用户名: 密码: 验证码:
铝熔体吹气发泡过程的水模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用水模拟方法结合泡沫铝的实际发泡实验对铝熔体的吹气发泡过程进行了研究。应用高速摄影技术记录气泡在聚乙烯醇水溶液中的形成与上升过程,分析气泡形状、体积和运动速度的变化规律;探讨气体流速、孔径、出气口运动速度等工艺参数对气泡上升运动与分布的影响。结合铝熔体发泡实验,预测并验证了气流量、压强、流速、出气口距没入液面的深度、出气口的运动速度等工艺参数对气泡尺寸的影响。研究出气管内压力降对出气管首尾两端生成的气泡升至液面后尺寸差别的影响。通过对气泡进行受力分析,推导气泡在充气膨胀阶段结束时的尺寸预测模型。
     研究结果表明:气泡的生成分为膨胀和脱离两个阶段,在充气膨胀阶段其形状为椭球体,当气泡完全脱离出气口后,其形状变为扁球体。气泡在水溶液中的极限上升速度为382 mm/s。静态流场中,单个气泡的上升运动轨迹为周期和振幅逐渐增大的螺旋形曲线,气流量(0.025~0.075 L/min)与出气口距没入液面的深度(150~330 mm)越大、出气口直径(0.2~0.3 mm)越小时,气泡的摆动振幅越大。动态流场中,气泡群在出气管横截平面内呈正弦规律分布,提高出气管运动速度能使气泡群在发泡室中的分布更加均匀。
     当出气口的运动速度由0增加至366 mm/s时,铝熔体表面气泡直径由10.44减小到2.59 mm,水溶液表面气泡直径由3.38减至2.65 mm,当出气口运动速度为366 mm/s时,水模拟预测值和泡沫铝胞直径的相对误差为10.17%。当气流量由0.025增至0.075 L/min时,预测气泡直径由2.48增至2.93 mm(增加了18.14%),泡沫铝胞直径由2.62增至3.61 mm(增加了34.79%)。当水溶液的粘度由2.27变为16 mPa?s时,气泡的直径由2.33增大至2.48 mm。随着出气口距没入液面深度的逐渐增加(150~330 mm),水溶液表面气泡直径逐渐变大(2.25~2.57 mm),考虑静压力差异并修正后,胞直径与预测值的相对误差由15.45%减小至3.22%。出气管首端出气口生成的气泡比尾端出气口生成的气泡尺寸大(2.72~6.24%),且气流量越大、气道长度越长、管道内径越小,出气管首尾两端出气口生成的气泡尺寸差别越大。
Through water simulation experiment combine with aluminum foaming experiment, the foaming process of aluminum melt was studied. Using high speed photography technology recorded the bubble formation and ascension in the PVA solution. Analyze bubble shape, size and velocity variation. Study the bubble trajectory distribution with different gas flow rate, orifice diameter and stir speed. Combining with aluminum foaming experiment, the influence of bubble size on different processing parameter was studied. The influence of pressure decrease on surface bubble diameter was studied. Through force analysis on the bubble, the bubble size prediction model was derived.
     The experiment results indicate that the bubble is the ellipse spheroid during the process of expanding. When the bubbles completely out of orifice, their shape change into flat sphere. The limit speed of bubble during ascent in the PVA is 382 mm/s. In the static flow field, the rising trajectory of a single bubble is a spiral curve with increasing period and amplitude. when the single hole incidence airflow discharge(0.025~075 L/min), the immersion depth increase from 160 to 330 mm and the orifice diameter changing from 0.3 to 0.2 mm, the bubble oscillation amplitude increased. In the dynamic flow field, the bubbles were sinusoidal distribution in the foaming room, and increase the velocity of air tube can improve the uniformity of bubbles.
     When the biggest linear velocity of air tube is increase from 0 to 366 mm/s, the bubble diameter of water simulation is reduced from 3.38 to 2.65 mm and the bubble diameter of aluminum reduced from 10.44 to 2.95 mm. The relative error of simulation and experiment is 10.17% with the velocity of air tube is 366 mm/s. When the air flow is increase from 0.025 to 0.075 L/min, the bubble diameter of water simulation is increased from 2.48 to 2.93 mm and the bubble diameter of aluminum increased from 2.62 to 3.61 mm. The water experiment results indicate that when the liquid viscosity changing from 2.27 to 16 mPa.s, the bubble diameter increases from 2.33 to 2.48 mm. When the immersion depth of the orifice increase from 150 to 330 mm, the bubble diameter of water simulation is increase from 2.25 to 2.57 mm, and the bubble diameter of aluminum is 2.732 mm, Consider the static pressure, The relative error of experiment and simulation reduced from 15.45 to 3.22%. The bubble generated from the first size of air tube is bigger than the other side (2.72~6.24%). Increase the air flow and the length of air tube or reduce the pipe diameter, the inconsistent of bubble size is greater.
引文
[1]王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(2)[J].轻合金加工技术.1999, 27 (11): 1-6
    [2]程慧静,张崇民,苗信成等.泡沫铝的研究现状与应用展望[J].鞍山科技大学学报.2005, 28 (6): 409-414
    [3]高峰.泡沫铝研究与应用进展[J].江苏冶金.2008, 36 (2): 3-6
    [4]吴照金,王艳明,何德坪.铝熔体泡沫化制备胞状铝的研究进展[J].铸造.1999, 1 (4): 1-5
    [5]王德庆,石子源.泡沫金属的生产、性能与应用[J].大连铁道学院学报.2001, 22 (2): 79-86
    [6]许光鹏,张丽,伍薇.新型多功能材料泡沫铝的结构性能及前景展望[J].重庆科技学院学报(自然科学版).2006, 8 (6): 51-53
    [7]赵万祥,赵乃勤,郭新权.新型功能材料泡沫铝的研究进展[J].金属热处理.2004, 29 (6): 7-10
    [8]毕于顺,左孝青,张帆.小孔径泡沫铝研究进展[J].材料导报.2008, 22 (7): 48-52
    [9]于英华.多孔泡沫铝性能研究现状及应用前景展望[J].辽宁工程技术大学学报.2003, 22 (2): 259-260
    [10]陈思杰,米国发.泡沫铝的制备工艺、组织性能及应用前景[J].热加工工艺.2005, (5): 54-57
    [11]王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(3)[J].轻合金加工技术.1999, 27 (12): 1-5
    [12]武小娟.泡沫铝的制备与应用[J].新技术新工艺.2002, (4): 49-51
    [13]赵增典,张勇,李杰.泡沫金属的研究及其应用进展[J].轻合金加工技术.1998, 26 (11): 1-4
    [14]刘欣,薛向欣,张瑜等.泡沫铝复合材料的研究[J].材料导报.2007, 21 (1): 79-82
    [15] Jin I, Kenny L D, Sang H. Method of producing light weight-foamed metal. US Patent, 4973358. 1990
    [16]周永欣,赵西城,吕振林等.泡沫铝功能材料的研究发展动态[J].中国材料科技与设备.2006 (6): 9-11
    [17]杨振海,罗丽芬,陈开斌.泡沫铝技术的国内外进展[J].轻金属.2004 (6): 3-6
    [18]左孝青,孙加林.泡沫金属制备技术研究进展[J].材料科学与工程学报.2004, 22 (3): 452-456
    [19]陈海红,胡治流,覃秀凤.泡沫铝的液相制备技术研究[J].热加工工艺.2008, 37 (5): 106-110
    [20]许庆彦.多孔泡沫金属的研究现状[J].铸造设备研究.1997, (1): 18-24
    [21]薛微微,王德庆,张进超.静态条件下闭孔泡沫铝气泡形成过程模拟研究[J].大连铁道学院学报.2006, 27 (2): 70-77
    [22]魏莉,李振江,姚广春.泡沫铝发泡过程中气泡的稳定性[J].东北大学学报.2005, 26 (11): 1090-1092
    [23]王录才,于利民,王芳.熔体发泡法制备泡沫金属的发展与展望[J].热加工工艺.2004 (12): 59-62
    [24]何德坪.发展中的新型多孔泡沫金属[J].材料导报.1993, 12 (4): 11-16
    [25]罗洪杰,姚广春,张晓明等.熔体发泡法制备泡沫铝材工艺探讨[J].轻金属.2003 (9): 51-53
    [26]王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(1)[J].轻合金加工技术.1999, 27 (10): 5-8
    [27]王兴明,杨国俊,姚广春.泡沫铝制备工艺的改进及关键问题探讨[J].轻合金加工技术.2006, 34 (2): 46-48
    [28] W. J. Cantwell, P. Compston, G. Reyes, The fracture properties of novel aluminum Foam sandwichstructures, Journal of Materials Science Letters, 2000, 19 (24): 2205-2208
    [29]张钱城,卢天健,何思渊等.闭孔泡沫铝的孔结构控制[J].西安交通大学学报.2007, 41 (3): 255-268
    [30]刘红,解茂昭,王德庆.机械搅拌流场中制备闭孔泡沫铝发泡过程的数值模拟[J].过程工程学报.2007, 7 (1): 34-38
    [31] Wang Deqing, Xue Weiwei, Meng Xiangjun, Shi Ziyuan. Cell Structure and Compressive Behavior of An Aluminum Foam[J]. Journal of Materials Science. 2005, 40 (13): 3475-3480
    [32] Wang Deqing, Shi Ziyuan. Effect of Ceramic Particles on Cell Size and Wall Thickness of Aluminum Foam[J]. Materials Science and Engineering A. 2003, 361 (1): 45-49
    [33] Wang Deqing, Xue Weiwei, Shi Ziyuan. Cell Size Prediction of A Closed Aluminum Foam[J]. Materials Science & Engineering A. 2006, 431 (1): 298-305
    [34]刘红,解茂昭,王德庆等.吹气发泡法制备闭孔泡沫铝发泡过程的三维数值模拟[J].过程工程学报.2007, 7 (5): 889-894
    [35]刘红,解茂昭,韩景东,王德庆.粘性液体中锐孔处气泡的形成[J].热科学与技术.2005, 4 (3): 262-266
    [36]解茂昭,宋会玲,刘红,王德庆.单个气泡在液态金属搅拌流场中运动与变形的数值模拟[J].热科学与技术.2007, 6 (2): 146-151
    [37]孟祥鋆,王德庆,郭昭君等.发泡工艺参数对闭孔泡沫铝胞结构的影响[J].材料热处理学报.2006, 27 (6): 5-9
    [38] Ke Li, Mao-Zhao Xie,Hong Liu. Numerical simulation of bubble size distribution of aluminum foams in liquid state[J]. Materials Science and Technology. 2009, 25 (6): 777-783
    [39]刘红,解茂昭,王德庆等.泡沫铝制备过程气泡生成尺寸的数值模拟研究[J].功能材料(增刊).2009, 40: 232-236
    [40] Gerlach, Alleborn, Buwa. Numerical Simulation of Periodic Bubble Formation at a Submerged Orifice with Constant Gas Flow Rate[J]. Chemical Engineering Science. 2007, 62(2): 2109-2125
    [41] Kim, Kamotani, Ostrach. Modeling bubble and formation in flowing liquid in microgravity[J]. AIChE Journal. 1994, 40(3): 19-28
    [42]宋会玲,解茂昭,刘红,王德庆.气泡在液态金属搅拌流场中运动与变形的影响因素分析[J].工程热物理学报.2008, 29 (12): 2053-2056
    [43] Wang Deqing, Sun Chengxin. Simulation of Aluminum Foam Formation and Distribution Uniformity[J]. J. Mater. Sci. 2008, 43 (8): 2825-2832
    [44] Oak, Kim. Physical modeling of bubble generation in foamed-aluminum[J]. Mater Processing Technology. 2002, 130 (6): 304-309
    [45] Valencia, Cordova, Ortega. Numerical Simulation of Gas Bubbles Formation at a Submerged Orifice in a Liquid[J]. International Communication of Heat Mass Transfer. 2002, 29 (6): 821-830
    [46]吴熙峰,王德庆,刘红.泡沫铝发泡过程的模拟研究[J].大连交通大学学报.2009, 30 (3): 60-65
    [47] Wang Deqing, Meng Xiangjun, Xue Weiwei, Shi Ziyuan, Effect of Processing Parameters on Cell Structure of An Aluminum Foam[J], Materials Science and Engineering A, 2006, 420 (1): 235-239
    [48]刘红,解茂昭,王德庆等.熔体吹气发泡法制备泡沫铝的准三维数值模拟[J].辽宁工程技术大学学报[J].2009, 28 (5): 1-4
    [49]毛德明,冯连芳,许国军等.用LDA研究搅拌釜内的流场[J].高校化学工程学报.1996, 10 (3): 259-264
    [50]赵凤林,李仁超,赵沛等.连铸中间包温度场的水模拟[J].化工冶金.1990, 11 (4): 369-374
    [51]柳绮年,周有预,方治家.塞棒吹气时方坯结晶器中气泡运动的水模拟研究[J].流体力学试验与测量.1997, 11 (2): 37-42
    [52]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002: 100-125
    [53]颜大椿.实验流体力学[M].北京:高等教育出版社,1992: 197-198
    [54]陈之航,曹柏林,赵在三.气液双相流动和传热[M].机械工业出版社,1983: 3-5
    [55]汪志明,崔海清,何光渝.流体力学[M].北京:石油工业出版社,2006: 95-96
    [56]张也影.流体力学[M].北京:高等教育出版社,1998: 213-220
    [57]王松岭.流体力学[M].北京:中国电力出版社,2004: 282-285
    [58]车得福,林宗虎,陈学俊.气泡在液体中形成的试验研究[J].钢铁研究学报.1994, 6 (1): 9-14
    [59]李彦鹏,白博峰.气泡从浸没孔中生成与上升的数值模拟[J].水动力学研究与进展.2006, 21 (5): 660-666
    [60]李沛勇,贾均,陈玉勇.熔剂喷吹处理过程的两种物理模型[J].铸造.1994 (2): 1-8
    [61]魏海鹏,郭凤美,权晓波.水下气体射流数值研究[J].导弹与航天运载技术.2009 (2): 37-47
    [62]范文元,朱春英,马友光.非牛顿流体中单气泡生成的激光影像测量[J].光电子激光.2008, 19 (3): 357-360
    [63] Farlas, Robertson. Injection Phenomena in Extraction and Refining[M]. New York: Butter2worth&Co Ltd, 1982: 1-25
    [64]贺小燕,马汉东,纪楚群.水下气体射流初期数值研究[J].水动力学研究与进展.2004, 19 (2): 207-212
    [65]陈维从,刘浩,刘沛环.钢水微气泡精炼脱氢脱氧的研究[J].钢铁研究学报.1998, 10 (1): 10-14
    [66]蒋海燕,孙宝德,倪红军等.脉冲进气旋转喷吹技术的水利模拟[J].中国有色金属学报.2002, 12 (1): 44-47
    [67]朱兆军,齐守平,王宏伟等.旋转喷头法铝液除气净化技术[J].铸造技术.2001, 12 (6): 5-7
    [68]李铁,袁竹林,蔡杰.静止液体中顶部浸没管口处气泡形成的数值预测[J].东南大学学报.2008, 38 (1): 86-91
    [69]张文平,张天元,刘志刚等.柴油机水下排气口气液两相流动状态研究[J].内燃机工程.1996, 17 (3): 14-18
    [70]解茂昭,韩薇,刘红等.液态金属熔体中气泡运动特性的数值模拟[J].大连理工大学学报.2006, 46 (3): 340-344
    [71]刘双科,徐旭常,邓国强等.高速摄影技术在循环床锅炉出口区域颗粒运动测量中的应用[J].流体力学实验与测量.2001, 15 (3): 62-66
    [72]陈惠钊.粘度标度的最新发展动态[J].现代计量测试.1999 (2): 2-9
    [73]袁亚雄,张小兵.高温高压多相流体动力学基础[M].哈尔滨:哈尔滨工业大学出版社,2005: 139-148
    [74]向凌霄.原铝及其合金的熔炼与铸造[M].北京:冶金工业出版社,2005: 10-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700