci. Ser. I, 346: 589-592.
    [179] S. Foucart. A Note on Guaranteed Sparse Recovery via L1-Minimization[J]. Applied and Computational Harmonic Analysis, 2010, 29(1): 97-103.
    [180] J. Trzasko and A. Manduca. Relaxed conditions for sparse signal recovery with general concave priors[J]. IEEE Trans. on Signal Processing, 2009, 57: 4347-4354.
    [181] D. L. Donoho, M. Elad and V. N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise [J]. IEEE Trans. on Information Theory, 2006, 52(1): 6-18.
    [182] T. Strohmer and R. W. Heath. Grassmannian frames with applications to coding and communication[J]. Appl. Comput. Harmonic Anal., 2003, 14(3): 257-275.
    [183] J. A. Tropp. Norms of random submatrices and sparse approximation[J]. C. R. Acad. Sci. Ser. I, 2008, 346: 1271-1274.
    [184] J. Haupt, W. U. Bajwa, G. Raz and R. Nowak. Toeplitz compressed sensing matrices with applications to sparse channel estimation[EB/OL]. http://nowak.ece.wisc.edu/sub08_toep.pdf
    [185] D. J. Love, R. W. Heath and T. Strohmer. Grassmannian beamforming for multiple-input multiple-output wireless systems[J]. IEEE Trans. on Information Theory, 2003, 49(10): 2735-2747.
    [186] K. Mukkavilli, A. Sabharwal, E. Erkip and B. A. Aazhang. On beamformingwith finite rate feedback in multiple antenna systems[J]. IEEE Trans. on Information Theory, 2003, 49(10): 2562-2579.
    [187] J. H. Gonway. Packing lines, planes, etc.: packings in Grassmannian spaces[J]. Exper. Math., 1996, 5(2): 139-159.
    [188] R. Calderbank and S. Jafarpour. Reed muller sensing matrix and the LASSO[EB/OL]. arXiv: 1004.4949v1
    [189] L. Welch. Lower bounds on the maximum cross correlation of signals[J]. IEEE Trans. on Information Theory, 1974, 20(3): 397-399.
    [190] J. G. Proakis. Digital communications[M]. New York, McGraw Hill: 1995.
    [191] P. Xia, S. Zhou and G. B. Giannakis. Achieving the welch bound with difference sets[C]. Proc. ICASSP 2005.
    [192] M. Elad. Optimized projections for compressed sensing[J]. IEEE Trans. on Signal Processing, 2007, 55(12): 5695-5702.
    [193] J. M. Duarte-Carvajalino and G. Sapiro. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization[J]. IEEE Trans. on Image Processing, 2009, 18(7): 1395-1408.
    [194]邹谋炎.反卷积和信号复原[M].北京:国防工业出版社, 2001.
    [195]王仕璠.信息光学理论与应用[M].北京:北京邮电大学出版社, 2004.
    [196] Y. Shih. Quantum imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 1016-1030.
    [197] Y. Shih. Ghost imaging[C]. SPIE 10.1117/2.1200907.1717, 2009.
    [198]路见可,钟寿国.积分方程论[M].武汉:武汉大学出版社, 2008.
    [199] J. C. Leachtenauer, R. G. D.著陈世平等.译.监视与侦察成像系统:模型与性能预测[M].北京:中国科学技术出版社, 2007.
    [200] Modulation Transfer Function[EB/OL]. http://www.edmundoptics.com/technica l-support/optics/modulation-transfer-function
    [201] V. Sukumar, H. L. Hess, K. V. Noren, G. Donohoe and S. Ay. Imaging System MTF - Modeling with Modulation Functions[C]. Proc. of 34th Annual Conference of IEEE Industrial Electronics, 2008): 1748-1753.
    [202] G. D. Boreman. Modulation Transfer Function in Optical and Electro-Optical Systems[M]. WA: SPIE press, 2001.
    [203] Yadid-Pecht. Geometrical Modulation Transfer Function for Different Pixel Active Area Shapes[J]. Optical Engineering, 2000, 39(4): 859-865.
    [204] T. B. Pittman, Y. H. Shih, D. V. Strekalov and A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement[J]. Physics Review A, R3429, 1995, 52:
    [205] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams and J. P. Dowling. Quantum interferometric optical lithography: exploiting entanglementto beat the diffraction limit[J]. Physics Review Letters, 2733, 2000, 85.
    [206] A. Gatti, E. Brambilla, M. Bache and L. A. Lugiato. Correlated imaging, quantum and classical[J]. Physics Review A, 013802-1, 2004, 70.
    [207] J. Xiong, D. Cao, F. Huang, H. Li, X. Sun and K. Wang. Vortex phase qubit: Generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condenstates via optical angular momentum beams[J]. Physics Review Letters, 173601, 2005, 95.
    [208] Y. J. Cai and S. Y. Zhu. Ghost imaging with blackbody radiation[J]. Physics Review E, 056607-1, 2005, 71.
    [209] Y. Zhai, X. Chen, D. Zhang and Wu. Two-photon interference with true thermal light[J]. Physics Review A, 043805, 2005, 72.
    [210] Y. Bai and S. Han. Ghost imaging with thermal light by third-order correlation[J]. Physics Review A, 043828, 76.
    [211] R. Hanbury-Brown and R. Q. Twiss. Correlation between photons in two coherent beams of light[J]. Nature, 1956, 177(27).
    [212] Y. H. Shih. Quantum imaging[J]. IEEE journal of selected topic in quantum electronics, 2007, 13(4): 1016-1030.
    [213] W. Gong and S. Han. Super-resolution ghost imaging via compressive sampling reconstruction[EB/OL]. arXiv: 0910.4823v1
    [214] E. Candes, J. Romberg and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.
    [215] E. Candes and T. Tao. Near-optimal signal recovery from random projections and universal encoding strategies?[J]. IEEE Trans. on Information Theory, 2006, 52(12): 5406-5245.
    [216] T. Chan, S. Esedoglu and F. Park. Recent developments in total variation image restoration[M]. The handbook of mathematical models in computer vision, Springer, 2005.
    [217] Y. H. Shih. Ghost imaging[C]. SPIE 10.1117/2.1200907.1717, 2009.
    [218] R. E. Meyers and K. S. Deacon. Lens-less quantum ghost imaging: New two-photon experiments[J]. Vacuum, 2009, 83: 244-247.
    [219] B. Wohlberg and P. Rodriguez. An iteratively reweighted norm algorithm for minimization of total variation functionals[J]. IEEE Signal Processing Letters, 2007, 14(12): 2007.
    [220] L. Jacques, P. Vandergheynst, A. Bilbet, V. Majidzadeh, A. Schmid and Y. Leblebici. CMOS compressed imaging by random convolution[C]. Proc. of ICASSP, 2009.
    [221] R. Robucci, L. K. Chiu, J. Gray, J. Romberg, P. Hasler and D. Anderson. Compressive sensing on a CMOS separable transform image sensor[C]. Proc. ofICASSP, 2008.
    [222] S. Kawahito, M. Yoshida, M. Sasaki, K. Umehara, D. Miyazaki, Y. Tadokoro, K. Murata, S. Doushou and A. Matsuzawa. A CMOS image sensor with analog two-dimensional DCT-based compression circuits for one-chip cameras[J]. IEEE Journal of Solid-State Circuits, 1997, 32(12): 2030-2041.
    [223] R. Coifman, F. Geshwind and Y. Meyer. Noiselets[J]. Applied and Computational Harmonic Analysis, 2001, 10: 27-44.
    [224] A. Stern and B. Javidi. Random projections imaging with extended space-bandwidth product[J]. Journal of Display Technology, 2007, 3(3): 315-320.
    [225] J. Romberg. Compressive Sensing By Random Convolution[J]. SIAM Journal on Imaging Sciences, 2009, 2(4): 1098-1128.
    [226] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg and R. G. Baraniuk. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals[J]. IEEE Trans. on Information Theory, 2010, 56(1): 520-544.
    [227] A. W. Lohmann. Space-bandwidth product of optical signals and systems[J]. J. Opt. Soc. Am. A, 1996, 13(3): 470-473.
    [228] F. Faure, P. Coste and G. Kang. The GOCI instrument on COMS mission - the first geostationary ocean color imager[C]. Proc. of International Conference on Space Optics 2008.
    [229] S. Hovanessian. Introduction to sensor system[M]. Norwood, MA: Artech House, 1988.
    [230]易东云,朱炬波,王正明,郭军海.多站连续波跟踪雷达测速定轨研究[J].中国空间科学技术, 1998, 18(5): 19-24.
    [231]刘吉英,朱炬波,刘也,胡增辉.基于测速定轨体制的布站几何优化设计[J].宇航学报, 2007, 28(1): 53-57.
    [232]朱炬波,贺明科,冉承其,刘秋辉.自由节点样条函数平滑滤波技术[J].电子学报, 2004, 32(1): 135-138.
    [233] W. Zhengming and Z. Haiyin. Mathematical processing of range and range rate tracking data[J]. AD-A310796, 1996.
    [234] W. Zhengming and Z. Jubo. Reduced parameter model on trajectory tracking data with applications[J]. Science in China (Series E), 1999, 42(2): 190-199.
    [235]王正明,易东云,周海银,朱炬波,郭军海.弹道跟踪数据的校准与评估[M].长沙:国防科技大学出版社, 1999.
    [236] S. Axlesson. Random noise radar/sodar with ultrawideband waveforms[J]. IEEE Trans. on Geoscience and Remote sensing, 2007, 45(5).
    [237] S. Axelsson. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Trans. on Geoscience and Remote sensing, 2007, 45(4):890-904.
    [238] S. R. J. Axelsson. Improved clutter suppression in random noise radar[C]. Proc. URSI Commision F Symp. Microw. Remote Sens. Earth, Oceans, Ice and Atmos., Ispra, Italy, 2005.
    [239] K. S. Kulpa and Z. Czekala. Ground clutter suppression in noise radar[C]. Proc. Radar IEE/IEEE Int. Radar Conf., Toulouse, France, 2004.
    [240]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2006.
    [241] L. Vann, K. Cuomo, J. Piou and J. Mayhan. Multisensor Fusion Processing for Enhanced Radar Imaging[R]. Lincoln Laboratory Technical Report 1056, 2000.
    [242] W. G. Carrara, R. S. Goodman and R. M. Majewski. Spotlight Synthetic Aperture Radar[M]. Boston, MA: Artech House, 1995.
    [243] C. Chen and H. C. Andrews. Target-motion-induced radar imaging[J]. IEEE Trans. on Aerosp. Electron. Syst., 1980, 16(1): 2-14.
    [244] M. Xing and Z. Bao. A new method for the range alignment in ISAR imaging[J]. Journal of Xidan University, 2000, 27(1).
    [245] G. Y. Wang and Z. Bao. The minimum entory criterion of range aligment in ISAR motion compensation[C]. Proc. of conference rada'97, Edinburgh UK 1997, 14-16.
    [246] W. Ye, T. S. Yeo and Z. Bao. Weight least-squares estimation of phase error for SAR/ISAR autofocus[J]. IEEE Trans. on Geoscience and Remote sensing, 27(5): 2487-2494.
    [247] D. E. Wahl, P. H. Eichel and D. C. Ghigetia. Phase gradient autofocus - robust tool for high resolution SAR phase correction[J]. IEEE Trans. on Aerosp. Electron. Syst., 1994, 30(3): 827-835.
    [248] J. Li and P. Stoica. An Adaptive Filtering Approach to Spectral Estimation and SAR Imaging[J]. IEEE Trans. on Signal Processing, 1996, 44(6): 1469-1484.
    [249] H. Rauhut. Stability results for random sampling of sparse trigonometric polynomials[J]. IEEE Trans. on Information Theory, 2008, 54(12): 5661-5670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700