用户名: 密码: 验证码:
洋葱伯克氏菌在重要禾本科作物根围的多样性及其致病性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洋葱伯克氏菌(Burkholderia cepacia)是一种广泛存在于土壤、水和植物根围、与医院感染病人密切相关的革兰氏阴性细菌。它最初作为植物病原菌被认识,后来发现它也是医院中重要的人体条件致病菌,由该菌引起患者洋葱伯克氏菌综合症的致死事件在国内外均有报道。同时它在农业领域中具有生物防治、生物降解和促进植物生长等多种功能。近年来,该菌被认为不是一个种,而是一组基因型不同、表型相近的复合物,称为洋葱伯克氏菌群(Burkholderia cepacia complex,简称Bcc)。到目前为止已报道10个不同的基因型。现有研究认为自然环境可能是医院致病菌株的天然储存库,尤其在作物根围发现Bcc菌群丰富。但我国关于Bcc菌在自然环境中的研究极少,尤其在作物根围环境中的研究仍是空白。
     本研究选定了多年种植的水稻、玉米和大麦种植田块,对3种作物的根围进行Bcc基因型的多样性调查,了解基因型在不同作物根围的种类与分布,为评估其对人体的潜在致病性提供基础;结合医院来源的基因型Ⅰ和Ⅲ菌株,对不同基因型的菌株在苜蓿植物模型上进行毒力测定,探测根围来源的不同基因型菌株间的毒力程度;选取代表性的基因型菌株,对其在洋葱上进行致病性测定;同时对来源于根围的Bcc菌株进行拮抗植物病菌的离体筛选,以期挖掘具有生防效果的安全性菌株。取得了如下主要研究结果:
     (1)采用3种选择性培养基(PCAT、TB-T和BCSA)对水稻、玉米和大麦作物根围进行了Bcc菌的调查,共分离到628株Bcc疑似菌株。通过对这些细菌进行表型初步鉴定和PCR特异性扩增recA基因片段的分子鉴定,共确诊了149株洋葱伯克氏菌株,其中78株来自水稻根围,61株来自玉米根围,大麦根围仅分离到10株。结果表明,PCAT和TB-T两种选择性培养基对Bcc菌株的选择性优于BCSA培养基。水稻和玉米根围存在丰富的Bcc菌株,在PCAT选择性平板上,能分离到55%~72%比例的Bcc菌,在根围的种群密度达到10~5~10~6cfu·g~(-1)。而对于大麦根围,在PCAT选择平板上分离到的Bcc菌株比例很小,仅8%左右,表明Bcc菌在大麦根围种群密度低。
     (2)采用限制性内切酶HaeⅢ对来源于水稻和玉米根围的139株Bcc菌的recA基因片段进行了限制性酶切(RFLP)分析,以探测Bcc菌的遗传多样性。结果表明,在水稻根围的78株Bcc菌中,发现4种不同的限制性酶切图谱(A、B、H和K);在玉米根围的61株Bcc菌中,也存在4种不同的限制性酶切图谱(A、E、I和M),这表明Bcc分离物具有明显的遗传多态性。
     (3)利用recA-HaeⅢ限制性酶切分析、基因型特异性PCR扩增方法和recA基因的序列分析对来自水稻和玉米根围的139株Bcc菌,以及来自医院的14株Bcc菌进行了基因型的鉴定和划分。在水稻根围存在基因型Ⅰ、ⅢB和Ⅴ,其中以基因型Ⅴ的菌株数量最多,占分离于水稻根围Bcc菌株数的76.9%。基因型Ⅴ为水稻根围Bcc菌的优势基因型,这一结果是国内外的首次报道;在玉米根围存在基因型Ⅰ、ⅢB、Ⅴ和Ⅸ,其中以基因型ⅢB为玉米根围的优势基因型,占分离Bcc菌株数的42.6%。这表明在水稻和玉米两种作物根围中,优势基因型存在明显的差异。在医院来源的菌株中,存在基因型Ⅰ和ⅢA,其中ⅢA型菌株数较多,占菌株总数的64.3%。
     在本研究的Bcc菌分离物中,其中20个Bcc分离物具有相同的recA-HaeⅢRFLP图谱Ⅰ,采用基因型ⅢA的特异性引物表现为PCR阳性扩增。然而,其两个代表菌株(M229和M279)的recA基因序列在聚类树中与基因型ⅢD参考菌株以很低的自举置信水平值聚类在一起(BCL≤28%),低自举置信水平值的存在表明进一步种的多样性可能存在,因此这些Bcc菌株没有被鉴定为基因型。菌株R456在分离的Bcc菌株中具有唯一的RFLP图谱H,通过对其recA基因序列的分析,它在聚类树中单独形成一个分支,但该菌株的recA基因序列与其它基因型(包括基因型ⅢB、Ⅳ和Ⅸ)具有97%的序列相似性。这表明该分离物与其它基因型是不同的。然而,该菌株的recA序列与以前报道的菌株BC14具有99%的序列相似性,这表明这些菌株可能为新的基因型。
     (4)采用苜蓿植物模型对来源于自然环境和医院中的67株Bcc菌进行了毒力测定,同时也对毒力基因BCESM和cblA的存在与否进行了特异性PCR检测。结果表明,来源于医院的基因型Ⅰ和Ⅲ菌株均对苜蓿幼苗有较强的毒力,幼苗子叶黄化或白化,根短小、畸形,对苜蓿幼苗的平均发病率分别达到69%和68%。来源于自然环境的Bcc菌株中,基因型ⅢB也对苜蓿幼苗表现出强毒力,幼苗症状类似于医院致病菌的致病效果,幼苗平均发病率为55%;基因型Ⅰ菌株对苜蓿幼苗的毒力程度较轻,有的菌株没有致幼苗发病;基因型Ⅴ和Ⅸ的多数菌株对苜蓿幼苗发病率很低,部分菌株不致幼苗发病。这说明来源于自然环境的基因型ⅢB菌株与医院致病菌的基因型ⅢA和Ⅰ菌株具有相同的毒力,表明自然环境中的基因型ⅢB菌可能为潜在的人体条件致病菌。同时研究表明,在这些Bcc菌株中,未检测到BCESM和cblA这两个毒力基因。
     (5)对分离于医院和自然环境的20株代表性Bcc菌进行(?)烟草过敏反应和洋葱致病性试验。在测试的20株Bcc菌中,基因型Ⅰ、Ⅲ和Ⅴ的菌株都导致了烟草的过敏性坏死反应,仅有1株基因型Ⅸ菌株呈阴性反应,表明多数洋葱伯克氏菌可能为植物致病菌。来源于医院的基因型Ⅰ和Ⅲ菌株均能引起洋葱鳞茎发病,与洋葱致病菌株LMG1222表现出相似的致病效果,说明这些菌株既是人体条件致病菌,也是洋葱的致病菌。在来源自然环境的Bcc菌中,基因型Ⅰ和Ⅲ的菌株也能引起洋葱发病;基因型Ⅴ菌株引起洋葱鳞茎产生坏死小斑点,但继续培养后,斑点并没有扩大;基因型Ⅸ的菌株未能使洋葱发病。
     (6)对经鉴定后的77株Bcc菌进行了拮抗植物病原真菌的离体筛选。结果表明,34株细菌对黄瓜枯萎病菌和灰霉病菌具有不同程度的拮抗活性,占总测试菌株的54.5%。其中以基因型Ⅴ内拮抗细菌占的比例最高,基因型Ⅲ内的拮抗菌株占的比例最少,仅占5.7%。23株基因型Ⅴ菌株能够明显抑制病原生长,形成较大的抑菌圈(直径15~20mm),且对立枯丝核病菌、疫霉病菌和其它枯萎病菌也表现了较强的拮抗活性。选取了4株平板拮抗活性强的菌株进行了代谢产物活性、致病性及毒力测定。结果表明,拮抗细菌的培养滤液对灰霉病菌和立枯丝核病菌有较好的拮抗活性,但对枯萎病菌无拮抗活性。它们对苜蓿幼苗的毒力很低,在洋葱上不致病,未检测到BCESM和cblA两个毒力基因,初步表明它们可能是安全性菌株。
Burkholderia cepacia is a gram-negative bacterium commonly found in soil, Water, plant rhizosphere, patients and hospital environment. It was first described as a phytobacterium. Subsequently, it emerged as an opportunistic human pathogen in hospital, and caused "cepacia sydrome" resulting in death of the patients in China and other countries. However, B. cepacia strains have attracted considerable interest as plant pest antagonists, plant growth-promoting rhizobacteria and bioremediation agents of toxic substances. Recently, B. cepacia has been classified into ten genotypically distinct but phenotypically similar species (genomovars) referring to the B. cepacia complex (Bcc). The current findings showed that the natural environmental may serve as a "reservoir" for pathogenic strains, and the rhizospheres of crop plants were regarded as abundant sources of Bcc strains. However, little information is available for Bcc populations from natural environment, especially in the rhizosphere of major cereal crops in China.
     The distribution and diversity of Bcc population were surveyed in the rhizospheres of rice, maize and barley with monoculture for several years for understanding Bcc genomovars in different crop rhizosphere and providing key information in risk analysis of Bcc. Based on Bcc isolates from the rhizospheres and clinical sources, the virulence study of the Bcc strains in alfalfa model was performed to detect the virulence degree of different genomovar strains. The pathogenicity of different Bcc genomovar strains was tested on onion bulbls, and antagonistic screening of Bcc isolates against phytopathogenic fungi was also conducted in this study for more promising and safe strains in biocontrol.
     The RFLP assay with enzyme HaeIII was performed to detect genetic variability among 139 Bcc isolates from the rhizosphere of rice and maize. The results showed that four different RFLP patterns (A, B, H and K) were found among 78 Bcc isolates from rice rhizosphere, and four other different patterns (A, E, I and M) were also detected among 61 Bcc isolates from maize rhizosphere, revealing considerable variability among the Bcc isolates.
     The identification of Bcc genomovars was performed among 139 Bcc isolates from the rhizosphere of rice and maize, and 14 Bcc isolates from clinical samples by a combination of recA-HaeIII restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequence analysis. Three Bcc species including B. cepacia, B. cenocepacia recA lineage IIIB and B. vietnamiensis; were recovered from rice rhizosphere. The B. vietnamiensis isolates showed highest numbers with76.9% of the total. To our knowledge, this is the first report of B. vietnamiensis dominating in the rice rhizosphere. B. cenocepacia dominated the maize rhizosphere, followed by B. cepacia, B. pyrrocinia and B. vietnamiensis. It indicated that predominant Bcc species vary dramatically in the rhizosphere of maize and rice. B. cepacia and B. cenocepacia recA lineage IIIA were found among the Bcc isolates from clinical sources and the later was higher with 64.3% of the total.
     Twenty Bcc isolates sharing the recA RFLP pattern were PCR positive with B. cenocepacia IIIA-specific primers. Two representatives of these isolates, M229 and M279, clustered with B. cenocepacia recA lineage IIID strains with the least robust group within the phylogenetic analysis (BCL≤28%). The existence of a low bootstrap value suggests that further species diversity may be present. These Bcc isolates have therefore not been assigned to a genomovar. One isolate (R456) that gave a unique RFLP profile could not be assigned to a genomovar by recA gene sequence analysis. The recA gene sequence of this isolate had 97% identity to those from several genomovars including B. cenocepacia recA lineage IIIB, B. stabilis and B. pyrrocinia, and it formed a single discrete cluster within the phylogenetic tree. This indicates that the isolate is equally divergent from several of the other genomovars. However, its recA sequence had 99% identity to that of the previously described strain BC14 with which they probably belong to a novel Bcc group.
     Sixty-seven Bcc isolates from natural environment and clinical samples were tested for virulence in the alfalfa model, and PCR tests were also performed to detect the genes with BCESM and cblA. The results showed that the strains of B. cepacia and B. cenocepacia caused symptoms of yellow leaves, stunted roots, and brown necrotic lesions on alfalfa seedlings with mean percentages of the infected seedlings by B. cepacia and B. cenocepacia from clinical sources being 69% and 68%, respectively. Among the Bcc strains from natural environment, B. cenocepacia recA lineage IIIB strains caused symptoms in 55% of the alfalfa seedlings; Some strains of B. cepacia did not cause symptoms of seedlings; Most strains of B. vietnamiensis and B. pyrronicia did not cause symptoms of seedlings. It indicated that B. cenocepacia recA lineage IIIB strains from natural environment were similar to B. cenocepacia recA lineage IIIA and B. cepacia strains from clinical sources in symptoms of the seedlings, and they may be potential human opportunistic pathogen. The genes with BCESM and cblA did not been detected among these Bcc strains.
     Twenty representative Bcc strains from'natural environment and clinical sources were tested for hypersensitive reaction (HR) on tobacco and pathogenicity tests on onion. All strains including B. cepacia, B. cenocepacia and B. vietnamiensis, except for one B. pyrrocinia strain, had HR on tobacco, revealing that most Bcc strains may be pathogenic. B. cepacia and B. cenocepacia strains from clinical sources induced symptoms on onion which were similar to those caused by strain LMG1222. It indicated these strains were both human opportunistic pathogen and onion phytopathogen. Among the Bcc strains from natural environment, B. cepacia and B. cenocepacia strains caused symptoms on onion; B. vietnamiensis produced small dot lesions on onion without extending after inoculation for 14 d; Strains of 5. pyrrocinia did not cause symptoms on onion.
     Seventy-seven Bcc strains were selected to screen for their antagonism against pathogenic fungi of crops in vitro. Thirty-four Bcc strains, 54.5% of the taotal showed antagonistic effect on Fusarium oxysporum f. sp. cucumerinum Owen and Botrytis cinerea. The percentage of antagonistic bacteria was highest in B. vietnamiensis, and lowest in B. cenocepacia; 23 B. vietnamiensis strains significantly inhibited growth of the two pathogens, showing 15-20 mm of inhibition zone. And they also had higher antagonistic activity against Rhizoctonia solania, Phytophthara capsici Leonian and other Fusarium oxysporum. Four antagonistic bacteria were selected to investigate for antagonistic activities of their culture filtrates. It showed that the culture filtrates of the bacteria had certain inhibitory effect on Rhizoctonia solania and Botrytis cinerea, and no effect on Fusarium oxysporium. The four antagonistic bacteria could be considered as safe strains since they were almost aviruience on alfalfa seedlings, not pathogenic on onion and the virulence genes with BCESM and cblA were not detected.
引文
Agodi A, Mahenthiralingam E, Barchitta M, Giannino V, Sciacca A, Stefani S. Burkholderia cepacia complex infection in Italian patients with cystic fibrosis: prevalence, epidemiology, and genomovar status [J]. Journal of Clinical Microbiology, 2001, 39(8): 2891-2896.
    Alison H, Govan J, Richard G. Could the agricultural use of Burkholderia cepacia pose a threat to human health [J]? Emerging Infectious Diseases, 1998, 4:221-227.
    Anita N S, Andreas R, Harald H. Specificity of enterobacterial repetitive intergenic consensus and repetive extragenic palindromic polymerase chain reaction for the detection of clonality within the Enterobacter cloacae complex [J]. Diagnostic Microbiology and Infectious Disease, 2005, 53: 9-16.
    Balandreau J, Viallard V, Cournoyer B, Coenye T, Laevens S, Vandamme P. Burkholderia cepacia genomovar Ⅲ is a common plant - associated bacterium [J]. Applied and Environmental Microbiology, 2001, 67(2): 982-985.
    Baldwin A, Mahenthiralingam E, Thicker K M, Honeybourne D, Maiden M C J, Govan J R, Speert D P, LiPuma J J, Vandamme P, Dowson C G. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex [J]. Journal of Clinical Microbiology, 2005, 43: 4665-4673.
    Basanta K D, Surya K S, Biswa R S, Satyanarayana S, Phalguni P, Bibhudendu K M. Antagonistic actiyity of cellular components of Pseudomonas species against Aerornonas hydrophila [J]. Aquaculture, 2006, 253: 17-24.
    Bauernfeind A, Schneider I, Jungwirth R, Koller C. Discrimination of Burkholderia multivorans and Burkholderia vietnamiensis from Burkholderia cepacia genomovars Ⅰ, Ⅲ, and Ⅳ by PCR [J]. Journal of Clinical Microbiology, 1999, 37: 1335-1339.
    Beckman W, Lessie T G. Response of Pseudomonas cepacia to β-lactam antibiotics: utilization of penicillin G as the carbon source [J]. Journal of Bacteriology, 1979, 140:1126-1128.
    Bernier S P, Silo-Sub L, Woods D E, Ohman D E, Sokol P A. Comparative analysis of plant and animal models for characterization of Burkholderia cepacia vindence [J]. Infection and Immunity, 2003, 71 (9): 5306-5313
    Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L, Belli M L, Piana S, Materazzo A, Vandamme P, Manno G. Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: genomovar status and distribution of traits related to virulence and transmissibility [J]. Journal of Clinical Microbiology, 2002, 40:846-851.
    Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L. Efficacy of Burkholderia cepacia MCI 7 on disease suppression and growth promotion of maize [J]. Biology and Fertility of Soils, 2000, 31: 225-231.
    Bevivino A, Peggion V, Chiarini L, Tabacchioni S, Cantale C, Dalmastri C. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations [J]. Research in Microbiology, 2005, 156: 974-983.
    Brisse S, Verduin C M, Milatovic D, Fluit A, Verhoef J, I,sevens S, Vandamme P, Tummler B, Verbrugh H A, van Belkum A. Distinguishing species of the Burkholderia cepacia complex and Burkholderia gladioli by automated ribotyping [J]. Journal of Clinical Microbiology, 2000, 38: 1876-1884.
    Burbage D A, and Sasser M. A medium selective for Pseudomonas cepacia [J]. Phytopathology, 1982, 72: 706.
    Burkholder W H. Sour skin, a bacteral rot of onion bulbs [J]. Phytopathology, 1950, 40: 115-117.
    Butler S L, Doherty C J, Hughes J E, Nelson J W, Govan J R. Burkholderia cepacia and cystic fibrosis: Do natural environments present a potential hazard [J]? Journal of Clinical Microbiology, 1995, 33: 1001-1004.
    Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P. Burkholderia cepacia complex species: health hazards and biotechnological potential [J]. Trends in Microbiology, 2006, 14(6): 278-286.
    Chin-A-Woeng T F C, Bloemberg G V, Lugtenberg B J J. Phenazines and their role in biocontrol by Pseudomonas bacteria [J]. New Phytologist, 2003, 157: 503-523.
    Clode F E, Kaufmann M E, Malnick H, Pitt T Y. Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom [J]. Journal of Clinical Microbiology, 2000, 38: 1763-1766.
    Coenye T, Falsen E, Hoste B, Ohlen M, Goris J, Govan J R W, Gillis M, Vandamme P. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pmomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov [J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50: 887-899.
    Coenye T, Lipuma J J, Henry D, Hoste B, Vandemeulebroecke K, Gillis M, Speert D P, Vandamme P. Burkholderia cepacia genomovar Ⅵ, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients [J]. International Journal of Systematic and Evolutionary Microbiology, 2001 a, 51: 27,1-279.
    Coenye T, Mahenthiralingam E, Henry D, Lipuma J J, Laevens S, Gillis M, Speert D P, Vandamme P. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis related isolates [J]. International Journal of Systematic and Evolutionary Microbiology, 2001 b, 51: 1481-1490.
    Coenye T, Schouls L M, Govan J R W, Kersters K, Vandamme P. Identification of Burkholderia species and genomovars from cystic fibrosis patients by AFLP fingerprinting [J]. International Journal of Systematic and Evolutionary Microbiology, 1999, 49: 1657-1666.
    Coenye T, Vandamme P, Govan J R W, LiPuma J J. Taxonomy and identification of the Burkholderia cepacia complex [J]. Journal of Clinical Miciobiology, 2001c, 39(10): 3427-3436.
    Coenye T, Van .damme P, LiPuma J J, Govan J R W, Mahenthiralingam E. Updated version of the Burkholderia cepacia complex experimental strain panel [J]. Journal of Clinical Microbiology, 2003a, 41: 2797-2798.
    Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches [J]. Environmental Microbiology, 2003b, 5(9): 719-729.
    Dalmastri C, Fiore A, Alisi C, Bevivino A, Tabacchioni S, Giuliano G, Sprocati A R, Segre L, Mahenthiralingam E, Chiarini L, Vandamme P. A rhizospheric Burkholderia cepacia comolex population: genotypic and phenotypic diversity of Burkholderia cenocepacia and Burkholderia ambifaria [J]. FEMS Microbiology Ecology, 2003, 46: 179-187.
    Dalmastri C, Pirone L, Tabacchioni S, Bevivino A, Chiarini L. Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates [J]. FEMS Microbiology Letters, 2005, 246: 39-45.
    De Costa D M, Erabadupitiya H R U T. An integrated method to control postharvest diseases of banana using a member of the Burkholderia cepacia complex [J]. Postharvest Biology and Technology, 2005, 36:31-39.
    De Souza J T, Raaijmakers J M. Polymorphisrns within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. [J]. FEMS Microbiology Ecology, 2003, 43:21-34.
    Detsika M G, Corkill J E, MagalHaes M, Glendinning K J, Anthony Hart C, Winstanley C. Molecular typing of, and distribution of genetic markers among, Burkhoderia cepacia complex isolates from Brazil [J]. Journal of Clinical Microbiology, 2003, 41:4148-4153.
    Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizospher at different plant growth stages [J]. Applied and Environmental Microbiology, 1997, 63(11): 4485-4493.
    Donna S G, Sandra K B, Enes M J, Donald G S, James W M, John Z M. Pseudomonas aeruginosa colonization in patients with spinal cord injuries [J]. Journal of Clinical Microbiology, 1982, 16: 856-860.
    Drvinek P, Hrbackova H, Cinek O, Bartosova J, Nyc O, Nemec A, Pohunek P. Direct PCR detection of Burkholderia cepacia complex and identification of its genomovars by using sputum as source of DNA [J]. Journal of Clinical Microbiology, 2002, 40(9): 3485-3488.
    El-Banna N, Winkehnann G. Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes [J]. Journal of Applied Microbiology, 1998, 85: 69-78.
    Felsenstein J. Case in which parsimony or compatibility methods will be positively misleading [J]. Syst Zool, 1978, 27: 401-410.
    Felsenstein J. Phylogeny Inference Package (PHYLLP), Version 3.5. Seattle: University of Washington, 1993.
    Fiore A, Laevens S, Bevivino A, Dalmastri C, Tabbacchioni S, Vandamme P, Chiarini L. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy [J]. Environmental Microbiology, 2001, 3: .137-143.
    Fitch W M, Margoliash E. Construction of phylogenetic trees [J]. Science, 1967, 155: 279-284.
    Fries M R, Forney L J, Tiedje J M. Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred [J], Applied and Environmental Microbiology, 1997, 63(4): 1523-1530.
    Gilligan P H, Gage P A, Bradshaw L M, Schidlow D V. Isolation medium for the recovery of Pseudomonas cepacia from respiratory secretions of patients with cystic fibrosis [J]. Journal of Clinical Microbiology, 1985, 22: 5-8.
    Gillis M, Van Van T, Bardin K, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez M P. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N_2-fixing isolates from rice in Vietnam [J]. International Journal of Systemic Bacteriology, 1995, 45: 274-289.
    Gonzalez C F, Pettit E A, Valadez V A, Provin E M. Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phopathogenic Burkholderia (Pseudomonas) cepacia [J]. Molecular Plant-Microbe Interactions, 1997, 10:840-851.
    Govan J R W, Brown P H, Maddison J, Doberty C J, Nelson J W, Dodd M, Greening A P, Kevin Webb A. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis [J]. Lancet, 1993, 342: 15-19.
    Govan J R W, Hughes J E, Vandamme P. Burkholderia cepacia: medical, taxonomic and ecological issues [J]. Journal of Medical Microbiology, 1996, 45(6): 395-407.
    Hagedorn C, Gould W D, Bardinelli T R, Gustavson D R. A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil [J]. Applied and Environmental Microbiology, 1987, 53(9): 2265-2268.
    Hallmann J, Rodriguze K R, Kloepper J W. Chitin-mediated changes in bacteria communities of the soil, rhizosphere and within roots of cotton in relation to nematode control [J]. Soil Biology and Biochemistry, 1999, 31: 551-560.
    Hendry J, Nixon L, Dodd M, Elborn J S, Govan J, Shale D J, Webb A K. Pulmonary function, serum markers of inflammation, and IgG antibodies to core lipopolysaccharide of Burkholderia cepacia in adults with cystic fibrosis, following colonization with Burkholderia cepacia [J]. Pediatric Pulmonology, 2000, 29: 8-10.
    Henry D A, Campbell M E, LiPurna J J, Speert D P. Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium [J]. Jouranl of Clinical Microbiology, 1997, 35:614-619.
    Henry D A, Mabenthiralingam E, Vandamme P, Coenye T, Speert D P. Biochemical and molecular approaches for determining genomovar status of the Burkholderia cepacia complex [J]. Journal of Clinical Microbiology, 2001, 39: 1073-1078.
    Henry D. Campbell M, McGimpsey C, Clarke A, Louden L, Burns J L, Roe M H. Vandamme P, Spoort D. Comparison of isolation media for recovery of Burkholderia cepacia complex from respiratory secretions of patients with cystic fibrosis [J]. Journal of Clinical Microbiol0gy, 1999, 37: 1004-1007.
    Heungens K, Parke J L. Postinfection biocontrol of oomycete pathogens of pea by Burkholderia cepacia AMMDRI [J].Phytopathology, 2001, 91 (4): 383-391.
    Heungens K, Parke J L. Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.) [J]. Applied and Enviromental Microbiology, 2000, 66:5192-5200.
    Holmes A, Govan J, Goldstein R. Agricultural uses of Burkholderia (Pseudomonas) cepacia: a throat to human health [J]? Emerging Infectious Disease, 1998, 4 (2): 221-228.
    Holmes A, Nolan R, Taylor R, Finley R, Riley M, Jiang R Z, Steinbach S, Goldstein R. An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis [J]. Journal of Infectious Diseases, 1999, 179(5): 1197-1205.
    Hwang J, Chilton W S, Benson D M. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia [J]. Biological Control, 2002, 25: 56-63.
    Jayaswal R K, Fernandez M, Upadhyay R S, Visintin L, Kurz M, Webb J, Rinehart K. Antagonism of Pseudomonas cepacia against phytopathogenic fungi [J]. Current Microbiology, 1993, 26: 17-22.
    Kang Y, Carlson R, Tharpe W, Schell M A. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani [J]. Applied and Environmental Microbiology, 1998, 64(10): 3939-3947.
    Kazuo I, Akiyoshi H. Biochemical characteristics of Enterobacter agglomerans and related Strains found in buckwheat seeds [J]. International Journal of Food Microbiology, 1996, 30: 243-253.
    Kendall R J, Lewis P I, Capon C C, McConnell E E, Portier C. Burkholderia cepacia: risk assessment of a biopesticide with affinities to a human opportunistic pathogen [R]. Virginia: FIFRA Scientific Advisory Panel Mooting, 1999.
    Kevin Vessey J. Plant growth promoting rhizobacteria as biofertilizers [J]. Plant and Soil, 2003, 255: 571-586.
    Kil Y K, Jordan D, McDonald G A. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources [J]. Soil Biology and Biochemistry, 1998, 30: 995-1003.
    King E B, Parke J L. Biocontrol of aphanomyces root rot and pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars [J]. Plant Disease, 1993, 77 (12): 1185-1188.
    Kiska D L, Kerr A, Jones M C, Caracciolo A, Eskridge B, Jordan M, Miller S, Hughes D, King N, Gilligan P. Accuracy of four commercial systems for identification of Burkholderia cepacia and other gram-negative, nonfermenting bacilli recovered from patients with cystic fibrosis [J]. Journal of Clinical Microbiology, 1996, 34: 886-891.
    Klausner J D, Zukerman C, Limaye A P, Corey L. Outbreak of Stenotromonas maltophilia bacteria among patients undergoing bonemarrow transplantation: association with faulty replacement of handwashing soap. Infection Control and Hospital Epidemiology. 1999, 20( 11): 756-762.
    Kothe M, Anti M, Huber B, Stoecker K, Ebrecht D, Steinmetz L, Eberl L. Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled-by the cep quorum-sensing system [J]. Cellular Microbiology, 2003, 5(5): 343-351.
    Krumme M L, Timmis K N, Dwger D F. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms [J]. Applied and Environmental Microbiology, 1993, 59(8): 2746-2749.
    Kumar S, Tamura K., Nei M. MEGA: Molecular Evolutionary Genetic Analysis, Version 1.01. The Penosylvania State University, University Park, PA 16802, 1993.
    Lee Y A, Chan C W. Molecular typing and presence of genetic markers among strains of banana finger-tip rot pathogen, Burkholderia cenocepacia, in Taiwan [J]. Phytopathology, 2006, 97: 195-201.
    Lee Y A, Shiao Y Y. First report ofBurkholderia cepacia as a pathogen of banana finger-tip rot in Taiwan [J]. Plant Disease., 2003, 87:601.
    Lessie T G, Hendrickson W, Manning B D, Devereux R. Genomic complexity and plasticity of Burkholderia cepacia [J]. FEMS Microbiology Letters, 1996, 144:117-128.
    Li W, Roberts D P, Defy P D, Meyer S L F, Lohrke S, Lumsden R D, Hebbar K P. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F [J]. Crop Protection, 2002, 21: 129-135.
    Lipuma J J, Spilker T, Coenye T, Gonzalez C F. An epidemic Burkholderia cepacia complex strain identified in soil [J]. Lancet, 2002, 359: 2002-2003.
    Mahenthiralingam E, Bischof J, Byrne S K, Radomski C, Davies J E, Av-Gay Y, vandamme P. DNA-based diagnostic approaches for the identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholdria multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars Ⅰ and Ⅲ. Journal of Clinical Microbiology, 2000a, 38: 3165-3173.
    Mahenthiralingam E, Coenye T, Chung J W, Speert D P, Govan, J R W, Taylor P, Vandamme P. Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex [J]. Journal of Clinical Microbiology, 2000b, 38:910-913.
    Mahenthiralingam E, Simpson D A, and Speert D P. Identification and characterization of a novel DNA marker associated with epidemic strains of Burkholderia cepacia recovered from patients with cystic fibrosis [J]. Journal of Clinical Microbiology, 1997, 35:808-816.
    Mao W, Lumsden R D, Lewis J A, Hebbar P K. Seed treatment using pre-infiltmtion and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fuaarium [J]. Plant disease, 1998, 82: 294-299.
    Matthew J A, Lee A B, Margaret A T, Sonia M A, Martin S F, William R J. Growth and endotoxin production of Yersinia enterocoliaca and Enterobacter agglomerans in packed erythrocytes [J]. Journal of Clinicl Microbiology, 1989, 27: 1483-1485.
    McLoughlin T J, Quinn J P, Bettermann A, Bookland. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease [J]. Applied and Environmental Microbiology, 1992, 58(5): 1760-1763.
    Miller S C M, Lipuma J J, Parke J L. Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments [J]. Applied and Environmental Microbiology, 2002, 68(8): 3750-3758.
    Mohr C D, Tomich M, Herfst C A. Cellular aspects of Burkholderia cepacia infection [J]. Microbes and Infection, 2001, 3: 425-435.
    Mueller J G, Devereux R, Santavy D L, Lantz S E, Willis S G, Pritchard P H. Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils [J]. Antonie van Leuwenhoek, 1997, 71: 329-343.
    Nacamulli C, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L. Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MC17 [J]. FEMS Microbiology Ecology, 1997, 23: 183-193.
    O'Donnell K, Sutton D A, Rinaldi M G, Magnon K C, Cox P A, Revankar S G, Sanche S, Geiscr D M, Juba J H, van Burik J H, Padhye A, Anaissie E J, Francesconi A, Walsh T J, Robinson J S. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: Evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin [J]. Journal of Clinical Microbiology, 2004, 42:5109-5120.
    Olive D M, Bean P. Principles and applications of methods for DNA-based typing of microbial organisms [J]. Journal of Clinical Microbiology, 1999, 37: 1661-1669.
    Omar I, O'Neill T M, Rossall S. Biological control of fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim [J]. Plant Pathology, 2006, 55: 92-99.
    Parke J L, Gurian-scherman D. Diversity.of the Burkholderia cepacia complex and implications for risk assessment of biological control strains [J]. Annual Review of Phytopathology, 2001, 39: 225-258.
    Patterson C. Homology in classical and molecular biology [J]. Molecular Biology in Evolution, 1988, 5: 603-625.
    Payne, G W, Vandamme P, Morgan S H, LiPuma J J, Coenye T, Weightman A J, Herin Jones T, Mahenthiralingam E. Development of a recA gene-based identification approach for the entire Burkholderia genus [J]. Applied and Environmental Microbiology, 2005, 71:3917-3927.
    Peix A, Mateos P F, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E. Growth promotion of common bean(phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions [J]o Soil Biology and Biochemistry,.2001, 33: t927-1935.
    Pelt C V, Verduin C M, Goessens W H F, Vos M C, Tummler B, Segonds C, Reubsaet F, Verbrugh H, Belkum A V. Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods [J]. Journal of Clinical Microbiology, 1999, 37(7): 2158-2164.
    Pirone L, Chiarini L, DaLrnastri C, Bevivino A, Tabacchioni S. Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere [J]. Environmental Microbiology, 2005, 7:1734-1742.
    Pitt T L, Kaufmann M E, Patel P S, Benge L C A, Gaskin S, Livermore D M. Type characterization and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland [J]. Journal of Medical Microbiology, 1996, 44: 203-210.
    Prithiviraj B, Weir T, Bais H P, Schweizer H P, Vivanco J M. Plant models for animal pathogenesis [J]. Cellular Microbiology, 2005, 7(3): 315-324.
    Rademaker J L W, Hoste B, Louws F J, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn F J. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system [J]. International Journal of Systemic and Evolutionary Microbiology, 2000, 50: 665-677.
    Rahme L G, Stevens E J, Wolfort S F, Shao J, Tompkins R G, Ausubel F M. Common virulence factors for bacterial pathogenicity in plants and animals [J]. Science, 1995, 268: 1899-1902.
    Ramette A, Lipuma J J, Tiedje J M. Species abundance and diversity of Burkholderia cepacia complex in the environment [J]. Applied and Environmental Microbiology, 2005, 71(3): 1193-1201.
    Richardson J, Stead D E, Coutts R H A. Incidence of the cblA major subunit pilin gene among Burkholderia species [J]. FEMS Microbiology Letters, 2001, 196: 61-66.
    Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees [J]. Molecular Biology in Evolution, 1992, 9: 945-967.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4: 406-425.
    Schlomann M, Schmidt E, Knackmuss H J. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria [J]. Journal. of Bacteriology, 1990, 172(9): 5112-5118.
    Shaw D, Poxton I R, Govan J R W. Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide [J]. FEMS Immunology and Medical Microbiology, 1995, 11: 99-106.
    Shelly D B, Spilker T, Gracely E J, Coenye T, Vandamme P, LiPuma J J. Utility of commercial systems for identification of Burkholderia cepacia complex from cystic fibrosis sputum culture [J]. Journal of Clinical Microbiology, 2000, 38:3112-3115.
    Silo-Suh L, Sub S J, Sokol P A, Ohman D E. A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows algT (sigma-22) and rhlR contribute to pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 15699-15704.
    Sokol P A, Darling P, Woods D E, Mahenthiralingam E, Kooi C. Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N_2-oxygenase [J]. Infection and Immunity, 1999, 67: 4443-4455.
    Sourdis J, Nei M. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree [J]. Molecular Biology in Evolution, 1988, 5: 298-311.
    Speert D P, Henry D, Vandamme P, Corey M, Mahenthiralingam E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada [J]. Emerging Infectious Diseases, 2002, 8(2): 181-187
    Speert D P, Steen B, Halsey K, Kwan E. A routine model of infection with Burkholderia cepacia with sustained persistence in thee spleen [J]. Infection and Immunity, 1999, 67: 4027-4032.
    Spencer R C. The emergence of epidemic multiple antibiotic resistant Stenotrophomonas (Xanthomonas) meltophilia and Burkholderia (Pseudomonas) cepacia [J]. Journal of Hospital Infection, 1995, 30: 453-459.
    Starke J R, Morven E S, Langston C, Baker C J. A mouse model of chronic pulmonary infection with Pseudomonas aeruginosa and Pseudomonas cepacia [J]. Pediatric Research, 1987, 22: 698-702.
    Swofford D L. Phylogenetic Analysis Using Parsimony (PAUP), Version 3.1.1. Champaign: University of Illinois, 1993.
    Takashi S, Masako T, Reiko I, Takashi-N, Takako S. Intraspecies diversity of Cryptococcus laurentii as revealed by sequences of internal transcribed spacer regions and 28s rKNA gene and taxonomic position of C. laurentii clinical isolates [J]. Journal of Clinical Microbiology, 2000, 38: 1468-1471.
    Tang C R, Sun F Z, Zhang X J, Zhao T C, Qi J Y. Transgenic ice nucleation-active Enterobacter cloacae reduces cold hardiness of corn borer and cotton bollworm larvae [J]. FEMS Microbiology Ecology, 2004, 51 (1): 79-86.
    Tran Van V, Berge O, Ngo Ke S, Balandreau J, Heulin T. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam [J]. Plant and Soil, 2000, 218: 273-284.
    van Pelt C, Verduin C M, Goessens W H F, Vos M C, Tummler B, Segonds C, Reubsaet F, Verbrugh H, van Belkum A. Identification of Burkholderia spp. inthe clinical microbiology laboratory: comparison of conventional and molecular methods [J]. Journal of Clinical Microbiology, 1999, 37:2158-2164.
    Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, Lipuma J J, Speert D P, Govan J R W, Mahenthiralingam E. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional 8urkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools [J]. FEMS Immunology and Medical Microbiology, 2002, 33: 143-149.
    Vandamme P, Holmes B, Coenye T, Goris J, Mahenthiralingam E, Lipuma J J, Govan J R W. Burkholderia cenocepacia sp. nov. - a new twist to an old story [J]. Research in Microbiology, 2003, 154:91-96.
    Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan J R W. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. [J]. International Journal of Systematic Bacteriology, 1997, 47(4): 1188-1200.
    Vandamme P, Mahenthiralingarn E, Holmes B, Coenye T, Hoste B, De Vos P, Henry D, Speert D P. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar Ⅳ) [J]. Journal of Clinical Microbiology, 2000, 38: 1042-1047.
    Vermis K, Coenye T, LiPuma J J, Mahenthiralingam E, Nelis H J, Vandamme P. Proposal to accommodate Burkholderia cepacia genomovar Ⅵ as Burkholderia dolosa sp. nov. [J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54:689-691.
    Vermis K, Coenye T, Mahenthiralingam E, Nelis H J, Vandamme P. Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex [J]. Journal of Medical Microbiology, 2002, 51: 937-940.
    Walter H T, Marlene S, Robert B. Typing of clinical isolates of Enterobacter cloacae [J]. Journal of Clinical Microbiology, 1982, 16: 885-889.
    Welch D F, Muszynski M J, Pai C H, Maroon M J, Hribar M M, Gilligan P H, Matsen J M, Ahlin P G, Hilman B C, Chartrand S A. Selective and differential medium for the recovery of Pseudomonas cepacia from the respiratory tract of patients with cystic fibrosis [J]. Journal of Clinical Microbiology, 1987, 25: 1730-1734.
    Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group Ⅱ to the new genus, with the type species Burkolderia cepacia (palleroni and holmes 1981) comb. nov. [J]. Microbiology and Immunology, 1992, 36(12): 1251-1275.
    Yohalem D S, Lorbeer J W. Distribution of Burkholderia cepacia phenotypes by niche, method of isolation and pathogenicity to onion [J]. Annals of Applied Biology, 1997, 130(3): 467-479.
    Zhang L X, Xie G L. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize [J]. FEMS Microbiology Letters, 2007, 266:231-235.
    常青,周开亚.分子进化研究中系统发生树的重建[J].生物多样性,1998,6(1):55-62.
    陈述平.微生物风险评估的原则和规范[J].中国水产,2003,3:20-23.
    陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展[J].微生物学杂志,2000,20(1):37-41.
    陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,32(2):97-103.
    程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报,2003,25(5):732-737.
    戴晓燕,关桂兰.两株对辣椒疫霉菌有拮抗作用的拮抗菌分泌蛋白的研究[J].中国生物防治,1999,15(2):81-84.
    范青,田世平,姜爱丽,徐勇.采摘后果实病害生物防治拮抗菌的筛选和分离[J].中国环境科学,2001,21(4):313-316.
    高霞.警惕婴幼儿真菌感染[J].教育导刊:幼儿教育,2003,47.
    洪秀华.临床微生物学和微生物检验实验指导[M].北京:人民卫生出版社,2002.
    黄朝晖,袁凤京,王华生.洋葱综合征患者终末消毒方法[J].中华医院感染学杂志,2005,15(4):380.
    黄晓东,季尚宁,Glick B,Greenberg B,卢林纲.植物促生菌及其促生机理(续)[J].现代化农业,2002,7:13—15.
    金扬秀,谢关林.甜瓜枯萎病防治研究进展[J].植物保护,2002,28(6):43-45.
    刘涛,刘正学,张长乾,李德舜.苯酚高效降解菌L68菌株的分离及分类鉴定[J].山东大学学报(理学版),2002,37(4):369—372.
    刘行超.嗜麦芽窄食单胞菌研究进展[J].广西医学,2003,25(4):554-555.
    楼兵干,张炳欣,Maarten R,Stephen B.黄瓜苗期猝倒病拮抗菌的鉴定[J].浙江大学学报(农业与生命科学版),2002,28(1):54-58.
    罗远婵,谢关林.伯克氏细菌是我们的敌人还是朋友[J] 微生物学报,2005,45(4):647-652.
    罗远婵.农田中洋葱伯克氏菌基因型及其与医院同型致病菌的比较研究[D].杭州:浙江大学,2006.
    年华,褚云卓,赵敏,张丽霞.洋葱伯克氏菌监测结果分析[J].临床检验杂志,2000,18(4):238-239.
    庞学群,张昭其,黄雪梅.果蔬采后病害的生物防治[J].热带亚热带植物学报,2000,10(2):186-192.
    任欣正.植物病原细菌的分类和鉴定[M].北京:农业出版社,1994,55.
    孙福在.赵廷昌.冰核细菌生物学特性及其诱发植物霜冻机理与防霜应用[J].生态学报,2003,23(2):336-344.
    谢关林,金扬秀,徐传雨,任小平,余雪芳,Mew T W.我国水稻纹枯病拮抗细菌种类研究[J].中国生物防治,2003,19(4):166—170.
    薛勇,张长铠,刘涛.洋葱伯克霍尔德氏菌产邻苯二酚2,3-双加氧酶的研究[J].生命科学研究,2003,7(2):156-160.
    仪美芹,王开运,姜兴印,王怀训.微生物降解农药的研究进展[J].山东农业大学学报(自然科学版),2002,33(4):519-524.
    尹鸿翔,张杰,候若彤,王建东,杨志荣.一株几丁质酶产生菌的分离鉴定及其灭蝗增效作用[J].植物保护,2004,30(2):37-41.
    尤荣开,陈秀平,蒋贤高,邵朝朝.伯克氏菌86株的分布与耐药性[J].中国抗感染化疗杂志,2003,3(1):34-36.
    袁应华,单咏梅.24株洋葱伯克霍尔德菌实验分析[J].临床检验杂志,1999,17(5):303.
    张军民,罗燕萍,赵莉萍,白丽彦,姚艺辉.临床分离洋葱伯克氏菌鉴定方法的探讨[J].中华检验医学杂志,2002,25(6):333-335.
    张立新,谢关林,楼妙苗.洋葱伯克氏菌作为植物病害生防菌的研究进展及其风险评价[J].中国生物防治,2006a,22(4):260-264.
    张立新,谢关林,罗远婵.洋葱伯克氏菌在农业上应用的利弊探讨[J].中国农业科学,2006b,39(6):1166-1172.
    张琴芳,代光辉,顾振芳,陈晓斌,赵杰,Alabouvette C.非致病性镰刀菌Fusarium oxysporum菌株47(FO47)对番茄枯萎病的防治效果[J].上海交通大学学报(农业科学),2004,22(1):17-21.
    张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247-252.
    张耀东,杨文超,贾翔,李海华.郑州地区植物上冰核活性细菌的分离和鉴定[J].郑州粮食学院学报,1996,17(3):34-38.
    赵博光,郭道森.松材线虫携带的一株细菌分离及其致病性[J].北京林业大学学报,2004,26(1):57-61.
    郑维,权春善,范圣第.产生多种抗真菌活性物质菌种的筛选分离和鉴定[J].大连民族学院学报,2004,6(5):37-42.
    朱小敏,周新.侵袭性肺曲霉病的诊断与治疗[J].中国呼吸与危重监护杂志,2005,26(12):737-740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700