用户名: 密码: 验证码:
迟发性脊椎骨骺发育不良病蛋白Sedlin与PAM14蛋白的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迟发性脊椎骨骺发育不良病(Spondyloepiphyseal dysplasia tarda, SEDT, MIM 313400)是一种X连锁隐性遗传病,主要累及脊椎椎体和承重大关节。其主要临床特征为:患者骨骼病变,常患骨关节炎,身高增长下降致短躯干性侏儒。
     SEDL基因的突变导致SEDT的发生(MIM 300202)。该基因定位于Xp22,全长20 kb,包含6个外显子。SEDL基因的表达产物为140个氨基酸组成的Sedlin蛋白,而且该蛋白高度保守,在人类和酵母具有相同的氨基酸序列。Sedlin蛋白是酵母TRAPP(transport protein particle)复合物中Trs20p亚基的同源物。目前认为TRAPPⅠ定位于高尔基复合体的顺面,为COPⅡ膜泡的受体,在从内质网到高尔基复合体的膜泡运输中发挥作用;TRAPPⅡ则主要作用于高尔基复合体内部的物质运输。酵母中Trs20p亚基是TRAPPⅠ、TRAPPⅡ所共有的,而且Trs20p亚基的失活具有致死效应,因此推测Sedlin蛋白质可能在物质运输过程即内质网-高尔基复合体之间的膜泡运输中发挥作用。
     为了了解哺乳动物细胞中Sedlin蛋白的功能,本课题组成员已经利用酵母双杂交系统筛选到了若干Sedlin蛋白的结合蛋白,其中包括一些已知蛋白,如胞内氯离子通道蛋白(chloride intracellular channel,CLIC),EB病毒诱导的基因3(Epstein-Barr virus-induced gene 3,EBI3)蛋白, MRG相关的蛋白PAM14(protein associated with MRG, 14 kD),它们在细胞内均具有广泛的功能。
     先前已利用细胞生物学和分子生物学手段证实了在哺乳动物细胞内Sedlin蛋白与CLIC1是相互作用的,提示Sedlin蛋白可能在细胞发育中发挥重要作用。本研究是在上述研究的基础上,探寻Sedlin蛋白在哺乳动物细胞内与PAM14蛋白是否存在相互作用,以进一步了解Sedlin蛋白的功能。首先构建真核表达重组质粒pCDGFP-SEDL、pCDGFP-PAM14,转染COS7细胞,通过免疫荧光方法,检测Sedlin蛋白、PAM14蛋白单独表达时在细胞内的定位情况;转染HEK 293T细胞,细胞裂解液进行Western blot鉴定蛋白质在哺乳动物细胞内的表达;构建重组质粒pGEX-3X-SEDL以表达融合蛋白GST-Sedlin,进行GST-pull down实验,检测Sedlin蛋白在体外与PAM14蛋白能否相互作用;进行免疫共沉淀和免疫荧光实验,检测在哺乳动物细胞内Sedlin蛋白与PAM14蛋白能否相互作用,能否共定位,共转染对蛋白质的定位有无影响。
     实验结果表明,Sedlin蛋白为一分子量约16kD的蛋白质,在胞质和胞核中均有分布,且主要表达于胞核;GFP-PAM14融合蛋白的分子量约为41kD,主要表达于细胞核,细胞质较少。GST-pull down实验结果表明,融合蛋白GST-Sedlin与PAM14蛋白之间存在相互作用;免疫共沉淀实验结果表明,在哺乳动物细胞内,Sedlin蛋白与PAM14蛋白之间存在相互作用;免疫荧光实验表明Sedlin蛋白与PAM14蛋白在细胞核存在共定位,且改变不同的蛋白标签,对共定位结果没有影响。综上,在哺乳动物细胞内,Sedlin蛋白与PAM14蛋白之间存在相互作用。
     PAM14,是由127个氨基酸残基组成的14 kD的高度保守的蛋白质。因其与MRG15(mortality factor 4-related gene family, MRG)基因家族和肿瘤抑制蛋白Rb蛋白(retinoblastoma tumor suppressor protein)相互作用,从而认为PAM14可能参与细胞生长、衰老、永生化等生命活动过程。我们的结果提示Sedlin可能在转录过程中发挥作用。
Spondyloepiphyseal dysplasia tarda (SEDT, MIM 313400) is a genetically heterogeneous disorder of X-linked recessive (XR). The main clinical features are skeletal disorders including osteoarthritis, short stature dwarf due to platyspondyly and dysplasia of large joints.
     SEDT is caused by the mutation of SEDL gene (MIM 300202), the product of which is called as Sedlin composed of 140-amino acid residues. The SEDL gene is 20 kb in length containing the six exons, and is mapped in Xp22. The highly homology between its orthlogs is found from yeast to human. Sedlin’s ortholog in yeast is Trs20p, a subunit of TRAPP (transport protein particle) complex. The TRAPP has two functional forms, TRAPPⅠand TRAPPⅡ. TRAPPⅠlocalizes on the cis membrane of Golgi complex and plays a critical role in the vesical transport from endoplasmic reticulum to Golgi as the receptor of the COPⅡvesicle. TRAPPⅡmainly participate in the trafficking within the Golgi complex. Both of the TRAPPⅠand TRAPPⅡhave the Trs20p subunit and its deletion has lethal effect on yeast cells that can be resecued by Sedlin with microinjection. So Sedlin may play important roles in the vesicle trafficking from the endoplasmic reticulum to the Golgi complex.
     To further examine the potential functions of Sedlin in mammalian cells, we performed the yeast two-hybrid screening and obtained some positive clones including CLIC(chloride intracellular channel), EBI3(Epstein-Barr virus-induced gene 3), and PAM14 (protein associated with MRG, 14 kD) , each of them manifest the wide variety of functions in cells.
     We have confirmed the Sedlin can be associated with CLIC1 in mammalian cells. Now we try to investigate whether Sedlin and PAM14 can interact each other in mammalian cells. Firstly, we constructed the recombinant plasmids pCDGFP-SEDL, pCDGFP-PAM14, and transfected them into mammalian cells, and the expression and localization of the Sedlin and PAM14 proteins were analyzed by western blot and fluorescence microscopy. Then we performed the GST-pull down assay with recombinant plasmid pGEX-3X-SEDL expressing the fusion protein GST-Sedlin. Finally, the interaction of Sedlin and PAM14 was confirmed with coimmuniprecipitation assay in HEK 293T cells, and immunofluorescence in COS7 cells was performed to investigate whether they are colocalized or not.
     The results showed the Sedlin can interact with PAM14 in vitro by GST-pull down assay and in vivo by coimmunoprecitation, and the colocalization of Sedlin and PAM14 was observed in COS7 cells. So we can conclude that Sedlin and PAM14 interact each other in mammalian cells.
     PAM14, a highly conserved protein composed of 127 amino acid residues, is associated with MRG15 and Rb which complexes with MRG15. Rb and MRG15 both function in transcriptional regulations and play important roles in cell growth, senescence and/or immortalization. Our results suggest Sedlin may have implications in transcription process.
引文
Ansieau, S., E. Kowenz-Leutz, R. Dechend, and A. Leutz. B-Myb, a repressed trans-activating protein. J. Mol. Med. 1997,75:815-819.
    Arsura, M., M. Introna, F. Passerini, A. Mantovani, and J. Golay. B-myb antisense oligonucleotides inhibit proliferation of human hematopoietic cell lines. Blood.1992, 79:2708-2716.
    Beggs AH, Hoffman EP, Snyder JR, Arahata K, Specht L, Shapiro F, Angelini C,Sugita H, Kunkel LM. Exploring the molecular basis for variability among patients with Beckermuscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet. 1991,49(1):54~67.
    Bertram MJ, BérubéNG, Hang-Swanson X, et al. Identification of a gene that reverses the immortal phenotype of a subset of cells and is a member of a novel family of transcription factor-like genes. Mol Cell Biol. 1999, 19(2):1479-85
    Bertram MJ, Pereira-Smith OM. Conservation of the MORF4 related gene family: identification of a new chromo domain subfamily and novel protein motif. Gene. 2001, 266(1-2): 111-21.
    Bies, J., B. Hoffman, A. Amanullah, T. Giese, and L. Wolff. B-Myb prevents growth arrest associated with terminal differentiation of monocytic cells. Oncogene.1996, 12:355-363.
    Capitanio N, Peccarisi R, Capitanio G, Villani G, De Nitto E, Scacco S, Papa S. Role of nuclear-encoded subunits of mitochondrial cytochrome c oxidase in proton pumping revealed by limited enzymatic proteolysis. Biochemistry.1994, 33(41):12521~6.
    Christ AD, Stevens AC, Koeppen H, et al. An interleukin 12-related cytokine is up-regulated in ulcerative colitis but not in Crohn's disease. Gastroenterology, 1998, 115(2): 307-313.
    Devergne O, Hummel M, Koeppen H, et al. A Novel Interleukin-12p40-Related Protein Induced by Latent Epstein-Barr Virus Infection in B Lymphocytes. J of Virology, 1996, 70(2):1143-1153.
    Devergne O, Coulomb-L'Hermine A, Capel F, Moussa M, Capron F. Expression of Epstein-Barr virus-induced gene 3, an interleukin-12 p40-related molecule, throughout human pregnancy: involvement of syncytiotrophoblasts and extravillous trophoblasts. Am J Pathol.2001,159(5):1763~76.
    Dulhunty A, Gage P, Curtis S et al. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator[J]. J Biol Chem, 2001; 276(5):3319~23.
    Fan L, Yu W, Zhu X. Interaction of Sedlin with chloride intracellular channel proteins. FEBS lett.2003,540(1-3):77-80.
    Ferguson-Smith, M.A. Placental mRNA in maternal plasma: prospects for fetal screening. (Commentary) Proc. Nat. Acad. Sci. 2003,100: 4360-4362.
    Fiedler J, Merrer ML, Mortier G, Heuertz S, Faivre L, Brenner RE. X-linkedspondyloepiphyseal dysplasia tarda: Novel and recurrent mutations in 13 European families. Hum Mutat.2004, 24(1):103.
    Gao C, Luo Q, Wang HL, Gao XQ, Fan QT, Wang H, Sheng GY, Zhou JH, Gao TZ. Identification of a novel mutation IVS2-2A-->C of SEDL gene in a Chinese family with X-linked spondyloepiphyseal dysplasia tarda. Zhonghua Yi Xue Yi Chuan Xue Za Zhi.200320(1):15~8. Chinese.
    Gecz J, Hillman MA, Gedeon AK, Cox TC, Baker E, Mulley JC. Gene structure and expression study of the SEDL gene for spondyloepiphyseal dysplasia tarda. Genomics.2000, 69(2):242~51.
    Gedeon AK, Colley A, Jamieson R, Thompson EM, Rogers J, Sillence D, Tiller GE, Mulley JC, Gecz J. Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat Genet. 1999, 22(4):400~4.
    Gedeon AK, Tiller GE, Le Merrer M, Heuertz S, Tranebjaerg L, Chitayat D, Robertson S, +987+Glass IA, Savarirayan R, Cole WG, Rimoin DL, Kousseff BG, Ohashi H, Zabel B, Munnich A, Gecz J, Mulley JC. The molecular basis of X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet.2001, 68(6):1386~97.
    Gehlert T, Devergne O, Niedobitek G. Epstein-Barr virus (EBV) infection and expression of the interleukin-12 family member EBV-induced gene 3 (EBI3) in chronic inflammatory bowel disease. J Med Viro.2004, 73(3):432~8.
    Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol. 2003 Sep; 178(3):357-72.
    Ghosh AK, Majumder M, Steele R, White RA, Ray RB. A novel 16-kilodalton cellular protein physically interacts with and antagonizes the functional activity of c-myc promoter-binding protein 1. Mol Cell Biol.2001, 21(2):655~62.
    Ginsburg KA. Luteal pHase defect. Etiology, diagnosis, and management. Endocrinol Metab Clin North Am. 1992 ,21(1):85-104.
    Henry MD, Campbell KP.A role for dystroglycan in basement membrane assembly.Cell.1998, 95(6):859~70.
    Henry MD, Campbell KP. Dystroglycan inside and out. Curr Opin Cell Biol.1999, 11(5):602~7.
    Henry MD, Satz JS, Brakebusch C, Costell M, Gustafsson E, Fassler R, Campbell KP. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization. J Cell Sci, 2001,114(Pt 6):1137~44.
    Heuertz S, Nelen M, Wilkie AO, Le Merrer M, Delrieu O, Larget-Piet L, Tranebjaerg L, Bick D, Hamel B, Van Oost BA, et al. The gene for spondyloepiphyseal dysplasia (SEDL) maps to Xp22 between DXS16 and DXS92. Genomics.1993, 18(1):100~4.
    Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992, 355(6362):696~702.
    Jentsch TJ, Günther W. Chloride channels: an emerging molecule picture[J]. Bioassays, 1997, 19(2):117~26.
    Kanagawa, M.; Saito, F.; Kunz, S.; Yoshida-Moriguchi, T.; Barresi, R.; Kobayashi, Y. M.; Muschler, J.; Dumanski, J. P.; Michele, D. E.; Oldstone, M. B. A.; Campbell, K.P..Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell. 2004,117: 953-964.
    Kao LC, Tulac S, Lobo S, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002,143(6):2119-38.
    Lam, E. W., and R. J. Watson. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J. 1993,12:2705-2713.
    Lane, S., P. Farlie, and R. Watson. B-Myb function can be markedly enhanced by cyclin A-dependent kinase and protein truncation. Oncogene. 1997,14:2445-2453.
    Larousserie F,Pflanz S,Coulomb-L’Hermine A,et al. Expression of IL-27 in human Th1-associated granulormatous diseasea. J Pathol, 2004, 202(2): 164-171.
    Leung JK, Berube N, Venable S, Ahmed S, Timchenko N, Pereira-Smith OM. MRG15 activates the B-myb promoter through formation of a nuclear complex with the retinoblastoma protein and the novel protein PAM14. J Biol Chem. 2001,276(42):39171-8.
    Lin, D., M. Fiscella, P. M. O'Connor, J. Jackman, M. Chen, L. L. Luo, A. Sala, S. Travali, E. Appella, and W. E. Mercer. Constitutive expression of B-myb can bypass p53-induced Waf1/Cip1-mediated G1 arrest. Proc. Natl. Acad. Sci. 1994, 91:10079 -10083.
    Lin, D., M. T. Shields, S. J. Ullrich, E. Appella, and W. E. Mercer. Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc. Natl. Acad. Sci. 1992,89:9210-9214.
    Lu JF, Ma HW, Jiang J, Niu GH, Liu XM. Identification of a novel mutation of the SEDL gene in X-linked spondyloepiphyseal dysplasia tarda, Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2004, 21(4):309~11.
    Maaser C, Egan LJ, Birkenbach MP, et al. Expression of Epstein-Barr virus-induced gene 3 and other interleukin-12-related molecules by human intestinal epithelium. Immunology, 2004, 112(3):437-445.
    Moon RT, Bowerman B, Boutros M, et al. The promise and perils of Wnt signaling through beta-catenin. Science. 2002,296(5573):1644-6.
    Mumm S, Zhang X, Vacca M, D'Esposito M, Whyte MP. The sedlin gene for spondyloepiphyseal dysplasia tarda escapes X-inactivation and contains a non-canonical splice site. Gene. 2001,273(2):285~93.
    Ng, E.K.O.; Tsui, N. B. Y.; Lau, T.K.; Leung, T.N.; Chiu, R.W.K.; Panesar, N.S.; Lit, L.C.W.;Chan,K.-W.; Lo, Y.M.D. mRNA of placental origin is readily detectable in maternal plasma. Proc. Nat. Acad. Sci. 2003,100: 4748-4753.
    Niedobitek G,Pazolt D,Teichmann M,et al. Frequent expression of the Epstein-Barr virus (EBV)-induced gene 3, an IL-12p40-related cytokine, in Hodgkin andReed-Sternberg cells. J pathol, 2002(3), 198: 310-316.
    Noma T, Adachi N, Nakazawa A. Cloning and functional characterization of the promoter region of the gene encoding human adenylate kinase isozyme 3. Biochem Biophys Res Commun. 1999, 264(3):990~7.
    Noma T, Fujisawa K, Yamashiro Y, Shinohara M, Nakazawa A, Gondo T, Ishihara T, Yoshinobu K. Structure and expression of human mitochondrial adenylate kinase targeted to the mitochondrial matrix. Biochem J. 2001, 358(Pt 1):225~32.
    Novarino G, Fabrizi C, Tonini R, et al. Involvement of the intracellular ion channel CLIC1 in microglia-mediated beta-amyloid-induced neurotoxicity. J Neurosci. 2004, 24(23):5322-30.
    Omata F, Birkenbach M, Matsuzaki S, Christ AD, Blumberg RS. The expression of IL-12 p40 and its homologue, Epstein-Barr virus-induced gene 3, in inflammatory bowel disease. Inflamm Bowel Dis. 2001,7(3):215~20.
    Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E, Blumenschein WM, Mattson JD, Wagner JL, To W, Zurawski S, McClanahan TK, Gorman DM, Bazan JF, de Waal Malefyt R, Rennick D, Kastelein RA. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity. 2002, 16(6):779~90.
    Popovici RM, Kao LC, Giudice LC. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology. Endocrinology. 2000,141(9):3510-3.
    Punyadeera C, Verbost P, Groothuis P. Oestrogen and progestin responses in human endometrium. J Steroid Biochem Mol Biol. 2003 , 84(4):393-410.
    Sacher M, Jiang Y, Barrowman J, Scarpa A, Burston J, Zhang L, Schieltz D, Yates JR 3rd, Abeliovich H, Ferro-Novick S. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 1998, 17(9):2494~503.
    Sacher M, Barrowman J, Wang W, Horecka J, Zhang Y, Pypaert M, Ferro-NovickS. TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell. 2001, 7(2):433~42.
    Sala, A., M. Kundu, I. Casella, A. Engelhard, B. Calabretta, L. Grasso, M. G. Paggi, A. Giordano, R. J. Watson, K. Khalili, and C. Peschle. Activation of human B-MYB by cyclins. Proc. Natl. Acad. Sci. 1997,94:532-536.
    Salamonsen LA, Dimitriadis E, Jones RL, et al. Complex regulation of decidualization: a role for cytokines and proteases--a review. Placenta. 2003 ,24 Suppl A: S76-85.
    Sanjuan R, Leon M, Zueco J, Sentandreu R (1999) Basic phenotypic analysis of six novel yeast genes reveals two essential genes and one which affects the growth rate. Yeast. 1999,15(4):351~60.
    Seeburg PH, Shine J, Martial JA, Ullrich A, Baxter JD, Goodman HM. Nucleotide sequence of part of the gene for human chorionic somatomammotropin: purification of DNA complementary to predominant mRNA species. Cell.1977, 12(1):157~65.
    Shaw MA, McDonough B, Hodess AB, Harter DH, Gecz J. Identification of a SEDL gene mutation in an individual with Leber hereditary optic neuropathy and spondyloepiphyseal dysplasia. Am J Med Genet.2004,129A(2):206~7.
    Shi YR, Lee CC, Hsu YA, Wang CH, Tsai FJ. A novel nonsense mutation of the sedlin gene in a family with spondyloepiphyseal dysplasia tarda. Hum Hered.2002, 54(1):54~6.
    Shine J, Seeburg PH, Martial JA, Baxter JD, Goodman HM. Construction and analysis of recombinant DNA for human chorionic somatomammotropin.Nature.1977, 270(5637):494-9.
    Szpiro-Tapia S, Sefiani A, Guilloud-Bataille M, Heuertz S, Le Marec B, Frezal J, Maroteaux P, Hors-Cayla MC. Spondyloepiphyseal dysplasia tarda: linkage with genetic markers from the distal short arm of the X chromosome. Hum Genet. 1988, 81(1):61~3.
    Takahashi T, Takahashi I, Tsuchida S, Oyama K, Komatsu M, Saito H, Takada G. An SEDL gene mutation in a Japanese kindred of X-linked spondyloepiphyseal dysplasia tarda. Clin Genet. 2002, 61(4):319~20.
    Tiller GE, Hannig VL, Dozier D, Carrel L, Trevarthen KC, Wilcox WR, Mundlos S, Haines JL, Gedeon AK, Gecz J. A recurrent RNA-splicing mutation in the SEDL gene causes X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet. 2001, 68(6):1398~407.
    Tominaga K, Leung JK, Rookard P, Echigo J, Smith JR, Pereira-Smith OM. MRGX is a novel transcriptional regulator that exhibits activation or repression of the B-myb promoter in a cell type-dependent manner.J Biol Chem. 2003,278(49):49618-24.
    Tominaga K, Magee D M, Matzuk M M et al. PAM14, a novel MRG- and Rb- associated protein, is not required for development and T-Cell function in mice. Mol Cell Biol. 2004, 24 (19): 8366- 73.
    Valenzuela SM, Martin DK, Por SB, Robbins JM, Warton K, Bootcov MR, Schofield PR, Campbell TJ, Breit SN. Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem. 1997, 272(19):12575~82.
    Valenzuela SM, Mazzanti M, Tonini R et al. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle[J]. J Physiol, 2001, 529Pt3:541~52.
    Valerie Sampson and Trevor Alleyne. Cytochrome c/cytochrome c oxidase interaction: Direct structural evidence for conformational changes during enzyme turnover. FEBS. 2001, 268: 6534-6544.
    Van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev. 2003,13(1):28-33..
    Walker WH, Fitzpatrick SL, Barrera-Saldana HA, Resendez-Perez D, Saunders GF. The human placental lactogen genes: structure, function, evolution and transcriptional regulation. Endocr Rev. 1991, 12(4):316~28.
    Wang W, Sacher M, Ferro-Novick S. TRAPP stimulates guanine nucleotide exchangeon Ypt1p. J Cell Biol. 2000, 151(2):289~96.
    Watson, R. J., C. Robinson, and E. W. Lam. Transcription regulation by murine B-myb is distinct from that by c-myb. Nucleic Acids Res. 1993,21:267-272.
    Weishaupt A, Kadenbach B. Selective removal of subunit VIb increases the activity of cytochrome c oxidase. Biochemistry.1992, 31(46):11477~81.
    Winder SJ. The complexities of dystroglycan. Trends Biochem Sci. 2001, 26(2):118~24.
    Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998,14:59-88.
    Wynne-Davies R, Gormley J. The prevalence of skeletal dysplasias. An estimate of their minimum frequency and the number of patients requiring orthopaedic care. J Bone Joint Surg Br. 1985, 67(1):133~7.
    Ziebold, U., O. Bartsch, R. Marais, S. Ferrari, and K. H. Klempnauer. Phosphorylation and activation of B-Myb by cyclin A-Cdk2. Curr. Biol. 1997,7:253-60.
    郭洪,章波,许雪青,王燕,白云.土家族迟发性脊椎骨骺发育不良一家系报告.第三军医大学学报.2007,29(2):172,5.
    郭奕斌,王晶晶. X-连锁迟发性脊椎骨骺发育不良一家系报道.中国优生与遗传杂志.2008, 16(1):99.
    吕峻峰,麻宏伟,姜俊,牛国辉,刘晓梅. X-连锁迟发性脊椎骨骺发育不良SEDL基因新突变.中华医学遗传学杂志.2004,21(4):309-11.
    钟子琳,戴寒晶,刘晓颖,范礼斌. EBI3与Sedlin蛋白的相互作用[J].安徽医科大学学报,2006;41(1):13-15.
    Cereijido M, Contreras RG, Shoshani L. Cell adhesion, polarity, and epithelia in the dawn of metazoans [J]. Physiol Rev. 2004; 84(4):1229-6.
    Chantret I, Dancourt J, Barbat A, et al. Two proteins homologous to the N- and C-terminal domains of the bacterial glycosyltransferase Murg are required for the second step of dolichyl-linked oligosaccharide synthesis in Saccharomyces cerevisiae [J]. J Biol Chem. 2005, 280(10):9236-42.
    Cui T, Nakagami H, Iwai M, et al. ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth[J]. Biochem Biophys Res Commun. 2000,279(3):938-412.
    Daviet L, Lehtonen JY, Tamura K, et al. Cloning and characterization of ATRAP, anovel protein that interacts with the angiotensin II type 1 receptor [J]. J Biol Chem. 1999,274(24):17058-62.
    Fanning AS, Anderson JM. Protein modules as organizers of membrane structure [J]. Curr Opin Cell Biol. 1999 Aug; 11(4):432-9
    Field S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989; 340 (6230) : 245-6
    Gao XD, Tachikawa H, Sato T, et al. Alg14 recruits Alg13 to the cytoplasmic face of The endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation [J]. J Biol Chem. 2005, 280(43):36254-62.
    Hurd TW, Gao L, Roh MH, et al. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly [J]. Nat Cell Biol. 2003 Feb; 5(2):137-42.
    Lemmers C, Medina E, Delgrossi MH, et al. hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells [J]. J Biol Chem. 2002; 277(28):25408-15.
    Lopez-Ilasaca M, Liu X, Tamura K, et al. The angiotensin II type I receptor- associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling [J]. Mol Biol Cell. 2003, 14(12):5038-50.
    Makarova O, Roh MH, Liu CJ, et al. Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1) [J].Gene. 2003, 302(1-2):21-9.
    Roh MH, Makarova O, Liu CJ, et al. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost [J]. J Cell Biol. 2002; 157(1):161-72.
    Roh MH, Fan S, Liu CJ, et al. The Crumbs3-Pals1 complex participates in the establishment of polarity in mammalian epithelial cells [J]. J Cell Sci. 2003, 116(Pt14):2895-906.
    Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes[J]. Annu Rev Neurosci. 2001; 24:1-29
    Straight SW, Shin K, Fogg VC, et al. Loss of PALS1 expression leads to tight junction and polarity defects [J]. Mol Biol Cell. 2004, 15(4):1981-90.
    Tanaka Y, Tamura K, Koide Y, et al. The novel angiotensin II type 1 receptor (AT1R) -associated protein ATRAP downregulates AT1R and ameliorates cardiomyocyte hypertrophy [J]. FEBS Lett. 2005; 579(7):1579-86.
    Clontech. Matchmaker GAL4 Two-Hybrid System 3 & Libraries user manual. 1999; PT3247-1.
    Clontech. Yeast Protocols Handbook. 2001; PT3024-1.
    Allan BB, Moyer BD, and Balch WE. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science.2000,289:444-448. Alvarez C, Fujita H, Hubbard A, and Sztul E. ER to Golgi transport: requirement for p115 at a pre-Golgi VTC stage. J Cell Biol.1999,147:1205-1222.
    Alvarez C, Garcia-Mata R, Brandon E, and Sztul E. COPI recruitment is modulated by a Rab1b-dependent mechanism. Mol Biol Cell.2003,14:2116-2127.
    Alvarez C, Garcia-Mata R, Hauri HP, and Sztul E. The p115-interactive proteins GM130 and giantin participate in endoplasmic reticulum-Golgi traffic. J Biol Chem. 2001,276: 2693-2700.
    Barlowe C. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J Cell Biol.1997,139(5):1097-108.
    Barr FA, Nakamura N, and Warren G. Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO J.1998,17:3258-3268.
    Barr FA, Puype M, Vandekerckhove J, and Warren G. GRASP65, a protein involved in the stacking of Golgi cisternae. Cell.1997,91:253-262.
    Barrowman J, Sacher M, and Ferro-Novick S. TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J. 2000,19:862-869.
    Bascom RA, Srinivasan S, and Nussbaum RL. Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain. J Biol Chem.1999,274: 2953-2962.
    Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell.2004, 116(2):153-66.
    Chavrier P, Goud B. The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol.1999,11(4):466-75.
    Conibear E, Cleck JN, and Stevens TH. Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell. 2003,14:1610-1623.
    Conibear E , Stevens TH. Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell.2000,11: 305-323.
    Derby MC, van Vliet C, Brown D, Luke MR, Lu L, Hong W, Slow JL, and Gleeson PA. Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN. J Cell Sci. 2004,117:5865-5874.
    Diao A, Rahman D, Pappin DJ, Lucocq J, and Lowe M. The coiled-coil membrane protein golgin-84 is a novel Rab effector required for Golgi ribbon formation. J Cell Biol.2003,160:201-212.
    Duman JG, Forte JG. What is the role of SNARE proteins in membrane fusion? Am JPhysiol Cell Physiol.2003,285:C237-C249.
    Finger FP, Hughes TE, and Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell.1998,92:559-571.
    Gedeon AK, Colley A, Jamieson R, Thompson EM, Rogers J, Sillence D, Tiller GE, Mulley JC, and Gecz J. Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat Genet. 1999,22: 400-404.
    Gedeon AK, Tiller GE, Le Mevrev M, Huertz S, Tranebjaerg L, Chitayat D, Robertson S, Glass IA, Savarirayan R, Cole WG, Rimoin DL, Koussoff BG, Ohashi H, Zabel B, Munich A, Gecz J, and Mulley JC. The molecular basis of X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet. 2001,68:1386-1397.
    Gillingham AK, Munro S. Long coiled-coil proteins and membrane traffic. Biochim Bio-phys Acta. 2003,1641(2-3):71-85.
    Gillingham AK, Pfeifer AC, and Munro S. CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell. 2002,13:3761-3774.
    Gillingham AK, Tong AH, Boone C, and Munro S. The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J Cell Biol. 2004,167:281-292.
    Grindstaff KK, Yeaman C, and Nelson WJ. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell. 1998,93:731-740.
    Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahma M, Tani K, Yamamoto A, Tohyama M, and Tagaya M. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J. 2004,23 :1267-1278.
    Hicks SW , Machamer CE. Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta. 2005,1744:406-414.
    Hamada D, Takata Y, Osabe P, Nomura K, Shinohara S, Egawa H, Nakano S, Shinomiya F, Scafe CR, Reeve VM, Miyamoto T, Moritani M, Kunika K, Inoue H, Yasui N, and Itakura M. Association between single-nucleotide polymorphisms in the SEC8L1 gene, which encodes a subunit of the exocyst complex, and rheumatoid arthritis in a Japanese population. Arthritis Rheum. 2005,52:1371-1380.
    Hsu SC, Ting AE, Hazuka CD, Davanger S, Kenny JW, Kee Y, and Scheller RH. The mammalian brain rsec6/8 complex. Neuron. 1996,17:1209-1219.
    Infante C, Ramos-Morales F, Fedriani C, Bornens M, and Rios RM. GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol. 1999,145:83-98.
    Jahn R, Lang T, Sudhof TC. Membrane fusion. Cell. 2003,112(4):519-33. Jones S, Newman C, Liu F, and Segev N. The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell. 2000,11: 4403-4411.
    Jang SB, Kim YG, Cho YS, Suh PG, Kim KH, and Oh BH. Crystal structure of SEDL and its implications for a genetic disease spondyloepiphyseal dysplasia tarda. J Biol Chem. 2002,277: 49863-49869.
    Kjer-Nielsen L, Teasdale RD, van Vliet C, and Gleeson PA. A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr Biol. 1999,9: 385-388,
    Kirchhausen T. Three ways to make a vesicle. Nat Rev Mol Cell Biol. 2000,1(3):187-98.
    Kuo A, Zhong C, Lane WS, and Derynck R. Transmembrane transforming growth factor-αtethers to the PDZ domain-containing, Golgi membrane-associated protein p59/GRASP55. EMBO J. 2000,19: 6427-6439.
    Liewen H, Meinhold-Heerlein I, Oliveira V, Schwarzenbacher R, Luo G, Wadle A, Jung M, Pfreundschuh M, and Stenner-Liewen F. Characterization of the human GARP (Golgi associated retrograde protein) complex. Exp Cell Res. 2005,306: 24-34.
    Lin RC, Scheller RH. Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol. 2000,16:19-49.
    Linstedt AD and Hauri HP. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell. 1993,4: 679-693.
    Loh E and Hong W. The binary interacting network of the conserved oligomeric Golgi tethering complex. J Biol Chem. 2004,279: 24640-24648.
    Loh E, Peter F, Subramaniam VN, and Hong W. Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus. J Cell Sci. 2005,118: 1209-1222.
    Luke MR, Kjer-Nielsen L, Brown DL, Stow JL, and Gleeson PA. GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network. J Biol Chem. 2003,278: 4216-4226.
    Lu L and Hong W. Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell. 2003,14: 3767-3781.
    Lu L, Tai G, and Hong W. Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol Biol Cell. 2004,15: 4426-4443.
    Lupas A. Predicting coiled-coil regions in proteins. Curr Opin Struct Biol. 1997,7: 388-393.
    Maag RS, Hicks SW, and Machamer CE. Death from within: apoptosis and the secretory pathway. Curr Opin Cell Biol. 2003,15: 456-461.
    Malsam J, Satoh A, Pelletier L, and Warren G. Golgin tethers define subpopulations of COPI vesicles. Science. 2005,307: 1095-1098.
    Misumi Y, Sohda M, Tashiro A, Sato H, and Ikehara Y. An essential cytoplasmic domain for the Golgi localization of coiled-coil proteins with a COOH-terminal membrane anchor. J Biol Chem. 2001,276: 6867-6873.
    Morsomme P and Riezman H. The Rab GTPase Ypt1p and tethering factors coupleprotein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell. 2002, 2: 307-317.
    Moyer BD, Allan BB, and Balch WE. Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic. 2001,2: 268-276.
    Munro S and Nichols BJ. The GRIP domain: a novel Golgi-targeting domain found in several coiled-coil proteins. Curr Biol. 1999,9: 377-380.
    Nakamura N, Lowe M, Levine TP, Rabouille C, and Warren G. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell. 1997,89: 445-455.
    Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, and Warren G. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol.1995,131: 1715-1726.
    Nelson DS, Alvarez C, Gao YS, Garcia-Mata R, Fialkowski E, and Sztul E. The membrane transport factor TAP/p115 cycles between the Golgi and earlier secretory compartments and contains distinct domains required for its localization and function. J Cell Biol. 1998,143: 319-331.
    Orci L, Perrelet A, and Rothman JE. Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA. 1998,95: 2279-2283.
    Panic B, Perisic O, Veprintsev DB, Williams RL, and Munro S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol Cell. 2003,12: 863-874.
    Perez F, Pernet-Gallay K, Nizak C, Goodson HV, Kreis TE, and Goud B. CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J Cell Biol. 2002,156: 631-642.
    Preisinger C, Short B, De Corte V, Bruyneel E, Haas A, Kopajtich R, Gettermans J, and Barr A. YSK1 is activated by the Golgi matrix protein GM130 and plays a role incell migration through its substrate 14-3-3ζ. J Cell Biol. 164: 2004,1009-1020.
    Puthenveedu MA and Linstedt AD. Evidence that Golgi structure depends on a p115 activity that is independent of the vesicle tether components giantin and GM130. J Cell Biol. 2001,155: 227-238.
    Puthenveedu MA and Linstedt AD. Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis. Proc Natl Acad Sci USA. 2004,101: 1253-1256.
    Rabouille C, Misteli T, Watson R, and Warren G. Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system. J Cell Biol. 129: 1995,605-618.
    Reilly BA, Kraynack BA, VanRheenen SM and Waters MG. Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Mol Biol Cell. 2001,12:3783-3796.
    Sacher M, Barrowman J, Schieltz D, Yates JR 3rd, and Ferro-Novick S. Identifi- cati on and characterization of five new subunits of TRAPP. Eur J Cell Biol. 2000,79: 71-80.
    Sacher M, Barrowman J, Wong W, Horecka J, Zhang Y, Pypaert M, and Ferro-Novick S. TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell. 20017: 433-442.
    Sacher M and Ferro-Novick S. Purification of TRAPP from Saccharomyces cerevisiae and identification of its mammalian counterpart. Methods Enzymol. 2001,329: 234-241.
    Sapperstein SK, Walter DM, Grosvenor AR, Heuser JE, and Waters MG. p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Uso1p. Proc Natl Acad Sci USA. 1995,92: 522-526.
    Satoh A, Wang Y, Malsam J, Beard MB, and Warren G. Golgin-84 is a rab1 binding partner involved in golgi structure. Traffic. 20034: 153-161.
    Short B, Preisinger C, Korner R, Kopajtich R, Byron O, and Barr FA. A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J CellBiol. 2001,155: 877-883.
    Shorter J, Watson R, Giannakou ME, Clarke M, Warren G, and Barr FA. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 199918: 4949-4960.
    Setty SR, Shin ME, Yoshino A, Marks MS, and Burd CG. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol. 2003, 13: 401-404.
    Shorter J, Beard MB, Seemann J, Dirac-Svejstrup AB, Warren G. Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J Cell Biol. 2002, 157(1):45-62.
    Siniossoglou S and Pelham HR. An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J. 2001,20: 5991-5998.
    Siniossoglou S and Pelham HR. Vps51p links the VFT complex to the SNARE Tlg1p. J Biol Chem. 2002,277: 48318-48324.
    Sohda M, Misumi Y, Yamamoto A, Yano A, Nakamura N, and Ikehara Y. Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin. J Biol Chem. 2001,276: 45298-45306.
    Sonnichsen B, Lowe M, Levine T, Jamsa E, Dirac-Svejstrup B, Warren G. A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol. 1998,140(5):1013-21.
    Stephens DJ, Pepperkok R. Differential effects of a GTP-restricted mutant of Sar1p on segregation of cargo during export from the endoplasmic reticulum. J Cell Sci. 2oo4,117(Pt 16):3635-44.
    Suvorova ES, Duden R, and Lupashin VV. The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol. 2002, 157: 631-643.
    Sztul E, Lupashin V. Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physio. 2006,l290: C11-C26 .
    TerBush DR, Maurice T, Roth D, and Novick P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 1996,15: 6483-6494.
    VanRheenen SM, Reilly BA, Chamberlain SJ, and Waters MG. Dsl1p, an essential protein required for membrane traffic at the endoplasmic reticulum/Golgi interface in yeast. Traffic. 2001, 2: 212-231.
    Walenta JH, Didier AJ, Liu X, and Kramer H. The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins. J Cell Biol. 2001,152: 923-934.
    Waters MG, Clary DO, and Rothman JE. A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J Cell Biol. 1992,118: 1015-1026.
    Whyte JR and Munro S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Developmental Cell. 2001,1: 527-537.
    Whyte JR, Munro S. Vesicle tethering complexes in membrane traffic.J Cell Sci. 2002 Jul 1,115(Pt 13):2627-37.
    Wu M, Lu L, Hong W, and Song H. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol. 2004,11: 86-94.
    Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S, and Freeze H. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med. 2004,10: 518-523.
    Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG, Johannes L, Holzbauer EL, Koval M, McCaffery JM, and Marks MS. tGolgin-1 (p230,golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci. 2005,118: 2279-2293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700