用户名: 密码: 验证码:
基质金属蛋白酶基因3’端非翻译区多态性与食管癌的关联及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     食管癌是人类最常见的恶性肿瘤之一,以其高发病率和高致死率成为威胁人类生命和健康的杀手。我国是食管癌大国,其中尤以鳞癌为主,每年有数十万的新发病例。因此,研究食管癌的发病机制,寻找其早期诊断、预防以及预后的标志就显得非常重要。
     食管癌是一个多基因参与、多因素作用的复杂疾病。近年来大量研究从基因多态性出发筛选出了很多与食管癌发病风险以及转移、预后相关的遗传标记。除了少部分位于蛋白编码序列或者启动子区域的位点功能得到阐明外,大部分的位点并没有发现其参与食管癌发病的机制,仅仅是作为一个分子标志物。
     microRNA(miRNA)是一种内源性的长22nt的单链小分子RNA,是一组不编码蛋白质的短序列RNA。通过与靶基因mRNA的3’端非翻译区(3’Untranslated Region, 3’UTR)的结合,在转录后水平降解mRNA或抑制翻译,从而调节基因的表达。miRNA与靶基因结合的关键部位称为“种子区域”(seed region, microRNA 5’末端开始2-7个核苷酸),与mRNA的3'UTR通过碱基配对结合。在人类基因组中目前已发现有超过一千万个SNP位点,在多态性数据库中可以发现其中有相当一部分落在了3’端非翻译区。最近的研究已经证实,这些位于3’端非翻译区的SNPs可能会通过影响miRNA的功能从而参与靶基因的表达调控。
     肿瘤细胞外基质与肿瘤基质细胞在肿瘤的发生发展过程中发挥着举足轻重的作用,基质金属蛋白酶通过对细胞外基质的降解来调节细胞的微环境。基质金属蛋白酶是一类依赖锌离子的蛋白水解酶,在人类己发现有20多种,几乎所有类型的人类肿瘤包括食管癌中都有基质金属蛋白酶,尤其是MMP1、2、3和9的表达异常。大多数基质金属蛋白酶由肿瘤细胞产生和分泌,但也可由肿瘤细胞周围的间质细胞分泌。研究表明,基质金属蛋白酶高表达与肿瘤进展,癌细胞侵袭和转移程度,病人的生存期等临床转归密切相关,是肿瘤病人预后的重要指标之一。
     前期大量研究关注基质金属蛋白酶基因的多态性位点与肿瘤的关联性,并发现部分位于启动子以及编码区的SNP位点与肿瘤的发生、转移以及临床分级分期相关。但迄今为止,还未有研究关注基质金属蛋白酶3’端非翻译区(3’UTR)的多态性位点与肿瘤易感性的关联研究。因此,本研究通过生物信息学预测,筛选基质金属蛋白酶基因3’端非翻译区中潜在的miRNA靶点,发掘这些靶点区域中的SNP位点,结合病例-对照研究,探讨基质金属蛋白酶基因3’端非翻译区中的基因多态性与食管癌发病的关系,并通过荧光素酶报告基因实验研究这些多态性位点的生物学功能。
     目的
     1、筛选与食管癌密切相关的基质金属蛋白酶基因3’UTR区域中的单核苷酸多态性位点,评价其对miRNA作用的影响。
     2、在重庆地区的食管鳞癌病例和正常对照中对以上位点进行关联研究。
     3、在细胞模型中,探讨阳性关联位点的生物学功能。
     方法与结果
     1、在NCBI数据库中下载与食管癌密切相关的基质金属蛋白酶基因(MMP1、2、3、7、8、9、10、11、12、13、14、15、21、26)的3’UTR序列,综合利用Diana、Targetscans、microCosm、miRanda、PicTar、microinspector以及PolymiRTS几个在线工具预测这些序列当中的miRNA结合位点。然后在dbSNP数据库中进行BLAST-SNP,筛选其中的SNPs位点,接下来使用RNAhybrid工具中的自由能总值(△△G)评价这些SNPs对“microRNA-靶基因”相互作用的影响。最后通过最小等位基因频率大于10%的标准选出一批位点进行下一步研究。最后共筛选到了位于基质金属蛋白酶基因3’UTR区域的13个SNP位点,在其中选取MMP8(rs12284255)、MMP2(rs7201)和MMP10 (rs470168)三个中国汉人中的高频位点进行下一步的研究。
     2、在444例食管鳞癌病人以及匹配的468例正常对照中,采用SNPshot的分型方法对以上筛选出来的SNP位点进行分型。结果发现对照人群中三个位点的基因型分布均符合哈代-温伯格平衡,将基因分型数据与HapMap数据库中的数据作比较,结果显示三个SNP位点在重庆地区正常汉族人群中的分布与中国北京汉人基本一致,与日本东京人无明显差异,但与欧裔美国人、非裔美国人以及非洲约鲁巴人相比有显著差异。
     采用病例-对照研究分析了三个SNP位点与食管鳞癌发病风险以及临床分期的关系。结果发现,MMP10(rs470168)位点和食管鳞癌发病风险间无相关性,而MMP8(rs12284255)和MMP2(rs7201)位点在共显性、显性、隐性和乘法模型中都显示出与食管鳞癌发病风险显著相关。MMP8(rs12284255)位点的AA基因型对食管鳞癌的发病风险有保护作用(OR为0.31, 95%CI为0.15-0.62),而MMP2(rs7201)位点的CC基因型是食管鳞癌发病的危险因素(OR为2.29,95%CI为1.44-3.64)。进一步在临床分期分析中发现,MMP8(rs12284255)位点在临床I/IIa分期组中A等位基因的频率为0.26,而在临床IIb/III/IV分期组中为0.17,CA基因型与较早的临床分期有关联(OR为0.48,95%为0.31-0.74)。MMP2(rs7201)位点在临床I/IIa分期组中C等位基因的频率为0.32,而在临床IIb/III/IV分期组中为0.45,CC基因型与较晚的临床分期有关联(OR为2.85,95%为1.65-4.23)。
     按照吸烟史对样本进行分层分析,结果发现,在不吸烟人群中,两个位点的基因型分布在食管癌患者组和对照组中没有显著差异(P值分别为0.29和0.39);而在吸烟人群中,两个位点的基因型分布与食管鳞癌发病风险显著相关(P值均小于0.001)。位点MMP8(rs12284255)和MMP10(rs470168)的单倍型分析分析显示,这两个位点不存在连锁不平衡关系(D’为0.423,r2为0.135),在单倍型的关联研究中也发现,四种单倍型在食管鳞癌病例组和对照组中均没有显著差异。
     3、第二部分研究分别探讨了MMP2(rs7201)和MMP8(rs12284255)两个位点的生物学功能。
     RT-PCR和Western-blot检测MMPs基因在食管癌组织中的mRNA和蛋白表达,统计相应SNP位点不同基因型与表达量的关系,探讨SNP位点影响基因表达调控的层面。然后分别构建SNP位点不同等位基因的报告基因载体pMIR-REPORT,与经生物信息学预测的相应miRNA的mimics/controls分别共转染到细胞株中,检测荧光素酶报告基因的表达,比较SNP位点不同基因型对“miRNA-靶基因”作用的影响,证实SNP位点的生物学功能。最后再选择基因分型为功能等位基因纯合子的细胞株,转染与生物信息学预测相应的miRNA的mimics和controls到细胞中,检测目的基因的蛋白表达,比较两组的差异,进一步验证SNP位点的功能意义。
     (1)MMP2(rs7201)位点的生物学功能研究检测并统计了rs7201位点不同基因型的食管鳞癌样本中MMP2基因的mRNA和蛋白表达水平。结果发现,三组的mRNA表达水平没有明显差异(P=0.85);而在蛋白表达水平,CC组明显高于CA组和AA组,CC组与AA组之间存在显著差异(P<0.05)。提示位点rs7201可能是在转录后水平发挥作用。
     在随后的荧光素酶报告基因实验中,选择miR-520g表达较低的KYSE150细胞株,将miR-520g mimics/controls与pMIR-REPORT-C/pMIR-REPORT-A共转染到细胞中,结果发现,与miR mimics + pMIR-REPORT-C组相比,miR mimics + pMIR-REPORT-A组中荧光素酶表达量明显下降(P<0.05)。证实了MMP2(rs7201)位点的不同等位基因能够影响miR-520g与靶位点的结合能力,A等位基因的亲和力明显高于C等位基因。MMP2(rs7201)位点在食管癌细胞株TE-1中的基因型为AA,分别转染miR-520g的mimics和controls到细胞中,检测MMP2的蛋白表达。结果发现,与转染之前相比,miR-520g的mimics转染组MMP2的蛋白表达明显降低,而controls组没有显著变化,验证了miR-520g对MMP2基因的调控作用。
     (2)MMP8(rs12284255)位点的生物学功能研究
     检测并统计了MMP8(rs12284255)位点不同基因型的食管癌样本中MMP8基因的mRNA和蛋白表达水平,结果发现,三组的mRNA表达水平没有明显差异(P=0.79);而在蛋白表达水平,CC组明显高于CA组和AA组,CC组与AA组之间存在显著差异(P<0.05)。提示位点rs12284255可能也在转录后水平发挥作用。在随后的荧光素酶报告基因实验中,选择miR-495表达较低的KYSE150细胞株,将miR-495 mimics/controls与pMIR-REPORT-G/pMIR-REPORT-T共转染到细胞中,结果发现,与miR mimics + pMIR-REPORT-G组相比,miR mimics + pMIR-REPORT-T组中荧光素酶表达量明显下降(P<0.05)。证实了MMP8(rs12284255)位点的不同等位基因能够影响miR-495与靶位点的结合能力,T等位基因(对应于正义链上rs12284255位点的A等位基因)的亲和力明显高于G(对应于正义链上rs12284255位点的C等位基因)等位基因。
     结论
     1、生物信息学预测并筛选到三个位于基质金属蛋白酶基因3’UTR区域的SNP位点,在重庆地区食管鳞癌病例和正常对照中的研究发现,MMP8(rs12284255)位点和MMP2(rs7201)位点与食管鳞癌的发病风险以及临床分期存在显著关联。
     2、位点MMP2(rs7201)的不同等位基因能够影响miR-520g与靶位点的结合能力,A等位基因的亲和力明显高于C等位基因。该多态性位点可能通过影响miR-520g与MMP2基因3’UTR靶位点的结合能力而参与食管癌的发病。
     3、位点MMP8(rs12284255)的不同等位基因能够影响miR-495与靶位点的结合能力,T等位基因(对应于正义链上rs12284255位点的A等位基因)的亲和力明显高于G等位基因(对应于正义链上rs12284255位点的C等位基因)。该多态性位点可能通过影响miR-495与MMP8基因3’UTR靶位点的结合能力而参与食管癌的发病。
     综上所述,本研究从与食管癌发生发展密切相关的基质金属蛋白酶基因家族出发,利用生物信息学在其3’UTR区域发掘位于miRNA结合位点的SNP位点,并通过病例-对照研究发现MMP8(rs12284255)位点和MMP2(rs7201)位点与食管鳞癌的发病风险以及临床分期存在显著关联,最后在细胞模型中证实了这两个SNP位点的生物学功能。研究为我们采用候选基因SNP关联分析策略开展散发性食管癌遗传易感性的研究提供了一条崭新的思路,关联研究结果可能可以用于食管癌的早期诊断,但这两个位点的关联性需要在更大的样本以及其它人群中得到验证。阳性关联SNP位点的功能研究结果不仅阐述了食管癌中基质金属蛋白酶异常表达的可能机制,还为miR-520g和miR-495参与食管癌发病的可能性提供了线索,值得进一步深入研究。
Background
     Esophageal cancer is regarded as one of the most common malignancy worldwide. Compared with other nations, there is higher incidence in China. Esophageal cancer is an extremely fatal disease. In spite of great advancement in cancer treatment, prognosis is still poor.
     Esophageal cancer is a complex disease involving many genes. Lots of genetic markers for tumorigenesis and progression of esophageal cancer have been identified in the case-control studies. However, the function of lots of the SNP markers hasn’t been illuminated, except the sites located in the promoter or coding regions.
     MicroRNAs (miRNAs) are endogenous 22nt small non-coding single stranded RNAs that bind with target mRNAs and function as post-transcriptional regulators of gene expression by either promoting mRNA degradation or translational silencing. The critical region for miRNA binding to mRNA is the 'seed region' (2-7 nucleotides from the 5' end of the miRNA), which most often binds to a target site in the 3'UTR of the genes by perfect Watsn-Crick complementarities. To date, approximately 10 million SNPs have been identified in the human genome, occurring on average every 100 to 300 base pairs. According to the SNP database, there are many SNP sites located in the 3’untranslated regions. Recent studies have discovered that these SNPs may influence the targeting of microRNA to protein-coding genes.
     The matrix outside the tumor cells and the sustentacular cells play important role in the tumorigenesis and progression. Matrix Metalloproteinases (MMPs) regulate the micro- environment through degrading the matrix. There are over 20 kinds of MMPs in human, which depend on Zn2+. Almost all of MMPs expressed abnormally in human cancers, especially MMP1, 2, 3, 9. Most of the MMPs are secreted by the tumor cells and the sustentacular cells. Lots of studies have uncovered that overexpression of MMPs correlated with progress, invasion and metastasis of cancer, so MMPs may also act as biomarkers for prognosis.
     Epidemiological studies have established a link between variations in MMPs genes and risk of cancer. Some SNP sites located in the promoter or coding regions were identified associated with tumorigenesis, metastasis and clinical stages. However, there is no association study focusing on the sequence variants in the 3’UTR of MMPs. In the study, we predicted the binding sits of miRNAs in the 3’UTR of MMPs by using bioinformatics approaches. Then after picking the SNP sites in these binding regions, we evaluated the relationship between the SNPs and risk of esophageal cancer in a case-control study. For the SNPs associated with ESCC, we verified the function of them in later luciferase reporter assay.
     Objectives
     1. Predicted the binding sits of miRNAs in the 3’UTR of MMPs by using bioinformatics approaches, picked the SNP sites in these binding regions and evaluated the effects of SNPs.
     2. Evaluated the associations between the SNPs and risk of esophageal cancer in a case-control study.
     3. For the SNPs associated with ESCC, we verified the biological functions of them in the cell model.
     Methods
     1. Downloaded the 3' UTR sequences of MMP gene associated with esophageal cancer in NCBI database, used online prediction tools such as Diana, Targetscans, microCosm, miRanda, PicTar, microinspector and PolymiRTS to predict the miRNA combinding site of these sequences. Screened SNP sites in dbSNP database by BLAST-SNP, and used the total free energy (△△G) to evaluate the interaction between these SNPs and microRNA-target gene with RNAhybrid tool. If the minor allele frequency is over 10%, the SNPs could be used in the further study.
     2. Genotyped the SNPs by using SNPshot method in 444 ESCC patients and matched 468 healthy controls. Non-conditional logistic regression was used to revise the confounding factors such as age, sex and smoking status. We used odd ratio (OR) and 95% confidence interval (95% CI) to evaluate the associations between the SNPs and the risk of ESCC.
     3. RT-PCR and Western-blot were used to detect the mRNA and protein expression of MMPs in esophageal cancer tissues. The pMIR-REPORT vectors with different alleles of ESCC associated SNP sites were constructed. Then co-transfected the pMIR-REPORT vector and correlative miRNAs mimics/controls to a cell line and detected the expression of luciferase reporter gene. Compared the expression of luciferase reporter with different allele and verified the biological functions of the SNP sites. After selecting cell line with homozygous functional alleles of ESCC-associated SNP sites, transfected mimics/controls of corresponding miRNAs, detected protein expression and compared the two groups.
     Results
     1. 13 SNPs were identified in 3’UTR of ESCC relevant MMPs. MMP8 (rs12284255), MMP2 (rs7201) and MMP10 (rs470168) were selected for further study.
     2. The three SNPs were genotyped by using SNPshot assay in 444 ESCC patients and 468 healthy controls. The genotype distributions of the three SNPs all conformed to H-W equilibrium in controls and were coincident with that of CHB (Chinese Han in Beijing) in HapMap database. However, they were different from that in CEU (Utah residents with Northern and Western European ancestry from the CEPH collection), ASW (African ancestry in Southwest USA) and YRI (Yoruban in Ibadan, Nigeria). Then the association between the three sites and risk/clinic stage of ESCC were evaluated. The results showed that site MMP8 (rs12284255) and MMP2 (rs7201) were both associated with risk of ESCC. The association was more significant under codominant genetic model for the two sites (P=0.001, P<0.001). Genotype AA of site MMP8 (rs12284255) was protective for ESCC (OR: 0.31, 95%CI: 0.15-0.62), however Genotype CC of site MMP2 (rs7201) increased the risk for ESCC (OR: 2.29, 95%CI: 1.44-3.64). When took account of smoking status, the association was lost for both sites in the non-smokers.
     The haplotype results showed that there was no linkage disequilibrium between site MMP10 (rs470168) and MMP8 (rs12284255) (D=0.423, r2=0.135). So the two sites might be not in a LD block. Further association study also showed there was no association between haplotypes and ESCC.
     Site MMP8 (rs12284255) and MMP2 (rs7201) were also associated with the clinic stage of ESCC. The frequency of allele A of site MMP8 (rs12284255) was 0.26 in stage I/IIa and 0.17 in stage IIb/III/IV. Genotype CA was associated with early stage of ESCC (OR: 0.48, 95% CI: 0.31-0.74). The frequency of allele C of site MMP2 (rs7201) was 0.32 in stage I/IIa and 0.45 in stage IIb/III/IV. Genotype CA was associated with a later stage of ESCC (OR: 2.85, 95% CI: 1.65-4.23).
     3. In the part two, the biological function of site MMP2 (rs7201) and MMP8 (rs12284255) were evaluated.
     (1) Biological function study of MMP2 (rs7201)
     The mRNA/protein expression of MMP2 in samples with different genotypes of site MMP2 (rs7201) were measured. The results showed that there was no significant difference between three groups on the mRNA expression level. However, the protein expression was higher in genotype CC than genotype CA or AA. The difference between genotype CC and AA was significant statistically (P<0.05). Then selected esophageal carcinoma cell line KYSE150 with low expression of miR-520g for further study. After cotransfecting with miR-520g mimics/controls and pMIR-REPORT-C/pMIR-REPORT-A, the expression of luciferase was obviously low in“miR mimics + pMIR-REPORT-A”group, compared with“miR mimics + pMIR-REPORT- C”group (P<0.05). The results revealed that the affinity of allele A to miR-520g was much higher than allele C.
     The genotype of site MMP2 (rs7201) for esophageal carcinoma cell line TE-1 was AA. We transfected Mimics/controls of miR-520g to KYSE450 cell respectively and detected the protein expression of MMP2. The results showed the expression of MMP2 decreased obviously after transfection with mimics of miR-520g, however, that remained invariable after transfection with controls.
     So different alleles of site MMP2 (rs7201) might influence the combination of miR-520g to 3’UTR of MMP2 gene.
     (2) Biological function study of MMP8 (rs12284255)
     Detected the mRNA/protein expression of MMP8 in samples with different genotypes of site MMP8 (rs12284255). The results showed that there was no significant difference between three groups on the mRNA expression level. However, the protein expression was higher in genotype CC than genotype CA or AA. The difference between genotype CC and AA was significant statistically (P<0.05).
     Esophageal carcinoma cell line KYSE150 was picked for further study, because of low expression of miR-495. After cotransfecting with miR-495 mimics/controls and pMIR-REPORT-G/pMIR-REPORT-T, the expression of luciferase was obviously low in“miR mimics + pMIR-REPORT-T”group, compared with“miR mimics + pMIR- REPORT-G”group (P<0.05). The results revealed that tha affinity of allele T (corresponding to C allele of rs12284255 in the sense strand) to miR-495 was much higher than allele G (corresponding to C allele of rs12284255 in the sense strand). So different alleles of site MMP8 (rs12284255) might influence the combination of miR-495 to 3’UTR of MMP8 gene.
     Conclusions
     1. For the three SNPs located in 3'UTR of MMPs, we conducted a case-control design in Chinese Han population in Chongqing. These results demonstrated there was statistical significance of MMP8 (rs12284255) and MMP2 (rs7201) polymorphisms in the risk and clinical stage of esophageal squamous cell carcinoma.
     2. Different alleles of rs7201 could affect the ability of miR-520g combining to the target sites in MMP2. The affinity of A allele was higher than C allele. This polymorphism could participate the pathogenesis of ESCC by affecting this combination.
     3. Different alleles of MMP8 (rs12284255) could affect the ability of miR-495 combining to the target sites in MMP8. The affinity of T allele (corresponding to A allele of rs12284255 in the sense strand) was higher than G allele (corresponding to C allele of rs12284255 in the sense strand). This polymorphism could also participate the pathogenesis of ESCC.
     Above all, we discovered a set of SNP sites in the 3’UTR of MMPs genes. After a case-control study in a Chinese Han population in Chongqing, we found two sites MMP8 (rs12284255) and MMP2 (rs7201) were associated with risk and clinic stage of ESCC significantly. The biological functions of the two ESCC-associated SNP sites were studied in the later study. The results might be valuable for early detection of ESCC, however the association needs verification in larger populations or in other ethnic populations. The study might also elucidate possible mechanism of abnormal expression of MMPs in ESCC from a sight from miRNA.
引文
1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006,24(14):2137-2150.
    2. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med, 2003, 349(23):2241-2252.
    3. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002, 2(3):161-174.
    4. Pritchard SC, Nicolson MC, Lloret C, et al. Expression of matrix metalloproteinases 1, 2,
    9 and their tissue inhibitors in stage II non-small cell lung cancer: implications for MMP inhibition therapy. Oncol Rep. 2001, 8(2):421-424.
    5. Cho NH, Shim HS, Rha SY, et al. Increased expression of matrix metalloproteinase 9 correlates with poor prognostic variables in renal cell carcinoma. Eur Urol. 2003, 44(5):560-566.
    6. Bhuvarahamurthy V, Kristiansen GO, Johannsen M, et al. In situ gene expression and localization of metalloproteinases MMP1, MMP2, MMP3, MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma. Oncol Rep. 2006, 15(5):1379-1384.
    7. Bramhall SR, Stamp GW, Dunn J, et al. Expression of collagenase (MMP2), stromelysin (MMP3) and tissue inhibitor of the metalloproteinases (TIMP1) in pancreatic and ampullary disease. Br J Cancer. 1996, 73(8):972-978.
    8. Denys H, De Wever O, Nusgens B, et al. Invasion and MMP expression profile in desmoid tumours. Br J Cancer. 2004, 90(7):1443-1449.
    9. Mendes O, Kim HT, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis. 2005, 22(3):237-246.
    10. Decock J, Paridaens R, Ye S. Genetic polymorphisms of matrix metalloproteinases in lung, breast and colorectal cancer. Clin Genet. 2008, 73(3):197-211.
    11. Chaudhary AK, Singh M, Bharti AC, et al. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. J Biomed Sci. 2010, 17:10.
    12. Bartel B. MicroRNAs directing siRNA biogenesis.Nature Struct. Mol Biol. 2005, 12: 169–571.
    13. Sobin LH, Fleming ID: TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer. 1997, 80:1803-1804.
    14. Sethupathy P, Megraw M, Hatzigeorgiou, AG. A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods. 2006, 3:881-886.
    15. Lewis BP, Burge CB, Bartel DP. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 2005, 120(1): 15-20.
    16. Lewis BP, Shih I, Jones-Rhoades MW, et al. Prediction of Mammalian MicroRNA Targets. Cell. 2003, 115(7):787-798.
    17. Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34(Database issue):D140-4.
    18. Chen PY, Manninga H, Slanchev K, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev. 2005, 19(11):1288-1293.
    19. Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nature Genetics. 2006, 38:1452-1456.
    20. Rusinov V, Baev V, Minkov IN, et al. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res. 2005, 33(Web Server issue):W696-700.
    21. Bao L, Zhou M, Wu L, et al. PolymiRTS Database: linking polymorphisms in micro- RNA target sites with complex traits. Nucleic Acids Res. 2007, 35(Database issue): D51-54.
    22. Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med. 2010, 42(4):233-244.
    23.蒋知俭:统计分析在医学课题中的应用:人民卫生出版社, 2008.
    24. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequili- brium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15:97-98.
    25. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet. 2005, 76:449-462.
    26. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstru- ction from population data. Am J Hum Genet. 2001, 68:978-989.
    27. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science. 2002, 296:2225-2229.
    28. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002, 3:299-309.
    29.唐晓君,刘达伟,胡志琼.重庆市城市居民1991-2000年恶性肿瘤死因分析.中国公共卫生, 2002, 18(8):964-965.
    30. Hiyama T, Yoshihara M, Tanaka S, et al. Genetic polymorphisms and esophageal cancer risk. Int J Cancer. 2007, 121(8):1643-1658.
    31. Ge H, Cao YY, Chen LQ, et al. PTEN polymorphisms and the risk of esophageal carcinoma and gastric cardiac carcinoma in a high incidence region of China. Dis Esophagus. 2008, 21(5):409-415.
    32. Shao Y, Tan W, Zhang S. P53 gene codon 72 polymorphism and risk of esophageal squamous cell carcinoma: a case/control study in a Chinese population. Dis Esophagus. 2008, 21(2):139-143.
    33. Zhai R, Liu G, Asomaning K, et al. Genetic polymorphisms of VEGF, interactions with cigarette smoking exposure and esophageal adenocarcinoma risk. Carcinogenesis. 2008, 29(12):2330-2334.
    34. Tse D, Zhai R, Zhou W, et al. Polymorphisms of the NER pathway genes, ERCC1 and XPD are associated with esophageal adenocarcinoma risk. Cancer Causes Control. 2008, 19(10):1077-1083.
    35. Jin G, Deng Y, Miao R, et al. TGFB1 and TGFBR2 functional polymorphisms and risk of esophageal squamous cell carcinoma: a case-control analysis in a Chinese population. J Cancer Res Clin Oncol. 2008, 134(3):345-351.
    36. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007, 8(3):221-233.
    37. Ghilardi G, Biondi ML, Mangoni J, et al. Matrix metalloproteinase-1 promoter polymorp hism 1G/2G is correlated with colorectal cancer invasiveness. Clin Cancer Res. 2001, 7:2344–2346.
    38. Kanamori Y. Matsushima M, Minaguchi T, et al. Correlation between expression of the matrixmetalloproteinase-1 gene in ovarian cancer and an insertion/deletion polymer- phism in its promoter region. Cancer Res. 1999, 59:4225–4227.
    39. Zhu Y, Spitz M.R, Lei L, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer the susceptibility. Cancer Res. 2001, 61:7825-7829.
    40. Hashimoto T, Uchida K, Okayama N, et al. Association of matrix metalloproteinase (MMP)-1 promoterpolymorphism with head and neck squamous cell carcinoma. Cancer Lett, 2004, 211:19-24.
    41. Yu C, Pan K, Xing D, et al. Correlation between a single nucleotide polymorphism in the Matrix Metalloproteinase-2 promoter and risk of lung cancer. Cancer Res. 2002, 62:6430–6433.
    42. Miao XP, Yu CY, Tan W, et al.A Functional Polymorphism in the Matrix Metallopr- oteinase-2 Gene Promoter (-1306C/T) is Associated with Risk of Development but not Metastasis of Gastric Cardia Adenocarcinoma. Cancer Res. 2003, 63:3987–3990.
    43. Biondi ML, Turri O, Leviet S, et al. MMP1 and MMP3 Polymorphisms in Promoter Regions and Cancer. Clinical Chemistry. 2000, 46:2023-2024.
    44. Hughes S, Agbaje L, Rebecca L, et al. MatrixMetalloproteinase Single-Nucleotide Polymorphisms and Haplotypes Predict Breast Cancer Progression. Clin Cancer Res. 2007, 13:6673-6680.
    45. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009, 136(4):586-591.
    46. Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther. 2008, 7(12):3655-3660.
    47. Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 2007, 39:673-677.
    48. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005, 435(7043):834–838.
    49. Sevignani C, Calin GA, Nnadi SC, et al. MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci. USA 2007, 104(19):8017-8022.
    50. Kent, OA, Mendell, JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006, 25:6188-6196.
    51. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nature Rev. Cancer 2006, 6:259-269.
    52. Hobert O. Common logic of transcription factor and microRNA action. Trends Biochem Sci. 2004, 29(9):462-468.
    53. Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 2006, 3(11):881-886.
    54. Chen K, Song F, Calin GA, et al. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 2008, 29(7):1306-1311.
    55. Chen XB, Chen GL, Liu JN, et al. Genetic polymorphisms in STK15 and MMP-2 associated susceptibility to esophageal cancer in Mongolian population. Zhonghua Yu Fang Yi Xue Za Zhi. 2009, 43:559-564.
    56. Yan Li, Dong-lan Sun, Ya-nan Duan, et al. Association of functional polymorphisms in MMPs genes with gastric cardia adenocarcinoma and esophageal squamous cell carcinoma in high incidence region of North China.Mol Biol Rep, 2010, 37:197-205.
    57. Bradbury PA, Zhai R, Hopkins J, et al. Matrix metalloproteinase 1, 3 and 12 polymorphisms and esophageal adenocarcinoma risk and prognosis.Carcinogenesis. 2009, 30:793-798.
    58. Wu J, Zhang L, Luo H, et al.Association of matrix metalloproteinases-9 gene polymorphisms with genetic susceptibility to esophageal squamous cell carcinoma. DNA Cell Biol, 2008, 27:553-557.
    59. Zhang XJ, Guo W, Wang N, et al.The association of MMP-13 polymorphism with susceptibility to esophageal squamous cell carcinoma and gastric cardiac adenocarc- inoma.Yi Chuan, 2006, 28:1500-1504.
    60. Gao YT, McLaughlin JK, Blot WJ, et al. Risk factors for esophageal cancer in Shanghai, China. I. Role of cigarette smoking and alcohol drinking. Int J Cancer. 1994, 58(2): 192-196.
    61. Hu J, Nyrén O, Wolk A, et al. Risk factors for oesophageal cancer in northeast China. Int J Cancer. 1994, 57(1):38-46.
    62. Yu Y, Taylor PR, Li JY, et al. Retrospective cohort study of risk-factors for esophageal cancer in Linxian, People's Republic of China. Cancer Causes Control. 1993, 4(3): 195-202.
    63. Nie L, Liu ZJ, Zhou WX, et al. Chemokine receptor CXCR3 is important for lung tissue damage and airway remodeling induced by short-term exposure to cigarette smoking in mice. Acta Pharmacol Sin. 2010, 31(4):436-442.
    64. Ho YC, Yang SF, Huang FM, et al. Up-regulation of osteolytic mediators in human osteosarcoma cells stimulated with nicotine. J Periodontal Res. 2009, 44(6):760-766.
    65. Iki K, Tsutsumi M, Kido A, et al. Expression of matrix metalloproteinase 2 (MMP-2), membrane-type 1 MMP and tissue inhibitor of metalloproteinase 2 and activation of proMMP-2 in pancreatic duct adenocarcinomas in hamsters treated with N-nitrosobis (2-oxopropyl) amine. Carcinogenesis. 1999, 20(7):1323-1329.
    1. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005, 120(5):635-647.
    2. Esquela-Kerscher A, Trang P, Wiggins JF, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008, 7(6):759-764.
    3. Arena S, Isella C, Martini M, et al. Knock-in of oncogenic Kras does not transform mouse somatic cells but triggers a transcriptional response that classifies human cancers. Cancer Res. 2007, 67(18):8468-8476.
    4. Mounawar M, Mukeria A, Le Calvez F, et al. Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history. Cancer Res. 2007, 67(12):5667-5672.
    5. Chin LJ, Ratner E, Leng S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3’untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008, 68(20):8535–8540.
    6. Pritchard SC, Nicolson MC, Lloret C, et al. Expression of matrix metalloproteinases 1, 2,
    9 and their tissue inhibitors in stage II non-small cell lung cancer: implications for MMP inhibition therapy. Oncol Rep. 2001, 8(2):421-424.
    7. Bhuvarahamurthy V, Kristiansen GO, Johannsen M, et al. In situ gene expression and localization of metalloproteinases MMP1, MMP2, MMP3, MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma. Oncol Rep. 2006, 15(5):1379-1384.
    8. Bramhall SR, Stamp GW, Dunn J, et al. Expression of collagenase (MMP2), stromelysin (MMP3) and tissue inhibitor of the metalloproteinases (TIMP1) in pancreatic and ampullary disease. Br J Cancer. 1996, 73(8):972-978.
    9. Mendes O, Kim HT, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis. 2005, 22(3):237-246.
    10. Levi E, Fridman R, Miao HQ, et al. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996, 93 (14):7069-7074.
    11. Doerner AM, Zuraw BL. TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respir Res. 2009, 10:100.
    12. Augoff K, Grabowski K, Rabczynski J, et al. Expression of decorin in esophageal cancer in relation to the expression of three isoforms of transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) and matrix metalloproteinase-2 activity. Cancer Invest. 2009, 27(4):443-452.
    13. Samantaray S, Sharma R, Chattopadhyaya TK, et al. Increased expression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2004, 130(1):37-44.
    14. Cowan RW, Mak IW, Colterjohn N, et al. Collagenase expression and activity in the stromal cells from giant cell tumour of bone. Bone. 2009, 44(5):865-871.
    15. Stenman M, Paju A, Hanemaaijer R, et al. Collagenases(MMP-1, - 8and-13)and trypsinogen-2 in fluid from benign and malignant ovarian cysts. Tumour Biol. 2003, 24(1):9-12.
    16. Moilanen M, Piril? E, Grénman R, et al. Expression and regulation of collagenase-2 (MMP-8) in head and neck squamous cell carcinomas. J Pathol. 2002, 197(1):72-81.
    17. Giambernardi TA, Sakaguchi AY, Gluhak J, et al. Neutrophil collagenase (MMP-8) is expressed during early development in neural crest cells as well as in adult melanoma cells. Matrix Biol. 2001, 20(8):577-587.
    18. Ko?omecki K, StepieńH, Bartos M, et al. Evaluation of MMP-1, MMP-8, MMP-9 serum levels in patients with adrenal tumors prior to and after surgery. Neoplasma. 2001, 48(2):116-121.
    19. Kim MH, Albertsson P, Xue Y, et al. Expression of neutrophil collagenase (MMP-8) in Jurkat T leukemia cells and its role in invasion. Anticancer Res. 2001, 21(1A):45-50.
    20. Agarwal D, Goodison S, Nicholson B, et al. Expression of matrix metalloproteinase 8 (MMP-8) and tyrosinase-related protein-1 (TYRP-1) correlates with the absence of metastasis in an isogenic human breast cancer model. Differentiation. 2003, 71(2): 114-125.
    21. Montel V, Kleeman J, Agarwal D, et al. Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res. 2004, 64(5):1687-1694.
    22. Decock J, Hendrickx W, Vanleeuw U, et al. Plasma MMP1 and MMP8 expression in breast cancer: protective role of MMP8 against lymph node metastasis. BMC Cancer. 2008, 8:77.
    23. Vihinen P, Koskivuo I, Syrjanen K, et al. Serum matrix metalloproteinase-8 is associated with ulceration and vascular invasion of malignant melanoma. Melanoma Res. 2008, 18(4):268-273.
    24. Stadlmann S, Pollheimer J, Moser PL, et al. Cytokine-regulated expression of collagenase-2 (MMP-8) is involved in the progression of ovarian cancer. Eur J Cancer. 2003, 39(17): 2499-2505.
    25. Gutiérrez-Fernández A, Fueyo A, Folgueras AR, et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 2008, 68(8):2755-2763.
    26. Korpi JT, Kervinen V, Maklin H, et al. Collagenase-2 (matrix metalloproteinase-8) plays a protective role in tongue cancer. Br J Cancer. 2008, 98(4):766-775.
    27. Balbín M, Fueyo A, Tester AM, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003, 35(3):252-257.
    28. Palavalli LH, Prickett TD, Wunderlich JR, et al. Analysis of the matrix metalloprot- einase family reveals that MMP8 is often mutated in melanoma.Nat Genet. 2009, 41(5):518-520.
    29. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009, 136(4):586-591.
    30. Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther. 2008, 7(12):3655-3660.
    31. Guo Y, Chen Z, Zhang L, et al. Distinctive miRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res. 2008, 68(1):26-33.
    32. Feber A, Xi L, Luketich JD, et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg. 2008, 135(2):255-260.
    33. Lowery AJ, Miller N, Devaney A, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009, 11(3):R27.
    34. Dacic S, Kelly L, Shuai Y, et al. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol. 2010 Sep 3. [Epub ahead of print]
    35. Guo L, Liu Y, Bai Y, et al. Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer. 2010, 46(9):1692-1702.
    36. Simion A, Laudadio I, Prévot PP, et al. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun. 2010, 391(1):293-298.
    37. Wu M, Jolicoeur N, Li Z, et al. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis. 2008, 29(9):1710–1716.
    38. Nicoloso MS, Sun H, Spizzo R, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010, 70(7): 2789-2798.
    39. Hoffman AE, Zheng T, Yi C, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res.2009, 69(14): 5970–5977.
    40. Tian T, Shu Y, Chen J, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev. 2009, 18(4):1183–1187.
    41. Peng S, Kuang Z, Sheng C, et al. Association of MicroRNA-196a-2 Gene Polymorphism with Gastric Cancer Risk in a Chinese Population. 2010, Dig Dis Sci. 55(8):2288-2293.
    42. Wang Kai, Guo Hong, Hu Huamei, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of Esophageal Squamous Cell Carcinoma risk in Chinese Han. Biomarkers. 2010 Aug 19. [Epub ahead of print]
    43. Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 2008, 105(20):7269–7274.
    44. Xu B, Feng NH, Li PC, et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate. 2009, 70(5):467–472.
    45. Xu T, Zhu Y, Wei QK, et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis. 2008, 29(11): 2126–2131.
    46. Hong Guo, Kai Wang, Gang Xiong, et al. A Functional SNP in microRNA-146a IsAssociated with Risk of Esophageal Squamous Cell Carcinoma in Chinese Han. Familial Cancer. 2010 Aug 1. [Epub ahead of print]
    47. Shen J, Ambrosone CB, DiCioccio RA, et al. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008, 29(10):1963–1966.
    48. Gao Y, He Y, Ding J, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3’untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis. 2009, 30(12):2064–2069.
    49. Saetrom, P, Biesinger J, Li SM, et al. A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res. 2009, 69(18): 7459–7465.
    50. Tchatchou S, Jung A, Hemminki K, et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis. 2009, 30(1):59–64.
    51. Adams BD, Furneaux H, White BA. The microribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α(ERα) and represses ERαmessenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007, 21(5):1132–1147.
    52. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000, 100(1):57-70.42. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001, 1(1):46-54.
    53. Hrabec E, Naduk J, Strek M, et al. Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors. Postepy Biochem. 2007, 53(1):37-45.
    54. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol. 2000, 10(6):415-433.
    55. Delassus GS, Cho H, Hoang S, et al. Many new down- and up-regulatory signaling pathways, from known cancer progression suppressors to matrix metalloproteinases, differ widely in cells of various cancers. J Cell Physiol. 2010, 224(2):549-558.
    56. Théret N, Musso O, Campion JP, et al. Overexpression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 in liver from patients with gastrointestinal adenocarcinoma and no detectable metastasis. Int J Cancer. 1997, 74(4):426-432.
    57. Brun JL, Cortez A, Commo F, et al. Serous and mucinous ovarian tumors express different profiles of MMP-2, -7, -9, MT1-MMP, and TIMP-1 and -2. Int J Oncol. 2008,33(6):1239-1246.
    58. Guo CB, Wang S, Deng C, et al. Relationship between matrix metalloproteinase 2 and lung cancer progression. Mol Diagn Ther. 2007, 11(3):183-92.
    59. Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer. 2010, 1(4): 381-387.
    60. Yoshino Y, Kageshita T, Nakajima M, et al. Clinical relevance of serum levels of matrix metallopeptidase-2, and tissue inhibitor of metalloproteinase-1 and -2 in patients with malignant melanoma.J Dermatol. 2008, 35(4):206-214.
    61. Kebebew E, Peng M, Reiff E, et al. Diagnostic and extent of disease multigene assay for malignant thyroid neoplasms. Cancer. 2006,106(12):2592-2597.
    62. Gururajan R, Lahti JM, Grenet J, et al. Duplication of a Genomic Region Containing the Cdc2L1-2 and MMP21-22 Genes on Human Chromosome 1p36.3 and their Linkage to D1Z2. Genome Res. 1998, 8(9): 929–939.
    63. Llano E, Pendás AM, Freije JP, et al. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res. 1999, 59(11):2570-2576.
    64. Gossas T, Danielson UH. Characterization of Ca2+interactions with matrix metallope- ptidase-12: implications for matrix metallopeptidase regulation. Biochem J. 2006, 398(3): 393-398.
    65. López-Otín C, Palavalli LH, Samuels Y. Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle. 2009, 8(22):3657-3662.
    66. González-Arriaga P, López-Cima MF, Fernández-Somoano A, et al. Polymorphism +17 C/G in matrix metalloprotease MMP8 decreases lung cancer risk. BMC Cancer. 2008, 8:378.
    67. Decock J, Long JR, Laxton RC, et al. Association of matrix metalloproteinase-8 gene variation with breast cancer prognosis. Cancer Res. 2007, 67(21):10214-10221.
    68. Qiu W, Zhou G, Zhai Y, et al. No association of MMP-7, MMP-8, and MMP-21 polymorphisms with the risk of hepatocellular carcinoma in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2008, 17(9):2514-2518.
    1. Bartel B. MicroRNAs directing siRNA biogenesis.Nature Struct. Mol Biol. 2005, 12:569–571.
    2. Hobert O. Common logic of transcription factor and microRNA action. Trends Biochem Sci. 2004, 29:462–468.
    3. Kumar MS, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet.2007, 39:673–677.
    4. Lu J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005, 435: 834-838.
    5. Sevignani C, et al. MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA. 2007, 104:8017–8022.
    6. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006, 25:6188–6196.
    7. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nature Rev Cancer. 2006, 6:259–269.
    8. Abelson J F, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science. 2005, 310:317–320.
    9. Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad Sci USA. 2007, 104:3300–3305.
    10. Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum. Mol Genet. 2007, 16:1124–1131.
    11. Wu M, et al. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis. 2008, 29:1710–1716.
    12. Calin GA, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med.2005, 353:1793–1801.
    13. Yang H, et al. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res. 2008, 68:2530–2537.
    14. Clague J, et al. Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog. 2009, 49:183–189.
    15. Ye Y, et al. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila. Pa.) 2008, 1:460–469.
    16. Hu Z, et al. Common genetic variants in premicroRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat. 2009, 30:79–84.
    17. Tian T, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev. 2009, 18:1183–1187.
    18. Hoffman AE, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009, 69:5970–5977.
    19. Peng S, et al. Association of MicroRNA-196a-2 Gene Polymorphism with Gastric Cancer Risk in a Chinese Population. Dig Dis Sci. 2010, 55:2288-2293.
    20. Wang K, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of Esophageal Squamous Cell Carcinoma risk in Chinese Han. Biomarkers. 2010 Aug 19. [Epub ahead of print]
    21. Hu Z, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008, 118:2600–2608.
    22. Kontorovich T, et al. Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer. 2010, 127:589-597.
    23. Zeng Y, Cullen BR. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem. 2005, 280:27595–27603.
    24. Iwai N, Naraba H. Polymorphisms in human premiRNAs. Biochem. Biophys. Res Commun. 2005, 331:1439–1444.
    25. Yang J, et al. Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res. 2008, 638:205–209.
    26. Jazdzewski K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2008, 105: 7269– 7274.
    27. Jazdzewski K, et al. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA. 2009, 106: 1502–1505.
    15. Ye Y, et al. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila. Pa.) 2008, 1:460–469.
    16. Hu Z, et al. Common genetic variants in premicroRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat. 2009, 30:79–84.
    17. Tian T, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev. 2009, 18:1183–1187.
    18. Hoffman AE, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009, 69:5970–5977.
    19. Peng S, et al. Association of MicroRNA-196a-2 Gene Polymorphism with Gastric Cancer Risk in a Chinese Population. Dig Dis Sci. 2010, 55:2288-2293.
    20. Wang K, et al. A functional variation in pre-microRNA-196a is associated with susceptibility of Esophageal Squamous Cell Carcinoma risk in Chinese Han. Biomarkers. 2010 Aug 19. [Epub ahead of print]
    21. Hu Z, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008, 118:2600–2608.
    22. Kontorovich T, et al. Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer. 2010, 127:589-597.
    23. Zeng Y, Cullen BR. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem. 2005, 280:27595–27603.
    24. Iwai N, Naraba H. Polymorphisms in human premiRNAs. Biochem. Biophys. Res Commun. 2005, 331:1439–1444.
    25. Yang J, et al. Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res. 2008, 638:205–209.
    26. Jazdzewski K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2008, 105: 7269– 7274.
    27. Jazdzewski K, et al. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA. 2009, 106: 1502–1505.expression in breast cancer cell lines. Mol Endocrinol. 2007, 21:1132–1147.
    41. Merritt WM, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 2008, 359:2641–2650.
    42. Chiosea S, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res. 2007, 67:2345–2350.
    43. Chiosea S, et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006, 169:1812–1820.
    44. Kumar MS, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 2009, 23:2700–2704.
    45. Melo SA, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genet. 2009, 41:365–370.
    46. Horikawa Y, et al. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res. 2008, 14:7956–7962.
    47. Jopling CL, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005, 309:1577–1581.
    48. Tay Y, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008, 455:1124–1128.
    49. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010, 10(6):389-402.
    1. Szpiro-Tapia S, Sefiani A, Guilloud-Bataille M, et al. Spondyloepiphyseal dysplasia tarda: linkage with genetic markers from the distal short arm of the X chromosome. Hum Genet.1988, 81(1):61-63.
    2. Heuertz S, Nelen M, Wilkie AO, et al. The Gene for Spondyloepiphyseal Dysplasia (TRAPPC2) Maps to Xp22 between DXS16 and DXS92. Genomics. 1993, 18(1): 100-104.
    3. Heuertz S, Smahi A, Wilkie AO, et al. Genetic mapping of Xp22.12-p22.31 with a refined localization for spondyloepiphyseal dysplasia (TRAPPC2). Hum Genet. 1995, 96(4):407- 410.
    4. Gedeon AK, Colley A, Jamieson R, et al. Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat Genet. 1999, 22(4):400-404.
    5. Gecz J, Hillman MA, Gedeon AK, et al. Gene Structure and Expression Study of the TRAPPC2 Gene for Spondyloepiphyseal Dysplasia Tarda. Genomics. 2000,69:242-251.
    6. Mumm S, Christie PT, Finnegan P, et al. A five-base pair deletion in the SEDLIN gene causes spondyloepiphyseal dysplasia tarda in a six-generation Arkansas kindred. J Clin Endocrinol Metab. 2000, 85(9):3343-3347.
    7. Gedeon AK, Tiller GE, Le Merrer M, et al. The molecular basis of X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet. 2001, 68(6):1386-1397.
    8. Grunebauma E, Arpaiaa E, MacKenzieb JJ, et al. A missense mutation in the TRAPPC2 gene results in delayed onset of X linked spondyloepiphyseal dysplasia in a large pedigree. J Med Genet. 2001, 38:409-411.
    9. Christie PT, Curley A, Nesbit MA, et al. Mutational Analysis in X-Linked Spondyloepiphyseal Dysplasia Tarda. J Clin Endocrinol Metab. 2001, 86(7):3233-3236.
    10. Matsui Y, Yasui N, Ozono K, et al. Loss of the SEDL gene product (SEDLIN) causes X-linked spondyloepiphyseal dysplasia tarda: Identification of a molecular defect in a Japanese family. Am J Med Genet. 2001, 99(4):328-330.
    11. Mumm S, Zhang X, Gottesman GS, et al. Preonset studies of spondyloepiphysealdysplasia tarda caused by a novel 2-base pair deletion in SEDL encoding SEDLIN. J Bone Miner Res. 2001, 6(12):2245-2250.
    12. Mumm S, Zhang X, Vacca M, et al. The TRAPPC2 gene for spondyloepiphyseal dysplasia tarda escapes X-inactivation and contains a non-canonical splice site. Gene. 2001, (273):285-293.
    13. Tiller GE, Hannig VL, Dozier D, et al. A Recurrent RNA-Splicing Mutation in the TRAPPC2 Gene Causes X-Linked Spondyloepiphyseal Dysplasia Tarda. Am J Hum Genet. 2001, 68:1398-1407.
    14. Takahashi T, Takahashi I, Tsuchida S, et al. An TRAPPC2 gene mutation in a Japanese kindred of X-linked spondyloepiphyseal dysplasia tarda. Clin Genet. 2002, 61(4): 319-320.
    15. Shu SG, Tsai CR, Chi CS, et al. Spondyloepiphyseal dysplasia tarda: report of one case. Acta Paediatr Taiwan. 2002, 43(2):106-108.
    16. Shi YR, Lee CC, Hsu YA, et al. A novel nonsense mutation of the TRAPPC2蛋白gene in a family with spondyloepiphyseal dysplasia tarda. Hum Hered. 2002, 54(1):54-56.
    17. Fiedler J, Frances AM, Le Merrer M, et al. X-linked spondyloepiphyseal dysplasia tarda: molecular cause of a heritable platyspondyly. Spine. 2003, 28(22):E478-482.
    18. Fiedler J, Bergmann C, Brenner RE, et al. X-linked spondyloepiphyseal dysplasia tarda: molecular cause of a heritable disorder associated with early degenerative joint disease. Acta Orthop Scand. 2003, 74(6):737-741.
    19. Gao C, Luo Q, Wang HL, et al. Identification of a novel mutation IVS2-2A-->C of SEDL gene in a Chinese family with X-linked spondyloepiphyseal dysplasia tarda. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2003, 20(1):15-18.
    20. Xiao C, Zhang S, Wang J, et al. A single nucleotide deletion of 293delT in SEDL gene causing spondyloepiphyseal dysplasia tarda in a four-generation Chinese family. Mutat Res. 2003, 525(1-2):61-5.
    21. Shaw MA, Brunetti-Pierri N, Kadasi L, et al. Identification of three novel TRAPPC2 mutations, including mutation in the rare, non-canonical splice site of exon 4. Clin Genet. 2003, 64(3):235-242.
    22. Fiedler J, Le Merrer M, Mortier G, et al. X-linked spondyloepiphyseal dysplasia tarda: Novel and recurrent mutations in 13 European families. Hum Mutat. 2004, 24(1):103.
    23. Bar-Yosef U, Ohana E, Hershkovitz E, et al. X-linked spondyloepiphyseal dysplasiatarda: a novel SEDL mutation in a Jewish Ashkenazi family and clinical intervention considerations. Am J Med Genet A. 2004, 125A (1):45-48.
    24. Lu JF, Ma HW, Jiang J,et al. Identification of a novel mutation of the SEDL gene in X-linked spondyloepiphyseal dysplasia tarda. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2004, 21(4):309-311.
    25. Wang HL, Gao C, Luo Q, et al. Gene diagnosis of X-linked spondyloepiphyseal dysplasia tarda by linkage analysis and DNA sequencing. Zhonghua Er Ke Za Zhi. 2003, 41(4):256-259.
    26. Luo Q, Gao C, Wang HL, et al. Effect of a novel splicing mutation (IVS2-2A-->C) of SEDL gene on RNA processing. Yi Chuan. 2005, 27(4):544-548.
    27. Ma HW, Jiang J, Lu JF et al. Mutation of acceptor splice site of the SEDL gene in X-linked spondyloepiphyseal dysplasia tarda causes the activation of cryptic splice site. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005, 22(3):251-253.
    28. Xiong F, Gao J, Li J, et al. Noncanonical and canonical splice sites: a novel mutation at the rare noncanonical splice-donor cut site (IVS4+1A>G) of SEDL causes variable splicing isoforms in X-linked spondyloepiphyseal dysplasia tarda. Eur J Hum Genet. 2009, 17(4):510-516.
    29. Guo H, Xu X, Wang K, et al. A novel RNA-splicing mutation in TRAPPC2 gene causing x-linked spondyloepiphyseal dysplasia tarda in a large Chinese family. J Genet. 2009, 88(1):87-91.
    30. Lin Y, Rao SQ, Yang Y. A novel mutation in the SEDL gene leading to X-linked spondyloepiphyseal dysplasia tarda in a large Chinese pedigree. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008, 25(2):150-153.
    31. Zhou WJ, Zhou SY, Huang SW, et al. Identification of a missense mutation in SEDL gene from a Chinese family with X-linked spondyloepiphyseal dysplasia tarda. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008, 25(1):15-18.
    32. Zhu HY, Li J, Zhu RF, et al. Mutational analysis in a family with X-linked spondyloepiphyseal dysplasia tarda. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008, 25(4):421-423.
    33. Xia XY, Cui YX, Zhou YC, et al. A novel insertion mutation in the SEDL gene results in X-linked spondyloepiphyseal dysplasia tarda in a large Chinese pedigree. Clin Chim Acta. 2009, 410(1-2):39-42.
    34. Gecz J, Shaw MA, Bellon JR. Human wild-type TRAPPC2 protein functionallycomplements yeast Trs20p but some naturally occurring TRAPPC2 mutants do not. Gene. 2003, 320:137-44.
    35. Jang SB, Kim YG, Cho YS, et al. Crystal structure of SEDL and its implications for a genetic disease spondyloepiphyseal dysplasia tarda. J Biol Chem. 2002, 277(51):49863-49869.
    36. Fan L, Yu W, Zhu X, et al. Interaction of TRAPPC2 in with chloride intracellular channel proteins. FEBS Lett. 2003, 540(1-3):77-80.
    37. Ghosh AK, Majumder M, Steele R, et al. A novel 16-kilodalton cellular protein physically interacts with and antagonizes the functional activity of c-myc promoter-binding protein 1. Mol Cell Biol. 2001, 21(2):655-662.
    38. Choi MY, Chan CC, Chan D, et al. Biochemical consequences of SEDLIN mutations that cause spondyloepiphyseal dysplasia tarda. Biochem J. 2009,423(2):233-242.
    39. Jeyabalan J, Nesbit MA, Galvanovskis J, et al. SEDLIN forms homodimers: characterisation of TRAPPC2蛋白mutations and their interactions with transcription factors MBP1, PITX1 and SF1. PLoS One. 2010, 14; 5(5):e10646.
    40. Liu X, Wang Y, Zhu H, et al. Interaction of SEDLIN with PAM14. J Cell Biochem. 2010, 109(6):1129-1133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700