用户名: 密码: 验证码:
海上自升式安装船环境载荷分析与桩腿驱动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,世界范围内的能源越来越紧张,海上风能开发成为当前研究的课题之一。海上风能作为可再生的环保能源,首先在欧洲得到了迅速的发展,我国近几年海上风电开发也进入了起步阶段。在国外海上风电建设中使用的各种工程船中,自升式安装船因其自升自航的特点及工作时受海洋环境影响小的优点得到了广泛的使用。本文分别对自升式安装船的桩腿升降系统结构、工作环境载荷、安装船桩腿系统的动力学、锁紧系统的阀控非对称液压缸系统的对称性控制、升降系统多液压马达的同步性等主要关键技术问题进行研究。
     设计了自升式海上风电安装船桁架式桩腿的齿轮齿条升降系统与齿条楔块式液压锁紧系统的结构,其中的齿轮升降系统由动力源、二级齿轮减速器及二级行星减速器组合的传动系统、升降小齿轮组成;升降小齿轮作为低速重载工况下的传动件,其强度及接触性能直接影响安装船桩腿工作的可靠性,在正常与应急两种工况下对升降齿轮分别进行了四种接触情况的有限元分析,优化了小齿轮的结构,改善了低速重载齿轮与齿条啮合性能。
     建立了桩腿的静力学模型及环境载荷的数学模型,根据自升式安装船的作业环境及技术参数要求,以线性艾里波理论为基础,建立了垂直和任意倾斜角度下的桩腿波浪载荷力学模型,从时域角度对桩腿进行了波浪载荷分析与仿真,研究了波浪载荷主要特征参数变化对桩腿载荷的影响,为桩腿升降系统的设计提供了必要的理论基础。
     依据动力学基本方程,对安装船桩腿进行了风浪流载荷耦合作用下的动力响应分析;分析了安装船桩腿的模态与振型,保证桩腿结构刚度合适,以避免安装船桩腿在耦合载荷作用下发生共振;并采用频谱分析法分析安装船桩腿系统受耦合载荷作用下的动力响应,验证结构设计的合理性。
     在桩腿液压锁紧系统中,由于阀控非对称液压缸两个运动方向上系统的开环增益及某些参数的不同,使得两个方向上的动态特性不对称,这种本质上的非线性给液压锁紧系统的对称控制带来困难;在桩腿锁紧系统的液压控制中采用状态观测器,在两个运动方向上对各种外部扰动进行估计并通过前馈对系统进行补偿,提高液压系统的刚度和鲁棒性;针对传统PID控制对模型依赖性强和参数难以在线调整,提出基于伸缩因子的变论域模糊自适应PID控制策略,更符合阀控非对称液压缸锁紧系统的控制特点,可以明显提高系统的运动性能,使阀控非对称液压缸锁紧系统具有良好的动、静态性能。
     在单桩腿驱动系统中,多液压马达同步控制是桩腿运动控制的关键问题之一。在多液压马达同步控制系统中,为克服参数不确定性及外干扰的影响,提出了基于模糊切换增益调节滑模控制器对单个液压马达进行控制,以保证单个液压马达在系统结构不确定时具有较稳定的跟踪;并将模糊切换增益调节滑模控制器引进相邻多液压马达交叉耦合控制当中,研究的多液压马达同步解耦控制算法仅考虑毗邻的两个马达运动信息,有利于解耦控制器的控制律设计,可以保证多液压马达的位置误差和同步误差迅速趋于零,实现多液压马达控制系统的同步控制。
In recent years, energy has become more and more severe in worldwide, the offshorewind energy has been become one of the research topic. The offshore wind energy isrecognized as a renewable energy source, it has been developed rapidly in Europe, andChina’s offshore wind power is going to enter readily into the research and development stage.Various engineering ship of offshore wind power construction is taken into account, thejack-up installation vessel has been widely used as the characteristics of self-elevating andself-propelled and little affection by the marine environment. The leg lift system, the lockingsystems, the work environment load, dynamics, the asymmetric hydraulic cylinder controlsystem of locking systems, the hydraulic motors synchronization of the jack-up installationvessel were taken as the main key technologies, these key technologies were respectivelystudied in this paper.
     Both the rack-pinion lifting system of truss leg and the hydraulic locking system of rackwedge were designed in the jack-up offshore wind power installation, the gear lifting systeminclude the power source, the secondary gear reducer, the transmission system composed by2-type planetary gear reducer and pinion with heavy overloaded. The strength and contactproperties of the lifting pinion as low speed and heavy load transmission directly affect thereliability of the installation vessel, the four kinds of contact finite element analysis werecarried out in both normal and emergency conditions, the structure of pinion was optimized,five kinds of measures were obtained to improve the performance of rack and pinion meshing.
     The static model and the environmental load model of truss leg were establish, accordingto operating environment and technology parameters of the jack-up installation vessel, thewave load model of truss leg was established at vertical and any inclination angle based onthe linear AIRY wave theory, the analysis and simulation of wave loads were conducted fromthe perspective of time-domain, the main features parameters of wave load effecting on thetruss load was studied, the necessary theoretical basis for the design of truss lifting system isprovided.
     According to the dynamics basic equation, the dynamic response of truss leg of theinstallation vessel was analyzed under storm flow coupling loads in standing state. The truss leg’s modal shapes and the vibration mode of the installation vessels were analyzed, it isreasonable to guarantee the truss leg’s stiffness of installation vessels, the resonance can beavoided under the coupling load. The spectrum analysis method is adopted to analyze thedynamic response under the coupling loads, the reasonableness of the structural design isverified.
     In the hydraulic locking system of truss leg, as the open-loop gain and the parameters ofvalve controlled asymmetric hydraulic cylinder are different in both directions, the dynamicnature may be asymmetry in both directions, it is difficult to symmetrical control as the naturenonlinear of the hydraulic lock system. The state observer was adopted to estimate theinterferences, and then the feed-forward loop were adopt to resist the influence, the stiffnessand the robustness of hydraulic system could be improved, because traditional PID controlstrongly depend on the model and are difficult to online adjust parameter, the variableuniverse fuzzy PID control is put forward, this control method is in accordance with thecontrol features of hydraulic cylinder locking system, the performance of the system motioncan be significantly improved, the valve controlled asymmetric hydraulic cylinder system hasgood dynamic and static performance.
     In the drive control of the leg, synchronization control at the multiple hydraulic motors isone of the key technologies problems on the leg’s motion control. In its control, the tuningsliding mode controller based on fuzzy switching gain is adopted to control a hydraulic motor,in order to overcome the parameter uncertainty and the external disturbances, this algorithmstructure can ensure a more stable tracking when structure uncertainty. The the tuning slidingmode controller based on fuzzy switching gain was introduced into the cross-coupling control,the two adjacent motors are only considered in cross-coupling control, the decoupling controlalgorithm only reflects the motion information of the two adjacent motors instead of allmotors, it is helpful to design the decoupling controller control law, both the position errorand the synchronization error of the multiple hydraulic motors can be tended to zero rapidly,the decoupling control can make the output of all the motors to synchronize quickly.
引文
[1]丁金鸿,谭家华.近海风电专用安装船概述.中国海洋平台.2009.24(5):6-10页
    [2]张慕衡.海上风力发电机组安装工程关键技术研究.同济大学硕士论文.2009:1-5页
    [3]张太佶,汪张堂.一种新船型—海上风电设备安装船的开发.船舶.2009,10(5):38-43页
    [4]白勇,王玮,张金接,莫为泽.海上风力机安装技术.第二届全国海洋能学术研讨会论文集,中国黑龙江哈尔滨,2009:112-118页
    [5]刘吉辉,左倜.大型陆上风力发电技术综述.上海节能,2006.6(18):53-55页
    [6] Ir.M.B.Zaaijer,Dr.ir.G.J.W.van Bussel.Integrated analysis of wind turbine and windfarm, Symposium offshore-windenergie
    [7]王智强.国外海上风电场发展和启示.能源技术.2006.27(6):252-256页
    [8]宋础,刘汉中.海上风力发电场开发现状及趋势.电力勘测设计.2006,2(2):55-58页
    [9]刘贵浙,张勇慧.海上风电场工程船发展现状及展望.船舶物资与市场.2010(1):27-31页
    [10]龚闽,谭家华.自升自航式船发展概况,海洋工程.2002,20(4):101-104页
    [11]叶宇,何炎平,葛川等.海上风电机组构成、安装方式及典型安装船型.中国海洋平台,2008,23(5):39-44页
    [12] Lars Nedergaard. Taking windpower offshore-transport, installation and service supportof offshore wind turbines. http://www.a2sea.com,2008.4
    [13] Deutsche WindGuard GmbH, Deutsche Energie-Agentur GmbH (dena), University ofGroningen, Gerhard Gerdes Albrecht Tiedeman drs. Sjoerd Zeelenberg.2007. CaseStudy: European Offshore Wind Farms-A Survey for the Analysis of the Experiencesand Lessons Learnt by Developers of Offshore Wind Farms-Final Report.2006.12
    [14] Offshore Wind Energy-Ready to Power a Sustainable Europe. HYPERLIN Khttp://www.offshore-wind.de/media/article000325/CAOWEE_Complete.pdf
    [15] Schutz, W.; Schroter, F..Development of heavy steel plate for Mayflower Resolution,special purpose vessel for erection of off shore wind towers. Materials Science andTechnology.2005,21(5):590-596P
    [16]张蓓文.海上风电场设备吊装.上海电力.2007(2):140-143页
    [17] DTI. The World Offshore Renewable Energy Reprot.2004,6.http://www.berr.gov.uk/files/file43217.pdf
    [18] Windpower set for off shore boom.2006.12
    [19] http://www.gustoMSC.com
    [20] ETSU W/61/00570/REP DTI/Pub uRN01/1517. Offshore wind transport andinstallation vessel.
    [21]莫为泽,冯宾春,马素萍.利用国内现有设备安装海上风机的可行性调研.水利水电技术.2009(9):28-31页
    [22]万文涛.海上风电机组运输与安装方式研究.船舶工程.2011,33(2):81-84页
    [23]张太佶,汪张棠.海上风电设备安装船的崛起和发展.中国海洋平台.2009,24(5):1-5页
    [24]汪张棠,赵建亭.我国自升式钻井平台的发展与前景.中国海洋平台.2008,23(4):8-13页
    [25]马志良,罗德涛.近海移动式平台.北京:海洋出版社,1993:31-47,59-68,345-416页
    [26] Hans-Gunther Molsberger. Offshore lift platform.美国专利: US4199276
    [27] R.B.JOHNSON. JACKING SYSTEM FOR OFFSHORE PLATFORMS.美国专利:US3435621
    [28] Bart Boon. Device for absorbing impacts during lowering or lifting respectively of thesupport legs of an artificial island.美国专利: US4472084
    [29]潘斌.移动式平台设计.上海:上海交通大学出版社,1995:1-26页
    [30]梁晓玲.海上自升式钻井平台升降控制系统设计与研究.大连海事大学硕士学位论文.2010:1-6页
    [31]陈宏,李春祥.自升式钻井平台的发展综述.中国海洋平台.2007,22(6):1-6页
    [32] Morris Shear, Metaitie; Paul Geiger, Sr. Apparatus for releasing a rack chock of ajack-up rig.美国专利: US6231269
    [33]崔锋.一种自升式钻井平台锁紧装置.中国专利:200710118541.4
    [34]孟昭瑛,任贵永.海上自升式平台工作原理和基本特性.中国海洋平台.1994,9(6):167-170页
    [35]王运安.胜利修井平台升降系统设计.中国海洋平台.2003,18(2):32-46页
    [36] http://www.ewea.org/fileadmin/ewea_documents/documents/publications/WD/WD200309_lead_article.pdf
    [37]中国海洋环境年报.http://www.coi.gov.cn/hygb/hjzl/hjzl1997/#沿岸海域
    [38]王志新,蒋传文,艾芊等.近海风电场建设关键技术及其新进展.上海电力.2007(2):119-124页
    [39] http://info.machine.hc360.com/2011/07/110859332107.shtml
    [40]何炎平,龚闽,杨启等.一种自升自航式修井作业船的方案设计.中国海上油气工程.2002,14(5):5-8页
    [41]王泉,郭洪升.胜利作业三号自升式修井作业平台的总体设计.中国海洋平台.2002,17(2):31-34页
    [42] American bureau of shipping Incorporated. Guidance nodes on dynamic analysisprocedure for self-elevating drilling units. January,2004
    [43]陈宏.自升式钻井平台的最近进展.中国海洋平台.2008,23:1-4页
    [44] P. T. Myers, F. P. Brennan, W. D. Dover. The effect of rack/rib plate on the stressconcentration factors in jack-up chords.Marine Structures,2001(14):485-505P
    [45]孙永泰.海上自升式修井作业平台的设计与研究.第十届渤海湾浅(滩)海油气勘探开发技术研讨会.2005.8:200-204页
    [46] DNV Classification Notes NO.31.5.Strength analysis of main structures ofself-elevating units.1992.
    [47]任宪刚,李春第,杨红敏.海洋自升式钻井平台桩靴研究.石油矿杨机械.2009,38(12):18-22页
    [48]彭洪军,吴建等.海上自升式平台电动升降装置的研究.东北电力大学学报.2007,27(4):79-83页
    [49]彭鼎,张乐.海上自升式平台电动升降装置的研究.中国海洋平台.2007,22(2):44-47页
    [50]宋广兴,蔺振.自升式平台齿轮齿条升降装置三维接触有限元分析.中国造船.2008:342-346页
    [51]樊敦秋,张卿等.自升式平台齿轮齿条参数优化研究.中国制造业信息化.2010,39(5):19-23页
    [52] NG Jun Jie. Thesis report On analysis and improvement of jacking systems for jack-uprig.2007-2008.
    [53]阳培,刘忠明,王长路.大模数齿轮齿条承载能力影响因素分析.机械传动.2009,33(5):27-31页
    [54]张争艳.自升式海洋钻井平台齿轮齿条爬升与锁紧系统设计与研究.武汉理工大学硕士学位论文,2011:69-75页
    [55] Lupascu Dumitru. Strength Analysis of Legs of Self Elevating Drilling Units in TransitConditions. The Annals of “Dunarea DE JOS” University of Galati Fascicle X AppliedMechanics,ISSN1221-4612P,2008
    [56]汤晶.海上风电安装船桩腿动载缓冲研究与强度分析.上海交通大学硕士学位论文,2009:39-55页
    [57]李润培,王志农.海洋平台强度分析.上海:上海交大出版社,1992.10:86-105页
    [58]孟祥伟.自升式平台支撑升降系统结构设计研究.2011,3:54-65页
    [59]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海交通大学出版社.1992:51-72页
    [60]宗红霞.海上风机单桩基础扶正导向装置研究.哈尔滨工程大学硕士学位论文.2009:14-18页
    [61]孙意卿.海洋工程环境条件及其荷载.上海交通大学出版社.1989:99-103页
    [62]孙景海.自升式平台升降系统研究与设计.哈尔滨工程大学硕士学位论文.2010:4-6,17-24页
    [63]叶宇.近海风电机组安装及维护多功能作业船的研究.上海交通大学硕士学位论文.2009:72-76页
    [64] Yu Hao, Yang Shuguang, Ren Huilong, Li Chenfeng.Research on time-domaindynamic analysis method for self-elevating drilling units.2011International Conferenceon Remote Sensing, Environment and Transportation Engineering,2011:6260-6263P
    [65] OFFSHORE STANDARD DET NORSKE VERITAS-OS-C104. Structural Design ofSelf-Elevating Unit(LRFD-METHOD),2001.
    [66]吴家鸣.桁架式近海结构物整体波浪荷载分析.华中理工大学学报.2009,37(11):1-6页
    [67] Lee Sing-Kwan, Yan Deguang, Zhang Baili, Kang Chang-Wei. Jack-up leghydrodynamic load prediction-A comparative study of industry practice with CFD andmodel test results.The Proceedings of the19th (2009) International OFFSHORE ANDPOLAR ENGINEERING CONFERENCE.,541-548P,2009
    [68]蒙占彬,田海庆,樊敦秋.自升式海洋平台桩腿强度及稳定性分析.第十四届中国海洋(岸)工程学术讨论会论文集,内蒙古呼和浩特,2009.147-151页
    [69]李红涛,徐捷,李晔.自升式海洋平台站立状态下的性能分析.中国海洋平台.2009,24(4):38-42页
    [70] Karunakaran. D., Spidsoe, N.,Dalane, J. I. Nonlinear dynamic response of two deepwater jack-up platforms. The Proceedings of the2nd (1992) International Offshore andPolar Engineering Conference,1992:278-235P
    [71] Ke, Bojie, Chen,Dingfang, Zhang, Zhengyan, Li Yongzhi. Jack-up wind installationvessel finite element analysis.20116th International Conference on PervasiveComputing and Applications, ICPCA2011:2011:521-524P
    [72]刘英杰.自升式平台桩腿的受力分析.哈尔滨工程大学硕士学位论文.2004,1:37-60页
    [73] American Bureau of Shipping ABS. DYNAMIC ANALYSIS PROCEDURE FORSELF-ELEVATING DRILLING UNITS.2004
    [74]张文首,卢立勤.考虑结点耗能的导管架平台的动力响应分析.计算力学学报.2003,12:670-677页
    [75] Sayan Gupta, Naser Shabakhty, Pieter van Gelder. Fatigue damage in randomlyvibrating jack-up platforms under non-Gaussian loads. Applied Ocean Research,2006,28:407-419P
    [76] Xu Ji wen, Wang Yan ying. Application of wavelet algorithm to spectral analysis ofoceanic waves and offshore structure responses. China Ocean Engineering.2009,23(4):635-644P
    [77] M. J. Cassidy, R. Eatock Taylor, G.. T. Houlsby. Analysis of jack-up units using aConstrained New Wave methodolody. Applied Ocean Research.2001(23):221-234P
    [78]李少华,聂雪媛,时忠民等.基于海洋结构谱响应波浪载荷参数识别.海洋工程.2009,27(2):54-62页
    [79] X. Y. Zheng, C. Y. Liaw. Non-linear frequency-domain analysis of jack-up platforms,International Journal of Non-linear Mechanics,2004(9):1519-1534P
    [80]赵鑫磊.随机波浪力作业下导管架海洋平台动力响应分析.职教论坛.2008(12):204-230页
    [81]尚晓江,邱峰等.ANSYS结构有限元高级分析方法与范例应用.中国水利水电出版社.2006:122-153,315-340页
    [82] B. Bienen, M. J. Cassidy. Advances in the three-dimensional fluid-structure-soilinteraction analysis of offshore jack-up structures. Marine Structures.2006(19):110-140P
    [83]杨树耕,藤明清,孟昭瑛等.有限元分析软件ANSYS在海洋工程中的应用.中国海洋平台.2000,15(5):40-45页
    [84]严仁军.自升式海洋平台升降装置疲劳强度分析.武汉理工大学硕士学位论文.2007:25-26页
    [85]李茜,杨树耕.采用ANSYS程序的自升式平台的结构有限元动力分析.中国海洋平台。2003,18(4):41-46页
    [86] X.M.Tan, J.Li, C.Lu. Structural behaviour prediction for jack-up units during jackingoperations. Computers and Structures.2003,81:2409-2416P
    [87] ZHANG Lianwen,XIA Renwei,and HUANG Hai.Dynamic Response of Truss AdaptiveStructures.Chiness Journal OF Mechanical Engineering2009,22(6):849-855P
    [88]汪张堂,赵文峰,薛颖.“中海油62”修井作业平台升降系统设计.船舶.2008,10(5):53-57页
    [89] M.J.Cassidy,G.T.Houlsby,etc.Determining appropriate stiffness levels forspudcan foundations using jack-up case records.21stInternational Conference onOffshore Mechanics and Artic Engineering.2002,June23-28:1-12P
    [90]付方,陆建辉,李玉辉.基于随机波浪载荷的CII海洋平台结构的疲劳分析.中国海洋大学学报.2007,37(7):219-223页
    [91]马网扣,羊卫. CPOE-62自升式作业平台整船强度入级计算.上海造船.2008(2):17-22页
    [92] Volosencu, Constantin. Properties of fuzzy systems. WSEAS Transactions on Systems.2009,8(2):210-228P
    [93]肖晟,强宝民.基于对称四通阀控非对称液压缸的电液比例位置控制系统建模与仿真.机床与液压.2009,37(6):95-101页
    [94]张晓宁,王岩,付永领.非对称液压缸对称性控制.北京航空航天大学学报.2007,33(11):1334-1339页
    [95]刘强,冯培恩,潘双夏.基于干扰观测器的非对称液压缸鲁棒运动控制.浙江大学学报.2006,40(4):594-598页
    [96]宋志安.基于MATLAB的液压伺服控制系统分析与设计.国防工业出版社.2007
    [97]王传礼,丁凡,李其朋,杨奇顺.对称四通阀控非对称液压缸伺服系统动态特性研究,中国机械工程,2004,15(6):471-474页
    [98]顾凯,李长春,刘晓东.阀控非对称缸摩擦力分析与补偿研究.机床与液压.2011,39(7):45-47页
    [99] Schwarz, H. Ingenbleek, R. Observing the state of hydraulic drives via bilinearpproximated models. Control Engineering Practice.1994,2(1):61-68P
    [100] T, Wey. Modeling and observer design for hydraulic cylinders. IEEE MediterraneanConference on Control and Systems.1995,40:1-6P
    [101] Kim, C.-S.. Speed control of an overcentered variable-displacement hydraulic motorwith a load-torque observer. Control Engineering Practice.1996,4(11):1563-1570P
    [102] Ugur Tumerdem. Haptic Consensus in Bilateral Teleoperation. Proceedings of the20074th IEEE International Conference on Mechatronics.2007,1-6P
    [103]张文.降维状态观测器的两种设计方法及算例.军械工程学院学报.2005,17(3):62-64页
    [104] Chen Rong. Rearch on resist-disturbance performance of servo system based on loadbserver. Proeeedings of the CSEE.2008,24(8):103-108P
    [105] Mantz, Ricardo J. Regulating and tracking PID controller. Industrial and EngineeringChemistry Research.1990,29(7):1249-1253P
    [106] Devanathan, R. Expert pid controller. Proc of the Int Workshop on Artif Intell for IndAppl.1988,525-530P
    [107] Lee, Jietae. Improved technique for PID controller tuning from closed-loop tests.AIChE Journal.1990,36(12):1891-1895P
    [108] Volosencu, Constantin. Properties of fuzzy systems. WSEAS Transactions on Systems.2009,8(2):210-228P
    [109]李广军,张雪平,杨欣等.变论域模糊自适应PID控制.宜宾学院学报,2010.10(6):52-54页
    [110]李红伟,谌贵辉,尚泽明.无刷直流电机的变论域模糊自适应PID控制系统设计.江南大学学报.2009,8(1):49-53页
    [111]高淑芝,高宪文,朱志.基于变论域模糊PID的汽提塔温度控制方法.东北大学学报.2011,31(10):1369-1372页
    [112] Karasakal, Onur. Guzelkaya, Mujde. Eksin, Ibrahim. Yesil, Engin. An error-basedon-line rule weight adjustment method for fuzzy PID controllers. Expert Systems withApplications.2011,38(8):10124-10132P
    [113]董爱华,胡艳丽,薄关.变论域模糊PID自整定控制器的设计及仿真.河南理工大学学报.2010,29(5):656-649页
    [114] Das, Saptarshi1. Pan, Indranil2. Das, Shantanu. Gupta, Amitava. A novel fractionalorder fuzzy PID controller and its optimal time domain tuning based on integralperformance indices. Engineering Applications of Artificial Intelligence.2012,5(2):430-442P
    [115] Lee, C.K. Brushless DC motor speed control system using fuzzy rules. Proceedings ofthe5th International Conference on Power Electronics and Variable-Speed Drives.1994,399:101-106P
    [116] Aras, Mohd Shahrieel Mohd. Comparison of fuzzy control rules using MATLABtoolbox and simulink for DC induction motor-speed control. SoCPaR2009-SoftComputing and Pattern Recognition.2009,711-715P
    [117] Aras, Mohd Shahrieel Mohd. Comparison of fuzzy control rules using MATLABtoolbox and simulink for DC induction motor-speed control. SoCPaR2009-SoftComputing and Pattern Recognition.2009,711-715P.
    [118] Lee, C.K. Brushless DC motor speed control system using fuzzy rules. Proceedings ofthe5th International Conference on Power Electronics and Variable-Speed Drives.1994,399:101-106P
    [119] Zhou, Shumin. A fuzzy radon replenishment control method based on Takagi-Sugenomodel. The International Society for Optical Engineering.2008,7129:71291D.1-71291D.7.P
    [120] Solihin, Mahmud Iwan. Fuzzy-tuned PID control design for automatic gantry crane.ICIAS2007.2007,1092-1097P
    [121]潘琢金,温文博,杨华.变论域模糊PID在空调车温度控制中的应用.计算机仿真.2011,10(5):43-47页
    [122]陈兵伟,廖卫强.应用变论域模糊PID的直流电机调速系统.集美大学学报.2011,16(3):207-211页
    [123] Ko, Chia-Nan. Lee, Tsong-Li. Fan, Han-Tai. Wu, Chia-Ju.Genetic auto-tuning andrule reduction of fuzzy PID controllers.2006IEEE International Conference onSystems.2007,2:1096-1101P
    [124]潘永平,王钦.变论域模糊自适应模糊PID控制器设计.电器自动化.2007,9(3):9-12页
    [125] Ko, Chia-Nan. Wu, Chia-Ju. A PSO-tuning method for design of fuzzy PIDcontrollers.Journal of Vibration and Control.2008,14(3):375-395.
    [126]亨塞尔曼.精通Matlab7.清华大学出版社.2006
    [127] R.W.P.Stonor,M.J.R.Hoyle,etc.Recovery of an elevated jack-up with leg bracingmember damage.Marine Structures.2004(14):325-351
    [128] Barambones,Oscar Alkorta Patxi,Garrido Aito,Garrido Izaskun.Speed sensorlessPWM robust control of induction machines.CCECE2008.2008:5-8P
    [129]李文华,张银东,陈海泉,孙玉清,张敬.自升式海洋石油平台液压升降系统分析.液压与气动.2006(8):23-25页
    [130]孙永泰.自升式海洋平台齿轮齿条升降系统的研究.石油机械.2004,32(10):23-26页
    [131]李德堂,张士华,史永晋.海上液压升降平台的缓冲与平衡.机床与液压.2005(6):109-110页
    [132]姜大宁,李红涛.自升式海洋平台桩腿齿条相位差分析研究.中国船舶.2010(8):61-64页
    [133] Adrian Dier BSc., MSc., PhD., etc. Guidelines for jack-up rigs with particularreference to foundation integrity.2004
    [134]靳宝全.电液位置伺服控制系统的模糊滑模控制方法研究.太原理工博士论文.2010
    [135] D. Sun and J. K. Mills.Adaptive synchronized control for coordination of two robotmanipulators. Proceedings of IEEE International Conference on Robotics andAutomation,Washington DC,USA,2002:976-981P
    [136] D.Sun.Position synchronization of multiple motion axes with adaptive couplingcontrol. Automatica.2003, vol.39,997-1005P
    [137]余愿,傅剑.基于模糊滑模控制的液压位置伺服系统仿真.武汉理工大学学报.2010,32(2):210-212页
    [138]汤青波,吴银凤,梁毓明.液压系统的模糊滑模控制.机床与液压.2005,11:134-135页
    [139]李军伟,赵克定.仿真转台液压伺服系统自适应模型跟踪模糊变结构控制的研究.机床与液压.2005,1:99-101页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700