用户名: 密码: 验证码:
藏羚羊STAT3、HIF-1α和HIF-2α基因表达的生物学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧平衡状态的维持是需氧生物生存的根本前提。青藏高原环境的低氧独特性深刻影响着生物的分布、种群结构、生存适应和进化模式。藏羚羊(Tibetan antelope,Pantholops hodgsonii)是青藏高原土著动物中最具运动能力和低氧耐受能力的特有珍稀野生物种。该物种常年生活在海拔4300~5500m的高山草原、草甸和高寒荒漠地区,在生理、形态和基因水平上已获得稳定的低氧适应性遗传学特征,也形成了能够在低氧环境中生存的独特低氧适应机制。该机制的建立归结于机体内诸多抗低氧基因的表达水平发生了可调节性改变。在众多的抗低氧基因中,信号转导与转录激活因子3(signal transducer and activator of transcription3, STAT3)、低氧诱导因子-l(hypoxia inducible factor-l,HIF-l)、低氧诱导因子-2(hypoxia induciblefactor-2,HIF-2)是氧信号转导系统的核心转录因子,它们对于调节细胞低氧适应性反应、维持机体氧平衡状态和能量平衡状态起着关键性作用。
     STAT3是整合多种信号通路的关键性信号级联成分,具有信号转导与转录激活的功能。它可调控血管新生、能量代谢、细胞生长、存活与凋亡等途径中多种低氧反应性基因的表达,其中hif-1是STAT3的重要下游靶基因。HIF-1是关键性氧依赖转录激活因子。它通过诱导糖代谢、血管新生、红细胞生成、氧摄取及运输等途径中众多低氧反应性基因的表达,参与细胞内氧平衡状态的调节。HIF-2也是重要的氧依赖转录激活因子。同作为低氧诱导因子(hypoxia inducible factors,HIFs)家族成员,HIF-1和HIF-2均由氧调节亚基α和结构亚基β组成,α亚基是调节HIF-1、HIF-2活性的功能亚单位。HIF-1α、HIF-2α的氨基酸序列有48%的同源性,有很相似的结构域。HIF-1和HIF-2调节的下游靶基因既有重叠又各具特异性。HIF-2作用的靶基因主要涉及骨髓造血、血管生长、血管收缩、能量代谢、儿茶酚胺合成和铁代谢等方面。低氧条件下,HIF-1和HIF-2是以功能互补、协同作用的方式,促进细胞对低氧的适应调节,维持机体的氧平衡状态。可见,STAT3、HIF-1、HIF-2作为氧信号转导系统的重要转录因子,对于调节细胞低氧适应性反应起重要作用。我们推测上述三因子可能在藏羚羊的高原低氧适应机制中也扮演重要角色。但是藏羚羊stat3、hif-1α、hif-2α cDNA的克隆及组织表达特征鲜为报道,这一部分却是藏羚羊低氧适应分子机制研究中的重要内容,故本研究以高海拔藏羚羊和藏系绵羊及低海拔绵羊为材料分析了stat3、hif-1α、hif-2α的组织表达情况和低氧适应性差异,进而揭示藏羚羊在自然生活条件下stat3、hif-1α、hif-2α基因的表达特征及其对该物种生存适应的生理意义。
     本研究以高海拔藏羚羊、藏系绵羊和低海拔绵羊为材料,采用RT-PCR、3′,5′RACE PCR扩增分别获得藏羚羊stat3、hif-1α的cDNA克隆以及hif-2α的部分编码区序列,利用Real-time PCR和Western blot方法分析了藏羚羊、藏系绵羊和低海拔绵羊stat3、hif-1α、hif-2α的mRNA及蛋白的组织表达情况和低氧适应性差异。主要研究结果如下:
     1)序列分析结果显示,(a)藏羚羊stat3基因的cDNA序列为4288bp,包含2312bp的开放阅读框、29bp的5′UTR区和1947bp的3′UTR区。它的编码区序列和预测的氨基酸序列与其它哺乳动物stat3的相似性超过86%,其中与牛相似性最高,达到98%以上。(b)藏羚羊hif-1α基因的cDNA序列为3664bp,包含2471bp的开放阅读框和1191bp的3′UTR区,它的编码区序列和预测的氨基酸序列与其它哺乳动物hif-1α的相似性超过87%,其中与牛相似性最高,达到98%以上。(c)藏羚羊hif-2α基因的部分编码区序列为515bp,它的核苷酸序列与其它哺乳动物hif-2α的相似性为88%~97%左右,其中与牛的HIF-2α序列相似性最高。上述结果表明本实验获得藏羚羊stat3、hif-1α基因的cDNA序列和hif-2α基因的部分编码区序列。
     2) Real-time PCR和Western blot结果显示,(a)无论是mRNA水平还是蛋白水平,藏羚羊stat3、hif-1α、hif-2α在肺、肝、肾、心肌、骨骼肌组织中均有明显表达,且存在表达的组织差异性。与低海拔绵羊相比较,藏羚羊和藏系绵羊STAT3、HIF-1α、HIF-2α的蛋白表达量在上述五种组织中呈明显增高趋势。(b)以低海拔绵羊为对照,藏羚羊、藏系绵羊stat3、hif-1α、hif-2α mRNA的表达变化趋势并不一致。藏羚羊stat3、hif-1α、hif-2α mRNA在上述五种组织中的表达量均高于低海拔绵羊。藏系绵羊stat3、hif-1α、hif-2α mRNA的表达量在五种组织中的变化趋势各具特点,其中骨骼肌组织中各因子的mRNA表达量无明显差异。推测stat3、hif-1α、hif-2α的低氧特异性表达及表达增高可能是藏羚羊和藏系绵羊高原低氧适应能力和遗传学特征的分子基础。而同海拔藏羚羊和藏系绵羊之间所存在的stat3、hif-1α、hif-2α基因的表达差异性,则提示藏羚羊和藏系绵羊的低氧适应机制各不相同,它们依据各自的生存环境建立独特的低氧适应机制,这也进一步揭示藏羚羊,藏系绵羊在高原环境中遵从优胜劣汰、长期进化、适者生存的规律。
The maintaining of oxygen homeostasis is the fundamental precondition ofaerobic organisms’ normal life activities. The hypoxic uniqueness of theQinghai-Tibet Plateau environment has a great impact on the distribution, structure,function, adaptation, and evolutionary patterns of various organisms. Tibetan antelope(Pantholops hodgsonii), is a rare wild species of the Qinghai-Tibet Plateau, whichhas the strongest sports ability and hypoxia resistant ability among aboriginal animalsof the Qinghai-Tibet Plateau. It perennially lives in alpine meadow, prata, alpine-colddesert areas at the altitude of4300~5500m. During long term evolutions, the specieshas already achieved genetic features of hypoxia adaptation in high altitude atphysiology, morphology and gene level, and has already formed unique adaptationmechanisms. The establishment of the adaptation mechanism due to expression levelsof hypoxia-adaptive genes can be adjusted to change. In a large number ofhypoxia-adaptive genes, Signal transduction and activator of transcription factor3(STAT3), Hypoxia inducible factor-1(HIF-1), Hypoxia inducible factor-2(HIF-2) isthe core transcription factors of the oxygen signal transduction system. They play akey role in regulating cell hypoxia adaptive response to maintain body oxygenequilibrium and energy balance status.
     STAT3is the key signaling cascade components which integrate signals ofmultiple signaling pathways, having functions of signal transducing and transcriptioncontrolling. It regulate gene expressions of hypoxia response in various ways, such ascell proliferation, survival and apoptosis, angiogenesis, energy metabolism, whichhif-1is an important downstream target genes of STAT3. As a criticaloxygen-dependent transcriptional activator, HIF-1through the induction of glucosemetabolism, angiogenesis, erythropoiesis, many of hypoxic response gene expressionin oxygen uptake and transport pathway involved in the regulation of the intracellularoxygen equilibrium. HIF-2is also a critical oxygen-dependent transcriptionalactivator. With family members as hypoxia inducible factors (HIFs),HIF-1and HIF-2are compose of the oxygen regulation of subunit alpha and the structure of subunitbeta. Alpha subunit is the regulation of HIF-1and HIF-2activity. HIF-1α, HIF-2α,48%of the amino acid sequence homology, have very similar structural domains.HIF-1and HIF-2regulation of downstream target genes both overlap and each withspecificity. HIF-2target genes that mainly involves the bone marrow, blood vessel growth, vascular contraction, energy metabolism, catecholamine synthesis and ironmetabolism. Under hypoxic conditions, HIF-1and HIF-2are in a functioncomplementary, synergistic manner that promote cell adaptation to hypoxia regulateand maintain the body′s oxygen equilibrium. In summary, as important transcriptionfactors of the oxygen signal transduction system, STAT3, HIF-1and HIF-2play animportant role in the regulation of cell hypoxia adaptive responses. We speculate thatSTAT3, HIF-1and HIF-2plays a very important role in Tibetan antelopes′adaptionmechanisms to hypoxia. But there are few reports on the cloning and tissue expressioncharacters of stat3,hif-1α and hif-2α cDNA, which are the important content of theresearch on the hypoxia adaption molecular mechanism of Tibetan antelope. So thisresearch analyzed the differences of the tissue expression and hypoxia adaption ofstat3,hif-1α and hif-2α, with Tibetan antelope, Tibetan sheep and sheep asmaterials, further uncovered the meaning of these genes expression character in natureand the physiological significance of stat3,hif-1α and hif-2α for Tibetan antelope tosurvive.
     In this study, the cloning of stat3,hif-1α and hif-2α gene cDNA of Tibetanantelope, using RT-PCR and RACE, was applied, as well as the comparative analysisof the tissue-specific expressions of stat3,hif-1α and hif-2α among Tibetan antelope,Tibetan sheep and sheep(Ovis aries), using Real-time PCR and Western blot.Themain achievement of this study is listed as follows:
     1)Sequence analysis revealed that (a)The full-length Tibetan antelope stat3cDNA,which cloned by gene sequence analysis, is4288bp, comprising a2312bp openreading frame (ORF), a29bp5′UTR and a1947bp3′UTR. The similarity between itscoding sequence, predicted amino acid sequence and stat3of other mammalsexceeded86%, in which the similarity with cow was up to more than98%.(b)ThecDNA sequences acquired by cloning from the hif-1α gene of Tibetan antelopecomprised a2471bp ORF and a1911bp3′UTR. The similarity between its codingsequence, predicted amino acid sequence and hif-1α of other mammals exceeded87%,in which the similarity with cow was up to more than98%.(c)Partial coding regionsequence of Tibetan antelope′s hif-2α gene is515bp. Similarity between its codingsequence and hif-2α of other mammals is about88%~97%, in which the similaritywith cow is the highest. The results indicate that cDNA sequences of Tibetanantelope′s stat3and hif-1α and partial coding region sequence of Tibetan antelope′shif-2α gene were obtained.
     2)Real-time PCR and Western blot analysis revealed that (a)Both the mRNA level orprotein level, stat3,hif-1α and hif-2α of Tibetan antelope′s were significantlyexpressed in the lung, liver, kidney, cardiac muscle, skeletal muscle tissue and thereare organizational differences in expression. The compare of the same tissues amongthe three kind of animals shows that the expression of STAT3, HIF-1α and HIF-2αprotein in the five tissues of Tibetan antelope and Tibetan sheep are all more than thatof sheep.(b)Sheep as control, there were not consistent between the expression ofstat3, hif-1α and hif-2α mRNA in the five tissues of Tibetan antelope and them ofTibetan sheep.The expression of stat3,hif-1α and hif-2α mRNA in the five tissues ofTibetan antelope are all more than that of sheep. However, there were variouscharacteristics about the expression of stat3,hif-1α and hif-2α mRNA in the fivetissues of Tibetan sheep, in which expression of these factors′mRNA was nosignificant difference in skeletal muscle. We speculated that the tissue specificexpression and higher expression of stat3,hif-1α and hif-2α is molecular basis ofTibetan antelope and Tibetan sheep′s adaptability and genetic features. The expressionof stat3,hif-1α and hif-2α gene differences between Tibetan antelope and Tibetansheep, although they live in the same altitude. It indicates Tibetan antelope andTibetan sheep establish their own unique hypoxia adaptation mechanisms based ontheir living environment. It further announced that Tibetan antelope and Tibetan sheepcomply with the laws of optimizing, long-term evolution and survival of the fittest inthe highland environment.
引文
[1]Hockel M,Vaupel P. Tumor hypoxia:definitions and current clinical,biologic,andmolecular aspects[J]. J Natl Cancer Inst,2001,93(4):266-276.
    [2]Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation tohigh-altitude hypoxia in vertebrates[J]. J Exp Biol,2010,213(Pt24):4125-4136.
    [3]蔡全林.西藏绵羊、山羊、黄牛、牦牛生理指标测定[J].中国兽医杂志,1980,2:44-46.
    [4]Beall C M, Decker M J, Brittenham G M, et al. An ethiopian pattern of humanadaptation to high altitude hypoxia[J]. Proc Natl Acad Sci USA,2002,99(26):17215-17218.
    [5]Heath D, Edwards C. The pulmonary arteries of the yak[J]. Cardio Res,1984,8(3):133-139.
    [6]Ge RK, Kubo T, Kobayashi T, et al. Blunted hypoxic pulmonary vasoconstrictiveresponse in the rodent Ochotona curzoniae (pika) at high altitude[J]. Am J PhysiolHeart Circ Physiol,1998,274(5Pt2):H1792-H1799.
    [7]Avivi A, Resnick M B, Nevo E, et al. Adaptive hypoxic tolerance in thesubterranean mole rat Spalax ehrenbergi: the role of vascular endothelial growthfactor[J]. FEBS Lett,1999,452(3):133-140.
    [8]Ge RL, Chen QH, Wang LH, et al. High exercise performance and lower VO2maxin Tibetan than Han residents at4700m altitude[J]. J Appl Physiol,1994,77(2):684-691.
    [9]Storz JF, Sabatino SJ, Hoffmann FG, et al. The molecular basis of high altitudeadaptation in deer mice[J]. PLOS Genetics,2007,3(3):448-459.
    [10]Xu SQ, Yang YZ, Zhou J, et al. A mitochondrial genome sequence of the Tibetanantelope (Pantholops hodgsonii)[J]. Genomics Proteomics Bioinformatics,2005,3(1):5-17.
    [11]Yang YZ, Droma YD, Jin GE, et al. Molecular cloning of hemoglobin alpha-chaingene from pantholops hodgsonii, a hypoxic tolerance species[J]. Biochem Mol Biol,2007,40(3):426-431.
    [12]Zhang XF, Yang YZ, Pei ZW, et al. Comparisons of endocrine hormones levelsbetween Tibetan antelope and Tibetan sheep[J]. Sheng Li Xue Bao,2011,63(4):342-346.[Article in Chinese]
    [13]Chang R, Ma Y, Bai ZZ, et al. Improved cardiac characteristics in TibetanAntelope during adaptation to high altitude[J]. American Journal of VeterinaryResearch (In press).
    [14]Fu XY, Schindler C, Improta T, et al. The proteins of ISGF23, the interferonalpha-induced transcriptional activator, define a gene family involved in signaltransduction[J]. Proc Nat Acad Sci USA,1992,89(16):7840-7843.
    [15]Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges[J]. Gene,2002,285(1-2):1-24.
    [16]Vinkemeier U, Cohen SL, Moarefi I, et al. DNA binding of in vitro activatedStat1alpha, Stat1beta and truncated Stat1: interaction between NH2-terminaldomains stabilizes binding of two dimers to tandem DNA sites[J]. EMBO J,1996,15(20):5616-5626.
    [17]Strehlow I, Schindler C. Amino-terminal signal transducer and activator oftranscription (STAT) domains regulate nuclear translocation and STAT deactivation[J]. J Biol Chem,1998,273(43):28049-18056.
    [18]Begitt A, Meyer T, van Rossum M, et al. Nucleocytoplasmic translocation ofStat1is regulated by a leucine-rich export signal in the coiled-coil domain[J]. ProcNatl Acad Sci U S A,2000,97(19):10418-10423.
    [19]Zhang T, Kee WH, Seow KT, et al. The coiled-coil domain of Stat3is essential forits SH2domain-mediated receptor binding and subsequent activation induced byepidermal growth factor and interleukin-6[J]. Mol Cell Biol,2000,20(19):7132-7139.
    [20]Chen X, Vinkemeier U, Zhao Y, et al. Crystal structure of a tyrosinephosphorylated STAT-1dimer bound to DNA[J]. Cell,1998,93(5):827-839.
    [21]ChenZ, Han ZC. STAT3: a critical transcription activator in angiogenesis[J]. MedRes Rev,2008,28(2):185-200.
    [22]Leeman RJ, Lui VW, Grandis JR. STAT3as a therapeutic target in head and neckcancer[J]. Expert Opin Biol Ther,2006,6(3):231-241.
    [23]Leinninger GM, Jr Myers MG. LRb signals act within a distributed network ofleptin-responsive neurones to mediate leptin action[J]. Acta Physiol (Oxf),2008,192(1):49-59.
    [24]Gong W, Wang L, Yao JC, et al. Expression of activated signal transducer andactivator of transcription3prediets expression of vascular endothelial growth factor inand angiogenic phenotype of human gastrie cancer[J]. Clin Cancer Res,2005,11(4):1386-1393.
    [25]Wegrzyn J, Potla R, Chwae YJ, et al. Function of mitochondrial Stat3in cellularrespiration[J]. Science,2009,323(5915):793-797.
    [26]Okamatsu-Ogura Y, Nio-Kobayashi J, Iwanaga T, et al. Possible involvement ofuncoupling protein1in appetite control by leptin[J]. Exp Biol Med (Maywood),2011,236(11):1274-1281.
    [27]Lu Y, Zhou J, Xu C, et al. JAK/STAT and PI3K/AKT pathways form a mutualtransactivation loop and afford resistance to oxidative stress-induced apoptosis incardiomyocytes[J]. Cell Physiol Biochem,2008,21(4):305-314.
    [28]Haghikia A, Stapel B, Hoch M, et al. STAT3and cardiac remodeling[J]. HeartFail Rev,2011,16(1):35-47.
    [29]Gu Q, Kong Y, Yu ZB, et al. Hypoxia-induced SOCS3is limiting STAT3phosphorylation and NF-κB activation in congenital heart disease[J]. Biochimie,2011,93(5):909-920.
    [30]Jung-Hyun M, Yang HF, Ivan M, et al. Structure of an HIF-1α–pVHL Complex:Hydroxyproline Recognition in Signaling[J]. Science,2002,296(5574):1886-1889.
    [31]Kirsty SH, Christopher JS. The HIF pathway as a therapeutic target[J]. DDT,2004,9(16):704-711.
    [32]Semenza GL. HIF-l: mediator of physiological and pathophysiological responsesto hypoxia[J]. J Appl Physiol,2000,88(4):1474-1480.
    [33]张彩彩,朱依纯.低氧诱导因子-1功能调节及其机制[J].生理通讯,2008,27(2):43-46.
    [34]Semenza GL. HIF-1and tumor progression: pathophysiology and therapeuties[J].Trends Mol Med,2002,8(4Suppl):S62-S67.
    [35]Martin-Puig S, Temes E, Olmos G, et al. Role of Iron (II)-2-Oxoglutarate-Dependent Dioxygenases in the Generation of Hypoxia-induced Phosphatidic Acidthrough HIF-1/2and von Hippel-Lindau-independent Mechanisms[J]. J Biol Chem,2004,279(10):9504-9511.
    [36]Elvert G, Kappel A, Heidenreich R, et al. Cooperative Interaction ofHypoxia-inducible Factor-2alpha (HIF-2alpha) and Ets-1in the TranscriptionalActivation of Vascular Endothelial Growth Factor Receptor-2(Flk-1)[J]. J Biol Chem,2003,278(9):7520-7530.
    [37]Hu CJ, Wang LY, Chodosh LA, et al. Differential Roles of Hypoxia-InducibleFactor1{alpha}(HIF-1{alpha}) and HIF-2{alpha} in Hypoxic Gene Regulation[J].Mol Cell Biol,2003,23(24):9361-9374.
    [38]Patel SA, Simon MC. Biology of hypoxia-inducible factor-2α in development anddisease[J]. Cell Death Differ,2008,15(4):628-634.
    [39]Loboda A, Jozkowicz A, Dulak J. HIF-1and HIF-2transcription factors--similarbut not identical[J]. Mol Cell,2010,29(5):435-442.
    [40]马玲,金玉楠,于艳秋.缺氧诱导因子新进展[J].解剖科学进展,2009,15(2):237-241.
    [41]Depping R, Steinhoff A, SehindlerS G, et al. Nuclear translocation of hypoxia-inducible factors(HIFs): involvement of the classical importin alpha/beta Pathway[J].Biochim Biophys Acta,2008,1783(3):394-404.
    [42]Chin BY, Jiang G, Wegiel B, et al. Hypoxia-inducible factor1alpha stabilizationby carbon monoxide results in cytoprotective preconditioning[J]. Proc Natl Acad SciU S A,2007,104(12):5109-5114.
    [43]Shi LB, Huang JH, Han BS. Hypoxia inducible factor-1alpha mediates protectiveeffects of ischemic preconditioning on ECV-304endothelial cells[J]. World JGastroenterol,2007,13(16):2369-2373.
    [44]Riddle RC, Khatri R, Schipani E,et al. Role of hypoxia-inducible factor-1alpha inangiogenic-osteogenic coupling[J]. Mol Med,2009,87(6):583-590.
    [45]Shi H. Hypoxia inducible factor1as a therapeutic target in ischemic stroke[J].Curr Med Chem,2009,16(34):4593-4600.
    [46]Marin-Hernandez A, Gallardo-Perez JC, et al. HIF-1alpha modulates energymetabolism in cancer cells by inducing over-expression of specific glycolyticisoforms[J]. Mini Rev Med Chem,2009,9(9):1084-1101.
    [47]Fraga A, Ribeiro R, Medeiros R. Tumor hypoxia: the role of HIF[J]. Actas UrolEsp,2009,33(9):941-951.
    [48]Papandreou I, Cairns RA, Fontana L, et al. HIF-1mediates adaptation to hypoxiaby actively downregulating mitochondrial oxygen consumption[J]. Cell Metab,2006,3(3):187-197.
    [49]Adams JM, Difazio Lhypoxia T, Rolandelli RH, et al. HIF-1: a key mediator inhypoxia[J]. Acta Physiol Hung,2009,96(1):19–28.
    [50]Beall CM. ADAPTATIONS TO ALTITUDE: A Current Assessment [J]. AnnualReview of Anthropology,2001,30(l):423-456.
    [51]Wiesener MS, Turley H, Allen WE, et al. Induction of endothelial PAS domainprotein-1by hypoxia:characterization and comparison with hypoxia-inducible factor-lalPha[J]. Blood,1998,92(7):2260-2268.
    [52] Lisy K, Peet DJ. Turn me on: regulating HIF transcriptional activity[J]. CellDeath Differ,2008,15(4):642-649.
    [53]杨盛力,张万广,陈孝平等.缺氧诱导因子-1与缺氧诱导因子-2同肿瘤关系的比较[J].肝胆外科杂志,2007,15(6):471-474.
    [54]Flamme I, Frohlich T, Reutern M, et al. HRF, a putative basic helix–loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1alphaand developmentally expressed in blood vessels[J]. Mech Dev,1997,63(1):51-60.
    [55]Hu CJ, Sataur A, Wang L, et al. The N-terminal transactivation domain conferstarget gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α[J]. Mol BiolCell,2007,18(11):4528-4542.
    [56]Ema M, Taya S, Yokotani N, et al. A novel bHLH-PAS factor with close sequencesimilarity to hypoxia-inducible factor1regulates the VEGF expression and ispotentially involved in lung and vascular development Sogawa[J]. Proc Natl Acad Sci,1997,94(9):4273-4278.
    [57]Tian H, McKnight SL, Russell D W. Endothelial PAS domain protein1(EPAS1),a transcription factor selectively expressed in endothelial cells[J]. Genes Dev,1997,11(9):72-82.
    [58]Rosenberger C, Mandriota S, Jurgenses JS, et al. Expression of hypoxia-induciblefactor-1alpha and-2alpha in hypoxic and ischemic rat kidneys[J]. J Am Soc Nephrol,2002,13(7):1974–1976.
    [59]Wiesener MS, Jurgensen JS, Rosenberger C, et al. Widespread hypoxia-inducibleexpression of HIF-2alpha in distinct cell populations of different organs[J]. FASEB J,2003,17(2):271-273.
    [60]Hu CJ, Wang LY, Chodosh LA, et al. Differential roles of hypoxia-induciblefactor1α (HIF-1α) and HIF-2α in hypoxic gene regulation[J]. Mol Cell Biol,2003,23(24):9361-9374.
    [61]赵小祺,王春光.缺氧诱导因子-1研究进展[J].河北北方学院学报:医学版,2009,26(5):73-75.
    [62]Mole DR, Blancher C, Copley RR, et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expressionprofiling of hypoxia-inducible transcripts[J]. J Biol Chem,2009,284(25):16767-16775.
    [63]Filby CE, Hooper SB, Wallace MJ. Partial pulmonary embolization disruptsalveolarization in fetal sheep[J]. Respir Res,2010,11:42.
    [64]Livak K J and Schmittgen T D. Analysis of relative gene expression data usingReal-time quantitative PCR and the2(-Delta Delta C(T)) method[J]. Methods,2001,25(4):402-408.
    [65]G.B.Sehaller. Wildlife of the Tibetan Steppe. University of Chicago Press,1998,Chicago.
    [66]Akira S, NishioY, Inoue M, et al. Molecular cloning of APRF, a novelIFN-stimulated gene factor3p91-related transcription factor involved in thegP130-mediated signaling pathway[J]. Cell,1994,77(1):63-71.
    [67]Xu Q, Briggs J, Park S, et al. Targeting Stat3blocks both HIF-1and VEGFexpression induced by multiple oncogenic growth signaling pathways[J]. Oneogene,2005,24(36):5552-5560.
    [68]Niu G, Briggs J, Deng J, et al. Signal transducer and activator of transcription3isrequired for hypoxia-inducible factor-1alpha RNA expression in both tumor cells andtumor-associated myeloid cells[J]. Mol Cancer Res,2008,6(7):1099-1105.
    [69] Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor1[J].Physiology,2009,24:97-106.
    [70]Gray MJ, Zhang J, Ellis LM, et al. HIF-l alpha, STAT3, CBP/P300and Ref-1/APE are components of a transcriptional complex that regulates Src-dependenthypoxia-induced expression of VEGF in pancreatic and prostate carcinomas[J].Oncogene,2005,24(19):3110-3120.
    [71]Boengler K. Isehemia/reperfusion injury:The benefit of having stat3in theheart[J]. J Mol Cell Cardiol,2011,4(50):587-588.
    [72]Alten JA, Moran A, Tsimelzon AI, et al. Prevention of hypovolemic circulatoryeollapse by i1-6activated stat3[J]. PLoS One,2008,2(3):605.
    [73]Barry SP, Townsend PA, McCormick J, et al. Stat3deletion sensitizes cells tooxidative stress[J]. Biochem Biophys Res Commun,2009,3(385):324-329.
    [74]Yamauchi-Takihara K, Kishimoto T. A novel role for STAT3in cardiacremodeling[J]. Trends Cardiovasc Med,2000,10(7):298-303.
    [75]Stephanou A,Latchman DS. Transcriptional regulation of the heat shock proteingenes by STAT family transcription factors[J]. Gene Expr,1999,7(4-6):311-319.
    [76]Semenza GL. Oxygen homeostasis[J]. Wiley Interdiscip Rev Syst Biol Med,2010,2(3):336-361.
    [77]Hirota K, Semenza GL. Regulation of hypoxia-inducible factor1by prolyl andasparaginyl hydroxylases[J]. Biochem Biophys Res Commun,2005,338(1):610-616.
    [78]Zagórska A, Dulak J. HIF-1: the knowns and unknowns of hypoxia sensing[J].Acta Biochim Pol,2004,51(3):563-585.
    [79]Groulx I, Lee S. Oxygen-dependent ubiquitination and degradation ofhypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the vonHippel-Lindau tumor suppressor protein[J]. Mol Cell Biol,2002,22(15):5319-5336.
    [80]Mazure NM, Brahimi-Horn MC, Berta MA, et al. HIF-1: master and commanderof the hypoxic world. A pharmacological approach to its regulation by siRNAs[J].Biochem Pharmacol,2004,68(6):971-980.
    [81]Ema M, Hirota K, Mimura J, et al. Molecular mechanisms of transcriptionactivation by HLF and HIF1alpha in response to hypoxia: Their stabilization andredox signal-induced interaction with CBP/p300[J]. EMBO J,1999,18(7):1905-1914.
    [82]Wang CF, Wu CX, Li N. Differential gene expression of hypoxia induciblefactor-1α and hypoxic adaptation in chicken[J]. Hereditas,2007,29(1):75-80(Chinese,English abstract).
    [83]Zhao TB, Zhao XQ, Chang Z,et al. Tissue specific expression of plateau pikas(Ochotona curzoniae) HIF-1α mRNA under normal oxygen[J]. Zool Res,2004,25(2):132-136(Chinese, English abstract).
    [84]Zhao TB, Ning HX, Zhu SS, et al. Cloning of hypoxia inducible factor1α(HIF-1α) cDNA from a high hypoxia tolerant mammal-plateau pika (Ochotonacurzonize)[J]. Biochem Biphys Res Commun,2004,316(2):565-572.
    [85]Dolt KS, Mishra MK, Karar J, et al. cDNA cloning, gene organization and variantspecific expression of HIF-1alpha in high altitude yak (Bos grunniens)[J]. Gene,2007,386(1–2):73-80.
    [86]Wang DP, Li HG, Li YJ, et al. Hypoxia-inducible factor1alpha cDNA cloningand its mRNA and protein tissue specific expression in domestic yak (Bos grunniens)from Qinghai-Tibetan plateau[J]. Biochem Biophys Res Commun,2006,348(1):310-319.
    [87]Li HG, Ren YM, Guo SC, et al. The protein level of hypoxia-induciblefactor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting highaltitudes[J]. J Exp Zool A Ecol Genet Physiol,2009,311(2):134-141.
    [88]Koistinen PO, Rusko H, Irjala K, et al. EPO, red cells and serum transferringreceptor in continuous and intermittent hypoxia[J]. Med Sci Sports Exerc,2000,32(4):800-804.
    [89]Mastrogiannaki M, Matak P, Keith B, et al. HIF-2a, but not HIF-1a, promotes ironabsorption in mice[J]. J Clin Invest,2009,119(5):1159-1166.
    [90]Yamashita T, Ohneda O, Sakiyama A, et a1. The microenvironment forerythropoiesis is regulated by HIF-2alpha through VCAM-1in endothelial cells[J].Blood,2008,112(4):1482-1492.
    [91]Bougatef F, Menashi S, Khayati F, et al. EMMPRIN promotes melanoma cellsmalignant properties through a HIF-2alpha mediated up regulation of VEGF receptor-2[J]. PLoS One,2010,5(8):e12265.
    [92]Giatromanolaki A, Bai M, Margaritis D, et al. Hypoxia and activatedVEGF/receptor pathway in multiple myeloma[J]. Anticancer Res,2010,30(7):2831-2836.
    [93]Akeno N, Czyzyk-Krzeska MF, Gross T S, et al.Hypoxia induces vascularendothelial growth factor gene transcription in human osteoblast-like cells through thehypoxia-inducible Factor-2alpha[J]. Endocrinology,2001,142(2):959-962.
    [94]Rajatapiti P, de Rooij JD, Beurskens LW, et al. Effect of oxygen on the expressionof hypoxia-inducible factors in human fetal lung explants[J]. Neonatology,2010,97(4):346-354.
    [95]Grek CL, Newton DA, Spyropoulos DD, et al. Hypoxia up-regulates expressionof hemoglobin in alveolar epithelial cells[J]. Am J Respir Cell Mol Biol,2011,44(4):439-447.
    [96]Rankin EB, Rha J, Selak MA, et al. Hypoxia-inducible factor2regulates hepaticlipid metabolism[J]. Mol Cell Biol,2009,29(16):4527-4538.
    [97]Mazzeo RS, Reeves JT. Adrenergic contribution during acclimatization to highaltitude:perspectives from Pikes Peak[J]. Exerc Sport Sci Rev,2003,31(l):13-18.
    [98]RuPert JL, Monsalve MV, Devine DV, et al. Beta2-adrenergic receptor allelefrequencies in the Quechua, a high altitude native population [J]. Ann Hum Genet,2000,64(Pt2):135-143.
    [99] Saini Y, Harkema JR, LaPres JJ. HIF1alpha is essential for mnormal intrauterinedifferentiation of alveolar epithelium and surfactant production in the newborn lung ofmice[J]. J Biol Chem,2008,283(48):33650–33657.
    [1]Darnell JE Jr. STATs and gene regulation[J]. Science,1997,277(5332):1630-1635.
    [2]Levy DE, Darnell JE Jr. Stats: Transcriptional control and biological impact[J]. NatRev Mol Cell Biol,2002,3(9):651-662.
    [3]Calo V, Migliavacca M, Bazan V, et al. STAT proteins: From normal control ofcellular events to tumorigenesis[J]. J Cell Physiol,2003,197(2):157-168.
    [4]Yu H, Jove R. The STATs of cancer—Newmolecular targets come of age[J]. NatRev Cancer,2004,4(2):97-105.
    [5]Valdembri D, Serini G, Vacca A, et al. In vivo activation of JAK2/STAT-3pathwayduring angiogenesis induced by GM-CSF[J]. FASEB J,2002,16(2):225-227.
    [6]Osugi T, Oshima Y, Fujio Y,et al. Cardiac-specific activation of signal transducerand activator of transcription3promotes vascular formation in the heart[J]. J BiolChem,2002,277(8):6676–6681.
    [7]Niu G, Wright KL, Huang M, et al. Constitutive Stat3activity up-regulates VEGFexpression and tumor angiogenesis[J]. Oncogene,2002,21(13):2000-2008.
    [8]Wei D, Le X, Zheng L, et al. Stat3activation regulates the expression of vascularendothelial growth factor and human pancreatic cancer angiogenesis and metastasis[J].Oncogene,2003,22(3):319-329.
    [9]Folkman J. Fundamental concepts of the angiogenic process[J]. Curr Mol Med,2003,3(7):643-651.
    [10]Sivakumar B, Harry LE, Paleolog EM. Modulating angiogenesis: Morevs less[J].JAMA,2004,292(8):972-977.
    [11]Distler JH, Hirth A, Kurowska-Stolarska M, et al. Angiogenic and angiostaticfactors in the molecular control of angiogenesis[J]. Q J Nucl Med,2003,47(3):149-161.
    [12]Simons M. Integrative signaling in angiogenesis[J]. Mol Cell Biochem,2004,264(1-2):99-102.
    [13]Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor andangiogenesis[J]. Pharmacol Rev,2004,56(4):549-580.
    [14]Xie TX, Wei D, Liu M,et al. Stat3activation regulates the expression of matrixmetalloproteinase-2and tumor invasion and metastasis[J]. Oncogene,2004,23(20):3550-3560.
    [15]Xie TX, Huang FJ, Aldape KD,et al. Activation of stat3in human melanomapromotes brain metastasis[J]. Cancer Res,2006,66(6):3188-3196.
    [16]Niu G, Wright KL, Huang M, et al. Constitutive Stat3activity up-regulates VEGFexpression and tumor angiogenesis[J]. Oncogene,2002,21(13):2000-2008.
    [17]Wei D, Le X, Zheng L, et a1. STAT3activation regulates the expression ofvascular endothelial growth factor and human pancreatic cancer angiogenesis andmetastasis[J]. Oncogene,2003,22(3):319-329.
    [18]Xu Q, Briggs J, Park S, et al. Targeting Stat3blocks both HIF-1and VEGFexpression induced by multiple oncogenic growth signaling pathways[J]. Oncogene,2005,24(36):5552-5560.
    [19]Jung JE, Lee HG, Cho IH, et a1. STAT3is a potential modulator ofHIF-l-mediated VEGF expression in human renal carcinoma cells[J]. FASEB J,2005,19(10):1296-1298.
    [20]Gray MJ, Zhang J, Ellis LM, et a1. HIF-l alpha,STAT3,CBP/p300and Ref-1/APEare components of a transcriptional complex that regulates Src-dependenthypoxia-induced expression of VEGF in pancreatic and prostate carcinomas[J].Oncogene,2005,24(19):3110-3120.
    [21]Wang FF, Chen HZ, Xie X, et a1. Phosphorylation of Stat3induced by vascularendot-helial growth factor in ovarian carcinoma cell line in vitro[J]. Zhong hua FuChan Ke Za Zhi,2004,39(6):385-389.
    [22]Xie TX, Huang FJ, Aldape KD, et al. Activation of Stat3in human melanomapromotes brain metastasis[J]. Cancer Res,2006,66(6):3188-3196.
    [23]Deo DD, Axelrad TW, Robert EG, et al. Phosphorylation of STAT-3in response tobasic fibroblast growth factor occurs through a mechanism involving platelet-activating factor, JAK-2, and Src in human umbilical vein endothelial cells. Evidencefor a dual kinase mechanism[J]. J Biol Chem,2002,277(24):21237-21245.
    [24]Bartoli M, Platt D, Lemtalsi T, et al. VEGF differentially activates STAT3inmicro-vascular endothelial cells[J]. FASEB J,2003,17(11):1562-1564.
    [25]Schaefer LK, Ren Z, Fuller GN, et al. Constitutive activation of Stat3alpha inbrain tumors: localization to tumor endothelial cells and activation by the endothelialtyrosine kinase receptor (VEGFR-2)[J]. Oncogene,2002,21(13):2058-2065.
    [26]Fukuda R, Hirota K, Fan F,Jung YD, et al.Insulin-like growth factor1induceshypoxia-inducible factor1-mediated vascular endothelial growth factor expression,which is dependent on MAPkinase and phosphatidylinositol3-kinase signaling incolon cancer cells[J]. JbiolChem,2002,277(41):38205-38211.
    [27]Wei LH, Kuo ML, Chen CA, et al.Interleukin-6promotes cervical tumor growthby VEGF-dependent angiogenesis via a STAT3pathway[J]. Oncogene,2003,22(10):1517-1527.
    [28]Suganami E, Takagi H, Ohashi H, et al.Leptin stimulates ischemia-induced retinalneovascularization:Possible role of vascular endothelial growth factor expressed inretinal endothelial cells[J]. Diabetes,2004,53(9):2443-2448.
    [29]Tomida M, Saito T.The human hepatocyte growth factor (HGF) gene istranscriptionally activated by leukemia inhibitory factor through the Stat bindingelement[J]. Oncogene,2004,23(3):679-686.
    [30]Heinrich PC, Behrmann I, Haan S, et al.Principles of interleukin (IL)-6-typecytokine signalling and its regulation[J]. Bio chem J,2003,374(Pt1):1-20.
    [31]Jee SH, Chu CY, Chiu HC, et al. Interleukin-6induced basic fibroblast growthfactor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3andPI3-kinase/Akt pathways[J]. J invest Dermatol,2004,123(6):1169-1175.
    [32]Loeffler S, Fayard B, Weis J, et al. Interleukin-6induces transcriptional activationof vascular endothelial growth factor (VEGF) in astrocytes invivo and regulatesVEGF promoter activity in glioblastoma cells via direct interaction between STAT3and Sp1[J]. Int J Cancer,2005,115(2):202-213.
    [33]Huang SP, Wu MS, Shun CT, et al.Interleukin-6increases vascular endothelialgrowth factor and angiogenesis in gastric carcinoma[J]. J Biomed Sci,2004,11(4):517-527.
    [34]Adachi Y, Aoki C, Yoshio-Hoshino N, et al.Interleukin-6induces both cell growthand VEGF production in malignant mesotheliomas[J]. Int J Cancer,2006,119(6):1303-1311.
    [35] Fee D, Grzybicki D, Dobbs M, et al.Interleukin6promotes vasculogenesis ofmurine brain microvessel endothelial cells[J]. Cytokine,2002,12(6):655-665.
    [36] Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascularendothelial growth factor paracrine pathway is required to maintain cardiacfunction[J]. Proc Natl Acad Sci USA,2001,98(10):5780-5785.
    [37] Fukuda S, Kaga S, Sasaki H, et al. Angiogenic signal triggered by ischemic stressinduces myocardial repair in rat during chronic infarction[J]. J Mol Cell Cardiol,2004,36(4):547-559.
    [38] Hilfker-Kleiner D, Hilfker A, Fuchs M, et al.Signal transducer and activator ofranscription3is required for myocardial capillary growth, control of interstitial matrixdeposition,and heart protection from ischemic injury[J]. Circ Res,2004,95(2):187-195.
    [39]Inoki I, Shiomi T, Hashimoto G, et al. Connective tissue growth factor bindsvascular endothelial growth factor (VEGF) and inhibits VEGF-inducedangiogenesis[J].FASEB J,2002,16(2):219-221.
    [40]Rodriguez-Manzaneque JC, Lane TF, Ortega MA, et al.Thrombospondin-1suppresses spontaneous tumor growth and inhibits activation of matrixmetalloproteinase-9and mobilization of vascular endothelial growth factor[J]. ProcNatl Acad Sci USA,2001,98(22):12485-12490.
    [41]Volpert OV, Zaichuk T, Zhou W, et al. Inducer-stimulated Fas targets activatedendothelium for destruction by anti-angiogenic thrombospondin-1andpigmentepithelium-derived factor[J]. Nat Med,2002,8(4):349-357.
    [42]Edelberg JM, Reed MJ.Aging and angiogenesis[J]. Front Biosci,2003,8:s1199-s1209.
    [43]Coughlin CM, Salhany KE, Gee MS, et al.Tumor cell responses to IFN gammaaffect tumorigenicity and response to IL-12therapy and antiangiogenesis[J].Immunity,1998,9(1):25-34.
    [44]Dong Z, Greene G, Pettaway C,et al.Suppression of angiogenesis, tumorigenicity,and metastasis by human prostate cancer cells engineered to produceinterferon-beta[J]. Cancer Res,1999,59(4):872-879.
    [45]Burdelya L, Kujawski M, Niu G, et al. Stat3activity in melanoma cells affectsmigration of mmune effector cells and nitricoxide-mediated antitumor effects[J]. JImmunol,2005,174(7):3925-3931.
    [46]Mohri T, Fujio Y, Maeda M, et al. Leukemia inhibitory factor induces endothelialdifferentiation in cardiac stem cells[J]. J Biol Chem,2006,281(10):6442-6447.
    [47]Zhang SS, Wei JY, Li C,et al. Expression and activation of STAT proteins duringmouse retina development[J]. Exp Eye Res,2003,76(4):421-431.
    [48]Mechoulam H, Pierce EA. Expression and activation of STAT3inischemia-induced retinopathy[J].Invest Ophthalmol Vis Sci,2005,46(12):4409-4416.
    [49]Justicia C, Gabriel C, Planas AM. Activation of the JAK/STAT pathway followingtransient focal cerebral ischemia: Signaling through Jak1and Stat3in astrocytes[J].Glia,2000,30(3):253-270.
    [50]Suzuki S, TanakaK, Nogawa S, et al. Phosphorylation of signal transducer andactivator of transcription-3(Stat3) after focal cerebral ischemia in rats[J].Exp Neurol,2001,170(1):63-71.
    [51] Lee ST, Chu K, Jung KH, et al. Granulocyte colony-stimulating factor enhancesAngiogenesis after focal cerebral ischemia[J]. Brain Res,2005,1058(1-2):120-128.
    [52] Jung KH, Chu K, Lee ST, et al. Granulocyte colony-stimulating factor stimulatesneurogenesis via vascular endothelial growth factor with STAT activation[J]. BrainRes,2006,1073-1074:190-201.
    [53]Tischer E, Mitchell R, Hartman T, et al.The human gene for vascular endothelialgrowth factor. Multiple protein forms are encoded through alternative exon splicing[J].J Biol Chem,1991,266(18):11947-11954.
    [54]Forsythe JA, Jiang BH, Iyer NV, et al.Activation of vascular endothelial growthfactor gene transcription by Hypoxia-inducible factor1[J]. Mol Cell Biol,1996,16(9):4604-4613.
    [55]Mueller MD, Vigne JL, Minchenko A, et al. Regulation of vascular endothelialgrowth factor (VEGF) gene transcription by estrogen receptors alpha and beta[J]. ProcNatl Acad Sci USA,2000,97(20):10972-10977.
    [56]Semenza GL. Targeting HIF-1for cancer therapy[J]. Nat Rev Cancer,2003,3(10):721-732.
    [57]Finkenzeller G, Sparacio A, Technau A, et al. Sp1recognition sites in theproximal promoter of the human vascular endothelial growth factor gene are essentialfor platelet-derived growth factor-induced gene expression[J]. Oncogene,1997,15:(6)669-676.
    [58]Shi Q, Le X, Abbruzzese JL,et al. Constitutive Sp1activity is essential fordifferential constitutive expression of vascular endothelial growth factor in humanpancreatic adenocarcinoma[J]. Cancer Res,2001,61(10):4143-4154.
    [59] Finkenzeller G, Technau A, Marme D. Hypoxia-induced transcription of thevascular endothelial growth factor gene is independent of functional AP-1transcription factor[J]. Biochem Biophys Res Commun,1995,208(1):432-439.
    [60] Funamoto M, Fujio Y, Kunisada K, et al.Signal transducer and activator oftranscription3is required forglycoprotein130-mediated induction of vascularendothelial growth factor in cardiac myocytes[J]. J Biol Chem,2000,275(14):10561-10566.
    [61] Platt DH, Bartoli M, El-Remessy AB, et al. Peroxynitrite increases VEGFexpression in vascular endothelial cells via STAT3[J]. Free Radic Biol Med,2005,39(10):1353-1361.
    [62]Gray MJ, Zhang J, Ellis LM, et al. HIF-1alpha,STAT3,CBP/p300andRef-1/APE are components of a transcriptional complex that regulates Src-dependenthypoxia-induced expression of VEGF in pancreatic and prostate carcinomas[J].Oncogene,2005,24(19):3110-3120.
    [63]Jung JE, Lee HG, Cho IH,et al. STAT3is a potential modulator of HIF-1-mediatedVEGF expression in human renal carcinoma cells[J].FASEB J,2005,19(10):1296-1298.
    [64] Xu Q, Briggs J, Park S, et al. Targeting Stat3blocks both HIF-1and VEGFexpression induced by multiple oncogenic growth signaling pathways[J]. Oncogene,2005,24(36):5552-5560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700