用户名: 密码: 验证码:
基于统计降尺度模型的钱塘江流域干旱预测和评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口增长、农业和工业用水需求量的增大以及全球环境的变化,干旱化趋势在进一步发展中。干旱已成为影响我国农业生产最为严重的自然灾害。干旱指数是干旱监测和预测的基础,近年来国内外学者已经研究了不少干旱评价的指标和方法,但尚未有相关工作研究气候变化下钱塘江流域的未来干旱情况,随着全球变暖,湿润地区干旱的预测和评估也同样引起了众人的关注。
     本文首先利用DEM提取钱塘江流域水流路径、数字水系和流域边界等特征,以此基础构建数字流域,用于后期流域水文过程的模拟和干旱时空分析等。
     论文中使用钱塘江流域23个气象站1951~2008年的月降水资料,利用Z指数和SPI通过求算给定时间尺度的累积概率,使其能够在多个时间尺度上进行计算,分析了钱塘江流域各站各季的干旱灾害情况、空间分布情况以及变化趋势情况,并着重分析了历史重大的干旱灾害的影响。
     文中利用支持向量机等方法进行气候变化下干旱的预测。本文利用1961~2000年NCEP再分析资料与钱塘江流域23个气象台站的历史降水观测资料,并利用主成分分析(PCA)与支持向量机(SVM)相结合的统计降尺度方法,建立大尺度气候预报因子与钱塘江流域各气象站点各月降水的统计降尺度模型;将主成分分析和SVM相结合的统计降尺度模型应用于三种全球气候模式HadCM3、Ccsm3、Echam5分别在A1B、A2、B1排放情景下的预报因子,拟合钱塘江流域23个站点的当前降水变化情景以及预测未来30年(2011~2040年)的降雨情况。
     干旱历时和干旱烈度是定量研究水文干旱事件的两个重要指标。利用解析的方法来推求干旱烈度概率分布或一定干旱历时对应的干旱烈度的条件概率分布还存在困难,目前最常用的方法是利用已有的理论分布来拟合干旱烈度的概率分布或条件概率分布,其拟合的好坏关键取决于对干旱烈度概率分布参数的估计。在假定干旱烈度服从GEV分布的基础上,利用线性距法对干旱烈度概率分布的参数做了较为精确的估计,同时计算了不同重现期的干旱烈度。重点分析了一定时期内极限干旱烈度概率分布以及钱塘江流域极限干旱烈度的期望值。
     结论表明:Z指数和SPI在计算结果上取得了很好的一致性,并较为准确的标识出了钱塘江流域历年的干旱情况,多时间尺度SPI更符合钱塘江流域的实际情况。由于九种气候变化预测结果各有优劣,特定的模式和情景评价干旱效果不是完全一致。总体而言HadCM3、Echam5这两种气候模式的趋势模拟效果优于Ccsm3模式。
     本研究成果对进行干旱预测和分析具有重要的借签意义,并且为湿润地区的干旱研究和监测提供了可靠的科学支持。
With the increase of population and the agricultural and industrial demand for water and the change of global environment, the drought disaster is becoming so serious that it has caused the greatest losses of our agricultural production. The drought index is the basis of drought monitoring and prediction. In the recent years, many experts have made a lot of relative research on different indices and methods of drought evaluation. However, the research about prediction on drought degree of Qiantang River based on climate change prediction is scarce, and the prediction and assessment of drought disaster in humid areas is the front issue of hydrological research.
     In this thesis the DEM technology is used for extraction of features such as flow paths, the digital stream and watershed boundaries of Qiantang River, based on which digital watershed is built, the hydrological process is simulated and the analysis of drought is made.
     Monthly precipitation data during 1951 to 2008 from 23 weather stations in the Qiantang River Basin are collected for the research. The indices used include the Z index and the SPI index, by which the cumulative probability at a certain time scale is computed for further calculation at multiple time scales. The seasonal and dimensional drought conditions and the trend of the drought situation of different stations in the Qiantang River basin as well as the impact of major drought disasters in the history are analyzed.
     In this paper, the support vector machine is used for drought prediction under climate change. The NCEP reanalysis data and the precipitation data from 23 meteorological stations in Qiantang River basin during 1961 to 2000 are used. A statistical downscaling method of combining the principal component analysis (PCA) and support vector machine (SVM) is used for the establishment of statistical downscaling model between large-scale meteorological forecasting factors and the monthly precipitation of the meteorological stations in Qiantang River basin. This method combines the PCA and the SVM to calculate the forecasting factors of different global climate model HadCM3, Ccsm3, Echam5 respectively under A1B, A2, B1 emission scenarios and analyze the current and future rainfall condition in the next 30 years(2011-2040) of the Qiantang River basin. The Mann-Kendall nonparametric test method is also used for analyzing the long-term change trend in precipitation and the abrupt change times of drought.
     Drought duration, drought interval and drought severity are three important indicators in quantitative study of hydrologic drought. But, in present, there is some difficulties in determining drought probability distribution or drought severity through employing analytical method. At present, the most often used method is using assumed theoretical distribution to fit drought severity, and the quality of this method depends on parameter estimation of drought severity probability distribution. On the basis of the premise that drought severity subjects to GEV distribution, we calculate drought severity in different return periods using L-moment approach.
     The results show that although the value of Z-index and SPI consist with each other and account for the drought conditions of Qiantang River basin over the years reasonably, SPI with multiple time scales is more suitable for the actual situation of Qiantang River Basin. Nine different predicting results of drought conditions in Qiantang River Basin for next 30 years are obtained by applying the global climate models of HadCM3、Echam5 and Ccsm3 on the emission scenarios of A1B、A2 and B1. All the nine results have advantages and disadvantage, and as for which one to use, it depends on particular case. In general, trend modeling results of HadCM3 and Echam5 are better than Ccsm3, but when applied in A1B to model extreme drought, Hadcm3 has better effect than the other two.
     This study is a significant reference for further drought prediction and analysis, and provides scientific support for drought research and monitoring in humid region.
引文
[1]Wilhite D A. Drought:a global assessment, natural hazards and disasters series. London and New York:routledge,2000:3-18.
    [2]张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京师范大学出版社,2007.
    [3]周巧兰,刘晓燕.我国南方干旱成因与对策[J].上海师范大学学报,2005,34(3):80~86.
    [4]邱林,许建新,陈南祥.区域水资源可持续利用管理理论与应用[M].郑州:黄河水利出版社,2003:115~140.
    [5]American meteorological society. Meteorological drought-policy statement[J]. Bull.Amer. Meteor.1997,78(2):847-849.
    [6]Bahlme H N, Mooley, Large scale drought/flood and monsoon circulation[J]. Mon Weather Rev,1980,108(1):101-114.
    [7]Karl T R, Quayle R G. The 1980 summer heat wave and drought in historical perspective[J]. Min Wea Rev,109(10):2055-2073.
    [8]Ally W M, The Palmer drought severity index as a measure of hydrologic drought[J]. Water Resources Bulletin,1985,21(1):105-114.
    [9]Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales [J], Eighth Conference on Applied Climatology, and 1993. 179-184.
    [10]Mishra A K, Desai V R. Drought forecasting using stochastic models [J]. Stochastic Environmental Research and Risk Assessment,2005,19:326-339.
    [11]Hayes M J, Svoboda M D, Wilhite D A, et al. Monitoring the 1996 drought using the standardized precipitation index [J]. Bulletin of the American Meteorological Society,1999,80:429-438.
    [12]Palmer W C. The abnormally dry weather of 1961-1966 in the northeastern United States[A]. Proe.Conf. Drought in the Northeastern United States, Jerome Spar,Ed.,New york University GeoPhys,1967,32-56.
    [13]Diaz H G, Quayle R G.The 1976-1977 winter in the contiguous United States in comparison with past records[J]. Mon. Wea. Rev.,1978,(106):1393-1421.
    [14]Bhalme H N. Large scale drought flood and monsoon circulation[J].Mon Weather Rev,1980,108.
    [15]Cuhasch. Regional climate changes as simulated in time-slice experiments Climatic Change[J].1995,31:273-304
    [16]徐尔 灏.论年雨量之常态性[J],气象学报,1950(2):87~92.
    [17]杨扬等.帕尔默旱度指数方法在全国实时旱情监视中的应用[J].水科学进展,2007,18(1):52~57.
    [18]Hong W, Michael J H, Albert W, Qi H. An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-score[J]. International Journal of Climatology,2001,21:745-758.
    [19]宋连春,1951~1990年我国夏季旱涝灾害及其影响研究[J].南京大学学报,1991(2):45~58.
    [20]黄道友,彭廷柏,王克林,陈桂秋.应用Z指数方法判断南方季节性干旱的结果分析[J].中国农业气象,2003,24(4):12~15.
    [21]董振国.对土壤水分指标的研究[J].气象,1985(1):13~17.
    [22]邹仁爱,陈俊鸿.干旱预报的研究进展评述[J].灾害学,2005,3(20):112~116.
    [23]黄嘉佑,谢庄.卡尔曼滤波在天气分析与预报中的应用[J].气象,1993.19(4):1-7.
    [24]Drosdowsky W, Analog (nonlinear) forecast softhe Southern Oscillation Index time series[J],Weather and Forecasting,1994.(9):78-84.
    [25]冯平,朱元.干旱灾害的识别途径口[J].自然灾害学报,1997.6(3):42~47.
    [26]Feddes R A,Modeling and simulation in hydrologic systems related to agricultural development:state ofthe art,Agric [J].Water Manage,1988,(13):235-248.
    [27]吴厚水.利用蒸发力进行农田灌溉预报的方法[J].水利学报,1981(1):1~9.
    [28]江涛,陈永勤,陈俊合,陈喜.未来气候变化对我国水文水资源影响的研究[J].中山大学学报(自然科学版),2000,39:151-157.
    [29]Von Storch H.The global and regional climate system[A].In:Anthropogenic Climate Change[C].Von Storch H,Fl?ser G,eds.Springer Verlag,1999,3-36.
    [30]Von Storch H.Inconsistencies at the interface of climate impact studies and global climate research[J].Meteorologische Zeitschrift,1995,4 NF:72-80.
    [31]Wilby R L,Dawson C W,Barrow E M.SDSM---a decision support tool for the assessment of regional climate change impact[J].Environmental Modeling and Software,2002,17:145-157.
    [32]Wilby R L,Wigley T M L.Downscaling general circulation model output:are view of methods and limitations[J].Progress in Physical Geography,1997,21:530-548.
    [33]Wilby R L,Wigley T M.Precipitation Predictors for downscaling:Observed and General Circulation Model Relationships[J].International Journal of Cimatology,2000, 20(5):641-661.
    [34]Kim J M et al.The statistical problem of climate inversion:Determination of the relationship between local and large-scale climate[J]. Monthly Wheather Review,1984, 112:2069-2077.
    [35]Wigley T M et al. Obtaining sub-grid-scale information from coarse-resolution general circulation model output[J]. Journal of Geophysical Research,1990.95: 1943-1953.
    [36]Karl T R et al. A method of relating general circulation model simulated climate to the observed local climate.[J].Journal of Climate,1990,3:1053-1079.
    [37]Von S H. On the use of "inflation" in statistical downscaling[J]. Journal of Climate,1999,12:3505-3506.
    [38]Xu C Y. From GCMs to river flow:a review of downscaling methods and hydrologic modeling apprpaches[J]. Progress in Physical Geograohy,1999,23,229-249.
    [39]范丽军,符淙斌,陈德亮.统计降尺度法对未来区域气候变化情景预估的研究进展[J].地球科学进展,2005,20(3):320-329.
    [40]Murphy J.Prediction of climate change over Europe using statistical and dynamical downscaling techniques[J].International Journal of Climatology,2000,20(5): 489-501.
    [41]刘吉峰,李世杰,丁裕国.基于气候模式统计降尺度技术的未来青海湖水为变化预估[J].水科学进展,2008,19(2):184~191.
    [42]Oshima N, Kato H,Kadokura S. An application of statistical downscaling to estimate surface air temperature in Japan[J].Journal of Geophysics Research,2002, 107(D10):1421-14210.
    [43]Mpelasoka F S, Mullan A B,Heerdegen R G. New Zealand climate change information derived by multivariate statistical and artificial neural networks approaches[J].International Journal of Climatology,2001,21:1415-1433.
    [44]Tripathi S,Srinivas V V,Nanjundiah R S.Downscaling or precipitation for climate change scenarios:a support vector machine approach [J].Journal of Hydrology,2006, 330:621-640.
    [45]Zorita E et al.Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation[J]Journal of Climate,1995,8:1023-1042.
    [46]Michaelides S C et al.Classification of rainfall variability by using artificial neural networks[J].International Journal of Climatology,2001,21:1401-1414.
    [47]Bardossy A et al.Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules[J].Climate Research,2002,23:11-22.
    [48]Wilson L L et al.A hierarchical stochastic model of large atmospheric circulation patterns and multiple station daily rainfall[J].Journal of Geophysics Research,1992, 97(3):2791-2809.
    [49]Wibby R L.Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices[J].Climate Research,1998,10:163-178.
    [50]Wilks D S.Interannual variability and extreme value characteristics of several stochastic daily precipitation models[J].Argiculture Forest Meteorology,1999, 93:153-169.
    [51]陈喜,陈永勤.日降水随机解集模式研究[J].水利学报,2001,4:47~52.
    [52]Giorgi F,Bates G T.The climatological skill of regional model over complex terrain[J].Monthly Weather Review,1989,117(11):2325-2347.
    [53]Dickinson R E et al.A regional climate model for the wastern United States[J].Climatic Change,1989,15:383-422.
    [54]Leavesley G H et al.Using coupled atmospheric and hydrologic models to investigate the effects of climate change in mountainous regions[M].Managing water resources during global change,1992,691-700.
    [55]Jacob D,Podzun R.Sensitivity studies with the regional climate model REMO[J].Meteorology and Atmospheric Physics,1997,63:119-129.
    [56]Blenkinsop S,Fowler H J.Changes in drought frequency,severity and duration for the British Isles projected by the prudence regional climate models[J].Journal of Hydrology,2007,342:50-71.
    [57]Seth A et al.RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields[J].Climate Dynamics,2207,28:461-480.
    [58]袁飞,谢正辉,任立良,黄琼.气候变化对海河流域水文特征的影响[J].水利学报,2005,36(3):274~279.
    [59]丁一汇,李巧萍,董文杰.植被变化对中国区域气候影响的数值模拟研究[J].气象学报,2005.63(5):613~621.
    [60]Hellstrom C,Chen D.Statistical downscaling based on dynamically downscaled predictors:Application to monthly precipitation in Sweden[J].Advances in Atmospheric Sciences,2003,20:951-958.
    [61]Frey B F,Heinmann D,Sausen R. A statistical-dynamical downscaling procedure for global climate simulations[J].Thearetical&Applied Climatology,1995,50:117-131.
    [62]Heimann D.A model-based wind climatology of the eastern Adriatic coast [J].Meteorologische Zeitschrift,2001,10(1):5-16.
    [63]Jones R G et al.Simulation of climate change over Europe using a nested regional-climate model[J].Quarterly Journal of the Royal Meteorological Society,1997,123:265-292.
    [64]Bush U,Heimann D.Statistical-dynamical extrapolation of a nested regional climate simulation[J].Climate Research,2001,19:1-13.
    [65]张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京师范大学出版社,2007.
    [66]袁文平,周广胜.干旱指标的理论分析与研究展望[J],地球科学进展,2004,19(6):982-990.
    [67]Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales [J], Eighth Conference on Applied Climatology, and 1993.179-184.
    [68]Mishra A K, Desai V R. Drought forecasting using stochastic models [J]. Stochastic Environmental Research and Risk Assessment,2005,19:326-339.
    [69]Hong W, Michael J H, Albert W, Qi H. An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-score. International Journal of Climatology,2001,21:745-758.
    [70]黄道友,彭廷柏,王克林,陈桂秋.应用Z指数方法判断南方季节性干旱的结果分析[J].中国农业气象,2003,24(4):12~15.
    [71]Hayes M J, Svoboda M D, Wilhite D A, et al. Monitoring the 1996 drought using the standardized precipitation index [J]. Bulletin of the American Meteorological Society,1999,80:429-438.
    [72]Douglas EM, Vogel RM, Kroll CN.Trends in flood and low flows in the United States:impact of spatial correlation[J]. Journal of Hydrology,2000,240:90-105.
    [73]Xu Z. X., Takeuchi K., Ishidaira H. Monotonic trend and step changes in Japanese precipitation[J]. Journal of Hydrology,2003,279:144-150.
    [74]Donald H. Burn, Mohamed A. Hag Elnur.Detection of hydrologic trends and variability[J]. Journal of Hydrology,2002,255:107-122.
    [75]Sheng Yue, Paul Pilon, George Cavadias. Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series.[J] Journal of Hydrology,2002,259:254-271.
    [76]Yue S,et al. The influence of autocorrelation on the ability to detect trend in hydrological series[J]. Hydrology Process,2002,16:1807-18291
    [77]黄兵,胡铁松.滦河流域月降雨空间变异性研究[J].中国农村水利水电,2006.(10):28~30
    [78]刘金涛,张佳宝.山区降水空间分布的插值分析[J].灌溉排水学报,2006,25(2):34~38.
    [79]刘鹏,张万昌.考虑数据变换的泾河流域月降雨空间差值[J].水土保持研究,2008,15(4):54~56.
    [80]孟遂珍,彭治班,赵秀英等.流域平均降水量的一种算法[J].北京气象学院学报,2001,(2):64~68.
    [81]董官臣,冶林茂,符长锋.面雨量在气象预报中的应用[J].气象,2000,26(1):9~13.
    [82]王铭才.大气科学常用公式[M].北京:气象出版社,1994:518~519.
    [83]温克刚,席国耀,徐文宁.中国气象灾害大典(浙江卷)[M].北京:气象出版社,2006.
    [84]Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales [J], Eighth Conference on Applied Climatology, and 1993.179-184.
    [85]Wilby R L,Hay L E, Leavesley G H. A comparison of downscaled and raw GCM output:implications for climate change scenarions in the San Juan River basin,Colorado[J] Journal of Hydrology.1999,225:67-91.
    [86]Hughes J,Guttorp P. A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena[J].Water Resour Res.1994:1535-1546.
    [87]何方国,齐欢.基于主成分分析与神经网络的非线性评价模型[J].武汉理工大学学报,2007.29(8):183~186.
    [88]Vapnik V N.Statistical learning theory[M].New York:Wiley,1998.
    [89]Tripathi S,Srinivas V V,Nanjundiah R S.Downscaling of precipitation for climate change scenarios:a support vector machine approach [J].Journal of Hydrology,2006, 330:621-640.
    [90]Zorita E,Von Storch H.A Survey of statistical downscaling techniques[R].GKSS report 97/E/20,1997.
    [91]Enke W,Spekat A.Downscaling climate model outputs into local and regional weather elements by classification and regression[J].Climate Research,1997,8: 195-207.
    [92]Eric P,SalatheJ R,Comparison of Various Precipitation Downscaling Methods for the Simulation of Streamflow in a Rainshadow River Basin[J].International Journal of Climatology,2003,23:887-901.
    [93]Amor V M,James W H. Bias correction of daily GCM rainfall for crop simulation studies[J]. Agricultural and Forest Meteorology,2006,138:44-53.
    [94]Greenwood J A.,Landwehr J M,Matalas N C,et al. Probability weighted moments:Definition and relation to parameters of distribution expressible in inverse form [J].Water Resources Research,1979,15(5):1049-1054.
    [95]Hosking J R and Wallis J R.Regional Frequency Analysis-an approach based on L-moments [M]. Cambridge University Press,1997.
    [96]Maidment D R Handbook of Hydrology [M].New York:McGraw-Hill Inc,1993.
    [97]Khaled H et al. Flood Frequency Analysis [M].Boca Raton Lodon New York Washington,D.C. CRC Press LLC.2000
    [98]Yevjevich V.Stochastic Processes in Hydrology[M].Fort Collins:Water Resources Publications,1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700