用户名: 密码: 验证码:
安徽省农业旱涝灾害风险分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对安徽省农业旱涝灾害中的冬小麦、夏玉米旱涝灾害,利用长年代气象、农业、灾情等资料,通过研究识别农业旱涝灾害风险产生的原因、影响形式、造成灾害的程度,研究不同承灾体致灾、灾损风险的构成因子及其信息表征。基于长年代对应匹配和模型模拟分析技术,研究不同承灾体致灾、灾损风险信息获取和量化识别的技术方法,构建有序的样本时间序列及其数据库。研究不同承灾体致灾、灾损风险估算的技术方法、表征模型、应用模型,进行风险概率估算;在此基础上,构建了不同承灾体旱涝灾害风险评估模型和评价指标体系,在Surfer软件支持下,编制不同承灾体旱涝灾害等级风险地理分布图,评述了不同承灾体旱涝灾害风险的区域性和地带性规律。研究建立了基于旬尺度旱涝对最终产量灾损的贡献系数,综合考虑逐旬旱涝对最终产量灾损的贡献系数、逐旬旱涝指数等级,构建了农业旱涝风险动态评估模型,初步实现了小麦、玉米旱涝风险的动态评估。主要研究结果如下:
     1)根据农田水分平衡原理,采用基于全生育期的降水量与作物需水量的差占相应作物需水量比值的距平百分率,构建了表征农业旱涝的作物旱涝指数,经验证检验,与安徽省实际旱涝发生情况有比较好吻合度。
     2)研制了基于全生育期的作物旱涝风险识别与估算技术方法,建立了风险评估模型,实现了对安徽省小麦-玉米旱涝风险的评估,编制了小麦-玉米旱涝风险分布图。由于所用资料均可通过气象业务实时获取,具有实际生产的针对性和气象业务应用的可操作性。
     3)针对当前农业气象业务的需求,构建了基于旬尺度旱涝对最终产量灾损的贡献系数,综合考虑逐旬旱涝对最终产量灾损的贡献系数、逐旬旱涝指数等级,分别建立了基于旬尺度的小麦、玉米旱涝风险动态评估模型,初步实现了小麦、玉米旱涝风险的动态评估。
     4)安徽冬小麦旱灾风险指数分布:高值区主要分布在阜阳、淮南、蚌埠、天长一线以北;中值区主要分布在六安、合肥以及巢湖市北部;低值区主要分布在霍山、舒城、巢湖、马鞍山一线以南。总体看来,安徽冬小麦旱灾风险由东到西基本呈带状分布,由南向北旱灾风险逐渐增加。
     5)安徽冬小麦涝灾风险指数分布:高值区主要分布在安庆市、长江以南地区;中值区主要分布在沿江地区、淮北、宿州、蚌埠一线以东地区以及阜阳市;低值区主要位于江淮地区。总体看来,安徽冬小麦涝灾风险由东到西呈带状分布,由南向北涝灾风险逐渐减少。
     6)比较安徽冬小麦旱涝风险的区域分布变化,旱灾、涝灾风险由南向北呈相反趋势。淮北地区旱多涝少,江淮地区旱涝相当,淮南地区涝多旱少。
     7)安徽夏玉米旱灾风险指数分布:高值区主要分布在淮北地区西部、江淮地区东部;中值区主要位于池州市、宿州市;低值区主要分布在大别山区、淮北、淮南地区以及天长市。总体看来,安徽夏玉米旱灾风险北部较高,南部较低。
     8)安徽夏玉米涝灾风险指数分布:高值区主要分布在沿江地区以及淮南地区;中值区主要分布在江淮地区南部以及阜阳市和六安市大部;低值区主要分布在淮北地区、大别山区以及江淮地区东部。总体看来,安徽夏玉米涝灾风险北部较低,南部较高。
     9)比较安徽夏玉米旱涝灾害风险的区域分布变化,旱灾、涝灾风险南北地区基本呈相反的趋势。淮北地区旱多涝少,淮南地区涝多旱少。
In this paper, looking at droughts and floods disasters of winter wheat and summer maize in agriculture droughts and floods disasters, with the date of meteorology,agriculture and the situation of a disaster in a long time, by studying and recognizing the causes, the impact of the form, the extent of resulting of droughts and floods disasters making, analysis the factor and its information of making disaster and loss caused by disasters of different body bearing disasters. Based on the upper analysis, risk assessment model and evaluation index system of drought and flood hazard for different hazard-bearing bodies were constructed. Distribution maps of risk grades for drought and flood hazard were drawn up by Surfer Software. The regionality and zonality of drought and flood hazard risk for different hazard-bearing bodies were analyzed. The research also constructed the contribution coefficient for yield disaster damage resulted by drought and flood hazard on time scales of ten days. Then drought and flood hazard dynamic evaluation model were constructed, after fully considering the contribution coefficient of drought and flood hazard of each ten days to final yield disaster damage and drought and flood hazard grade index of each ten days. Based on the research, drought and flood hazard dynamic evaluation for wheat and maize were carried on preliminary discussion.
     1)Based on the principle of field water balance, the anomaly percent of the ratio of difference value between precipitation and water demand of major crops and water demand of major crops was adopted to construct drought and water logging index, which has been verified by actual drought and water logging situation in Anhui Province.
     2)Based on the whole growth period, this paper developed a risk identification and estimation method for crop droughts and floods risk, then build a risk assessment model, realized the assessment of droughts and floods risk of wheat-maize in Anhui Province, worked out the droughts and floods risk distribution of wheat-maize. Because all the information to be used could be accessed through meteorological profession on real time, the risk assessment model has the pertinence of actual production and the operability for the use of meteorological profession.
     3)According to the requirement of agro-meteorological services, constructed the contribution coefficient for yield disaster damage resulted by drought and flood hazard on time scales of ten days. Then drought and flood hazard dynamic evaluation model were constructed, after fully considering the contribution coefficient of drought and flood hazard of each ten days to final yield disaster damage and drought and flood hazard grade index of each ten days. Based on the research, drought and flood hazard dynamic evaluation for wheat and maize were carried on preliminary discussion.
     4)The drought risk index distribution of winter wheat in Anhui: the main high value area were north of Fuyang-Huainan-Bengbu-Tianchang line, the median value area were north of Liuan-Hefei-Chaohu, While the low value area were south of Huoshan-Shucheng-Chaohu-Maanshan. Generally speaking, the drought risk of winter wheat in Anhui formed zonary distribution from east to west, the risk were increasing form south to north.
     5)The water logging risk index distribution of winter wheat in Anhui: the main high value area were Anqing and south of Yangtze River, the median value area were Fuyang and east of Huaibei-Suzhou-Bengbu, while the low value area were Jianghuai area. Generally speaking, the drought risk of winter wheat in Anhui formed zonary distribution from east to west also, the risk were decreasing form south to north.
     6)Compared the drought and water logging risk distribution of winter wheat in Anhui Province,the drought and water logging risk had opposite trend from south to north. Drought happened much more frequently than water logging in Huaibei area. the drought and water logging happened mostly similar in Jianghuai area,while in Huainan area water logging happened much more frequently than Drought.
     7)The drought risk index distribution of summer maize in Anhui: the main high value area were west of Huaibei, east of Jianghuai, the median value area were Chizhou and Suzhou, while the low value area were Dabie Mountain area. Generally speaking, the drought risk of summer maize in Anhui had high value in north, low value in south.
     8)The water logging risk index distribution of summer maize in Anhui: the main high value area were Yanjiang area and Huainan area, the median value area were south of Jianghuai, Fuyang and most areas of Liuan, while the low value area were Huaibei area. Generally speaking, the water logging risk of summer maize in Anhui had low value in north, high value in south.
     9)Compared the drought and water logging risk distribution of summer maize in Anhui Province,the drought and water logging risk had opposite trend from south to north. Drought happened much more frequently than water logging in Huaibei area, while in Huainan area water logging happened much more frequently than Drought.
引文
1何勇.长江中下游华南持续秋旱.气象,2004,31(1):69-88.
    2黄小燕,郁家成,王华.江淮地区涝渍灾害特点、成因和防治对策.农业工程学报, 2008,24(10):546-550
    3王镇铭,朱惠群,张文坚,等.重大旱涝气象灾害对国民经济的影响评估[J].气象,2001,27(8):15-18
    4朱煌武,吴华章,张来平,等.近10年安徽省的各类自然灾害及发展趋势[J].灾害学,2003,18(1):64-70
    5张爱民,马晓群,杨太明,等.安徽省旱涝灾害及其对农作物产量影响.应用气象学报,2007 ,18(5):619-626
    6王春乙,娄秀荣,王建林.中国农业气象灾害对作物产量的影响.自然灾害学报, 2007,16(5):38-44
    7侯琼,等.内蒙古地区农田土壤墒情评动态预测模型.干旱地区农业研究,2000,18(4):50-56
    8王玲玲,康玲玲,王云璋.气象、水文干旱指标计算方法研究概述.水资源与水工程学报,2004,15(3):15-18
    9李世奎,霍治国,等.农业气象灾害风险评估体系及模型研究.自然灾害学报,2004,13(1):77-86
    10李世奎、霍治国、王道龙,等.中国农业灾害风险评价与对策.北京气象出版社,1999
    11苗玉芝、田淑欣.气候旱涝与农业旱涝.山西气象, 2006,6(2): 20-21
    12杨青,李兆元.干旱半干旱地区的干旱指数分析.灾害学,1994,9(2):12-16
    13刘云辉,朱渐臣.丹东地区中部春播期土壤水分特征及早涝评价.中国农业气象,2008,29(2):174-176
    14张存杰,王宝灵,刘德祥,等.西北地区旱涝指标的研究[J].高原气象,1998,17(4):381-386
    15徐尔灏.论年雨量之常态性.气象学报,1950,21(2):17-22
    16李艳春,桑建人,舒志亮.用最长连续无降水日建立宁夏的干旱预测概念模型.灾害学,2008,23(1):179-183
    17朱业玉,王记芳,武鹏.降水z指数在河南旱涝监测中的应用.河南气象,2006(4):96-103
    18 Hayes M J, Svoboda M D, Wilhite D A, et al. Monitoring the 1996 drought using the standardized precipitation index [J]. Bulletin of the American Meteorological Society,1999,80:429~438
    19张红卫.不同土壤湿度下小麦叶气温差对光照强度的反应及对蒸腾的影响.河南农业科学,2008(7):20-30
    20王传河,等.小麦不同指标对旱涝反应敏感性差异的比较.中国农业通报,2003,19(6):33-40
    21李玉中,程延年,安顺清.北方地区干旱规律及抗旱综合技术.北京中国农业科学技术出版社,2002
    22刘永忠,李齐霞,孙万荣,等.气候干旱与作物干旱指标体系.山西农业科学,2005,33(3):145-155
    23董振国,等.作物层温度与土壤水分关系.科学通报,1986(8):186-190
    24游珍,徐刚,李占斌,等.农业旱灾中人为因素的定量分析.自然灾害学报,2003,12(3):145-150
    25崔读昌,曹平,梁红.干旱半干旱半湿润偏旱地区农林牧气候界限的研究.干旱地区农业研究,1986
    26王建林,林日暖.中国西部农业气象灾害.气象出版社:292~293
    27王劲松等.干旱指标研究的进展与展望.干旱区地理,2007,30(1):236-239
    28李韵珠.陆锦文,吕梅.作物干旱指数(CWSI)和土壤干旱指数(SWSI).土壤学报,1995,32(1):123-132
    29王鹏新,龚健雅,等.基于植被指数和土地表面温度的干旱监测模型.地球科学进展,2003,18(4):247-235
    30刘巍巍,安顺清,刘庚山,等.帕默尔旱度模式的进一步修正.应用气象学报,2004,15(2):88-96
    31谭宗锟.广西农业气象灾害风险评价及灾害风险区划.广西气象,18(1):44-50
    32 Wilhite D A,Glantz M H.Understanding the Drought Phenomenon:the Rule of Definition [J].Water International,1985,10(3):111-120.
    33 Obasi G O P.WMO's Role in the international decade for natural disaster reduction[J].Bull Amer Meteor Soc,1994,75(9):1655-1661.
    34何平、毕伯钧.40年来本溪地区的旱涝变化特征及其评估方法.自然灾害学报,2006,15(2):38-43
    35王保生,刘文英,黄淑娥.江西省旱涝灾害风险评估与农业可持续发展.气象与减灾研究,2006,29(2):43 -47
    36 Guttman,N. B.,Accepting the standardized precipitation index: acalculation algorithm[J].Amer. Water Resour. Assoco.,1999,35:311-322.
    37王素艳,霍治国,李世奎,等.中国北方冬小麦的水分亏缺与气候生产潜力—近
    40年来的动态变化研究.自然灾害学报, 2003,12(1):121~130.
    38 Mckee T B,N J Doesken and J Kleist.The relationship of drought frequency and duration to time scales.Preprints,Eighth Conf.On Applied Climatology,Anheim,CA.Amer.Meteor. Soc.,1993:179-184.
    39赵佩红.新会气象资料的正态分布检验及正态化处理.广东气象,2007,29(1):27-28
    40 Guttman,N.B.,Comparing the palmer drought index and the standardized precipitation index[J].Amer.Water Resour. Assoco.,1998,34:113-121.
    41薛昌颖,霍治国,李世奎,等.北方冬小麦产量灾损风险类型的地理分布.自然灾害学报,2004 ,13(1) :77-87.
    42张爱民,盛绍学,马晓群,等.基于GIS技术的安徽省重大农业气象灾害测评系统总体设计[J].光电子技术与信息,1998, 11(5):48-52.
    43 Du P(杜鹏) ,Li S-K(李世奎) ,Wen F-G(温福光) , et al . 1995.Agrometeorological hazard risk analysis of four main fruit tress in Zhujiang Delta of South China. J A ppl Meteorol (应用气象学报) ,6 (supp. ) :26~32 (in Chinese) .
    44 Deng G(邓国) ,Wang A-S (王昂生) ,Li S-K(李世奎) , et al . 2001. Risk theory and method and its initial application in grainyield. J Nat Resour (自然资源学报) ,16 (3) : 221~226 (in Chinese)
    45 Deng G(邓国) ,Wang A-S (王昂生) , Zhou Y-S (周玉淑) . 2002. Geographical distribution of China′s grain yield risk area. J Nat Resour (自然资源学报) ,17 (2) :211~215 (in Chinese)
    46马玉平,王石立,等.基于遥感信息的华北冬小麦区域生长模型及模拟研究,气象学报,2005,63(2):204-214
    47 Duff GA , Myers B A , Williams R J , et a1. Seasonal patterns in soil moisture. vapour pressure deficit . tree canopy cover and pre dawn water potential in a northern Australian savanna[J ] . Australian journal of Botany ,1997 ,45 (2) :211-224.
    48王春乙,王石立,霍治国,等.近10年来中国主要农业气象灾害监测预警与评估技术研究进展.气象学报,2 0 0 5 ,63(5):659-671
    49马树庆,王琪,等.东北地区玉米低温冷害气候和经济损失风险分区.地理研究,2008,27(5):1169—1177
    50 Palmer W C.Meteorological Drought[J].Reserch paper 45,Weather Bureau,U.S.,1965.
    51李翠金,马巧英.长江中下游地区旱涝气候年景和评定方法的研究[J].灾害学,1998,13(1):72-77.
    52姚玉璧,张存杰,邓振镛,等.气象、农业干旱指标综述.干旱地区农业研究,2007,25(1):186-191
    53格桑,等.降水距平百分率在西藏干旱判定中验证.西藏科技,2009(2):42-46.
    54邵光成,张展羽,蔡焕杰,等,膜下滴灌棉花缺水诊断指标的试验研究.河海大学学报(自然科学版),2004,32(5):546-553
    55关兆勇,冯智文,等.北方易旱农业区干旱指标与规律的研究.水文,1995(5):33—39
    56王密侠,等.农业干旱指标研究进展[J].干旱地区农业研究,1986(01):112-115
    57袁静.水稻蓄水控灌技术试验研究.硕士论文.海河大学.
    58亓来福.王继琴等从农业需水量评价我国的干旱状况.应用气象学报,1995,6(3):86-92
    59鞠笑生,邹旭恺,张强.气候旱涝指标方法及分析.自然灾害学报,Vol.7,No.3:51-57
    60王劲松,等.干旱指标研究的进展与展望.干旱区地理,2007,30(1)
    61安徽省水利局勘测设计院.安徽淮北平原土壤.,上海人民出版社(M)1976: 9-32
    62张养才,等.中国农业气象灾害概论[M],北京,气象出版社,1991
    63尚全民,等.黄河干流水利水电工程的效益及负面影响.水利建设与管理, 2000( 4):189-196
    64方红,等.评价旱涝灾害风险的模糊随机方法.世界地质,2002,21(2):171-175
    65马晓群,等.基于G1S的市(县)级旱涝风险区划.,安徽地质,2002,12(3):170-175
    66叶正伟.自然灾害对农业经济影响的态势分析及对策研究——以苏浙皖旱涝灾害为例.安徽农业科学,2006,34(4):772-774
    67王素艳,霍治国.等.北方冬小麦干旱灾损风险区划.作物学报,2005,31(3):267-274
    68安顺清,焦仪珍.华北地区小麦节水灌溉潜力的探讨.中国干旱、半干旱地区气候、环境与区域开发研究论文集,1988 :56-63
    69 Dennis Nullet, Thomas W, Giambelluca,et al.Risk analysis of seasonal agricultural drought on low pacific islands. Agricultural and Forest Meteorology , 1988,42(2-3):229-239
    70 Richard Snyder,J.Paulo de Melo-Abreu,Scott Matulich .Frost protection: fundamentals,practice, and economics.FAO Technical papers,2005
    71刘道祥.水资源系统风险管理研究综述.西北水电,2003(1):8-11
    72黄崇福.综合风险评估的一个基本模式.应用基础与工程科学学报,2008,16(3):371-377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700