用户名: 密码: 验证码:
苏鲁超高压变质带榴辉岩原位微区地球化学研究及其地球动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微区地球化学(Microgeochemistry)研究被认为将主导今后的地球化学研究方向,它可以在单矿物微米尺度上揭示元素/同位素空间变化细节,为宏观地球化学研究提供制约。结合详细岩石学观察,对地质样品直接进行原位微区地球化学研究,是一种具有创新性的现代岩石地球化学研究方法。它使岩石学和地球化学在微米尺度上能够有机地结合在一起,为深入探讨地球化学动力学过程提供了可能。最近蓬勃兴起的激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)和激光剥蚀多接收器电感耦合等离子体质谱仪(LA-MC-ICP-MS)为原位微区地球化学研究提供了原位、实时、快速、准确的分析方法。本研究利用LA-ICP-MS和LA-MC-ICP-MS相结合的方法对苏鲁超高压变质带榴辉岩中单矿物进行了详细的原位微区微量元素、同位素组成和锆石U-Pb年代学研究,结合利用微量元素和同位素分配和扩散实验研究成果进行的模拟计算,揭示了苏鲁超高压变质带不同地球动力学过程在单矿物微米尺度上的微量元素和同位素记录,探讨了深俯冲大陆地壳折返过程中的元素迁移、流体活动以及热力学过程。本研究主要取得以下四方面的认识:
     (1)榴辉岩中单矿物的微量元素组成比主量元素对化学和温度的变化更敏感,单矿物微量元素成分环带可以记录在岩石学和主量元素上无明显显示的复杂变质作用过程。利用LA-ICP-MS对中国大陆科学钻探工程(CCSD)主孔部分榴辉岩进行的单矿物微区微量元素空间剖面分析研究发现主量元素组成均一的石榴石和绿辉石具有明显的微量元素组成分带。石榴石边部表现出明显的中稀土元素(MREE)富集特征,绿辉石边部显著富集所有稀土元素(REE),磷灰石边部则富集重稀土元素(HREE)而低轻、中稀土元素。结合微量元素在榴辉岩各主要矿物中分配系数随温度、压力变化的实验研究,石榴石、绿辉石和磷灰石中的微量元素组成分带应反映榴辉岩在折返过程中可能经历的增温作用。利用石榴石和磷灰石中REE扩散系数进行的计算结果表明,榴辉岩增温作用所持续的时间可能非常短暂。该增温过程是苏鲁超高压变质岩经历部分熔融作用以及榴辉岩经历麻粒岩相叠加改造的可能原因。
     (2)磷灰石Sr同位素和微量元素成分环带是不同变质作用过程的良好记录器。利用LA-ICP-MS和LA-MC-ICP-MS对CCSD主孔中一件强退变多硅白云母榴辉岩中一粗粒(2mm×6.5 mm)磷灰石进行了详细的微区微量元素和Sr同位素组成研究。线扫描剖面分析和单点分析结果共同表明该磷灰石颗粒的微量元素和Sr同位素组成不均一。总体上Na、Sr、LREE、MREE、U、Th和Pb等元素具有从中心到两侧含量逐渐降低的特征。磷灰石主体部分HREE含量均一,但和石榴石紧密相邻的边部(-400μm)显著富集HREE。Na、Sr、LREE和MREE等元素在个别区域明显具有先升高、然后降低的变化规律。磷灰石最边部(<200μm)相对于核部区域显著高87Sr/86Sr比值。结合磷灰石中微量元素分配和扩散行为的实验研究以及磷灰石晶体化学特征,磷灰石微量元素组成变化应主要记录了磷灰石复杂的生长过程。Sr、LREE和MREE从核部到边部逐渐降低的总体特征指示磷灰石从中心向两侧的生长过程,而局部出现的次级先升高—然后降低的变化规律则反映了磷灰石经历的多次溶解和再生长作用。HREE含量均一的磷灰石主体形成于石榴石稳定存在的超高压变质作用阶段。和石榴石紧密相邻的磷灰石边部显著富集HREE的特征则是折返过程中短时增温作用导致石榴石释放HREE和/或退变质阶段石榴石分解释放HREE共同作用的结果。磷灰石最边部显著高87Sr/86Sr比值的特征则记录了角闪岩相退变质阶段多硅白云母的分解作用。
     (3)对岩石薄片中原位锆石直接进行U-Pb年龄和微量元素组成的同时测定既可以精确限定变质作用时间又可以制约变质锆石的形成环境。本研究建立了利用LA-ICP-MS在16μm激光斑束的条件下,对岩石薄片进行原位锆石U-Pb同位素和微量元素同时准确测定的方法,并利用该方法对一块取自CCSD主孔退变质榴辉岩岩石薄片中的锆石进行了系统研究。所研究岩石薄片中的锆石分为两类,一类锆石以包裹体的形式分布在新鲜的石榴石和绿辉石中,而二类锆石产于绿辉石周围的后成合晶中。其中,一类锆石的边部和少量二类锆石的幔部相对于核部显著低REE、Y、Nb和Ta,指示这些锆石区域可能同石榴石、金红石和磷灰石同时形成于超高压变质阶段,同时暗示这些锆石区域没有经历后期退变质作用的影响。这些薄片中原位锆石206Pb/238U的加权平均年龄(230±4 Ma,2σ)和已发表的利用矿物分选得到的含柯石英锆石的年龄(230±1 Ma,2σ)在误差范围内一致,说明苏鲁地区超高压变质作用的峰期年龄可能为-230 Ma。那些被后成合晶围绕或者贯穿的锆石区域可能受到了退变质作用的影响,给出了相对年轻的206Pb/238U加权平均年龄(209±4 Ma,2σ)。但是,这些退变质锆石区域同超高压变质锆石区域具有相似的REE组成,说明-209 Ma的锆石区域可能是角闪岩相退变质过程中流体改造的结果。在角闪岩相退变质流体改造的过程中,Pb发生了完全丢失,而REE成分没有被改变。
     (4)片麻岩部分熔融作用可能是诱发大陆俯冲带流体活动的重要原因。为了揭示苏鲁超高压变质带与片麻岩有关的流体活动,本研究对石英脉及其邻近的榴辉岩透镜体以及围岩片麻岩进行了系统岩石学和锆石年代学研究。变形石英脉分布在围岩片麻岩和榴辉岩透镜体之间。榴辉岩透镜体的角闪岩相退变质程度从边部到核部依次减弱。围岩片麻岩具有叶理化的结构特征,同时包含长英质脉体,这些岩石学特征指示围岩片麻岩可能经历了部分熔融作用。片麻岩锆石边部具有与熔体平衡的微量元素特征,如陡峭的HREE配分模式、高Hf含量和负Eu异常。片麻岩锆石边部给出的206Pb/238U加权平均年龄为219±3 Ma(2σ),明显小于大别-苏鲁超高压峰期变质年龄(-230 Ma)。因此,苏鲁超高压变质带片麻岩的部分熔融作用发生在折返的初期阶段。
     石英脉锆石边部确定的流体活动时间为219±2 Ma(2σ),与围岩片麻岩发生部分熔融的时间(219±3 Ma,2σ)一致。并且石英脉锆石边部的初始176Hf/177Hf比值显著低于榴辉岩透镜体锆石的初始176Hf/177Hf比值,但和附近片麻岩部分熔融形成的花岗岩脉锆石的初始176Hf/177Hf比值一致。说明石英脉以及相应的流体活动与围岩片麻岩的部分熔融有关。另外一方面,含角闪石并富集HREE的角闪岩锆石边部确定的角闪岩相退变质时间(217±5 Ma,2σ)与石英脉的形成时间一致。暗示与片麻岩部分熔融有关的流体活动可能引起了榴辉岩透镜体的角闪岩相退变质作用。基于以上观察,我们推测大陆俯冲带片麻岩在折返过程中经历的部分熔融作用可以诱发显著的流体活动,这是苏鲁超高压变质带石英脉形成以及榴辉岩经历广泛退变质作用的可能原因。
It has been accepted that microgeochemistry would lead the direction of modern geochemistry. Microanalysis could reveal the spatial variations of trace element and isotope compositons of single mineral grain at the micron scale. Thus, geochemistry and petrology investigations can be integrated at the micron scale to decipher the geodynamic process. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), recently well developed, provide effective tools for in situ, real time, quick and accurate microanalysis of trace element and isotope compositions. In this work, in situ trace element and isotope compositions of mineral in eclogites from the Sulu ultrahigh-pressure (UHP) terrane were analyzed by LA-ICP-MS and LA-MC-ICP-MS. Zircon U-Pb ages, trace element and Lu-Hf isotope compositions and trace element distribution and diffusion-based model calculation were combined to deciper the element mobility, fluid flow and thermal evolution during exhumation of the subducted continental crust, as summaried as following:
     (1) Trace element partitioning between metamorphic minerals is more sensitive than major elements to chemical and thermal changes of the eclogite, and trace element zoning of minerals could record complex metamorphic history. Trace element compositions of garnet, omphacite and apatite in UHP eclogites from the main hole of the Chinese Continental Scientific Drilling (CCSD-MH) project were in situ analyzed by LA-ICP-MS. Although both garnet and omphacite have homogeneous major element compositions, their trace elements show zonations from the core to the rim in rare earth elements (REE). In particular, middle rare earth elements (MREE) in garnet, heavy rare earth elements (HREE) in apatite and all REE in omphacite increase from the core to the rim, respectively. Combination of dependence of trace element partition and diffusion coefficients on temperature and pressure and REE zonations in these minerals indicates that the trace element zoning in these minerals could record a short-lived heating event during exhumation. Such hot exhumation could have contributed significantly to the overprint of granulite facies metamorphism on the eclogites and the widespread partial melting in the Sulu UHP terrane.
     (2) Sr isotope and trace elment zoning of apatite could be a well recorder of the different UHP metamosphic stage of eclogite. Trace element and Sr isotope compositions of an apatite grain (-2mm×6.5mm) in a strongly retrograded eclogite from the CCSD-MH were analyzed by LA-ICP-MS and LA-MC-ICP-MS. Both line-scanning and single spot analyses reveal that apatite is heterogeneous in trace element and Sr isotope compositions. Na, Sr, LREE, MREE, U, Th and Pb gradually decrease from the core to the rim. Remarkable secondary changes of Na, Sr, LREE and MREE occur in some local parts of the apatite. HREE are generally homogeneous in the main part of the apatite, but enriched in the outmost rim (-400 mm) close to garnet. The outmost rim (<200 mm) has the highest 87Sr/86Sr ratios. Combining the trace element partition and diffusion, and crystal-chemical characteristics of apatite, we suggest that the trace element variations reflect the complicated growth of apatite. The gradually decreasing from the core to the rim for Na, Sr, LREE, MREE, U, Th and Pb indicate apatite growth in the UHP metamorphism, while the secondary changes in local parts imply multi-stage dissolution and re-growth. The relatively homogeneous HREE compositions of the main part of the apatite suggest that apatite growth was mainly associated with the UHP metamorphism. HREE enrichments in the outmost rim of apatite could have resulted from garnet breakdown in amphibolite-facies retrograde metamorphism and/or HREE-releasing of garnet due to a short-lived heating during the exhumation. The high-87Sr/86Sr rim could indicate apatite growth coupled with phengite breakdown in the amphibolite-facies retrograde metamorphism.
     (3) In situ U-Pb dating and trace element analysis of zircons combined with a textural relationship investigation in thin section is a powerful tool to constrain the UHP stage of high-grade metamorphism. Two types of zircon grains have been identified in thin sections of a retrograde eclogite from the CCSD-MH in the Sulu UHP terrain. Type 1 zircon grains occur as inclusions in fresh garnet and omphacite, and Type 2 zircon grains were found in symplectite around omphacite. The fresh rims of Type 1 zircons and mantles of a few Type 2 zircons exhibit remarkably lower REE, Y, Nb and Ta contents than the inherited zircon cores, suggesting coeval growth with garnet, rutile and apatite during UHP metamorphism. These may have formed in the UHP metamorphism and survived retrograde metamorphism. The weighted average 206Pb/238U age of these zircon domains (230±4 Ma,2σ) agrees well with the published age of coesite-bearing zircon separates (230±1 Ma,2σ), suggesting that the peak UHP metamorphism in the Sulu terrain may have occurred at-230 Ma. Zircon domains surrounded or cut across by symplectite could have been altered by retrograde metamorphism. Together, they provide a younger weighted average 206Pb/238U age of 209±4 Ma (2σ). These retrograde zircon domains have similar REE compositions to the-230 Ma UHP zircon domains. These observations imply that the-209 Ma zircon domains could have formed by fluid activity-associated alternations in the amphibolite-facies metamorphism, which could have resulted in the complete loss of Pb but not REE in these domains.
     (4) Partial melting of the gneiss could have triggered the fluid flow in the continental subduction zone. In order to decipher the fluid activity in the Sulu UHP terrane in eastern China, quartz veins together with an adjacent eclogite lens and the host gneiss were studied. The deformed quartz vein is located at the boundary between the host gneiss and the eclogite lens. The amphibolite-facies metamorphic degree of the eclogite lens decreases from the rim to the core. The foliated gneiss contains felsic veins. Zircon rims from the gneiss are characterized by melt-related signatures in steep HREE patterns, high Hf contents and negative Eu anomalies and pool a weighted average 206Pb/238U age of 219±3 Ma (2σ), which is obviously younger than the peak metamorphic age of the Dabie-Sulu UHP terrane (-230 Ma). This suggests that the gneiss in the Sulu UHP terrane could have suffered from partial melting during the initial exhumation stage.
     The formation age of the quartz vein (219±2 Ma,2σ) defined by zircon rims agrees well with the partial melting time (219±3 Ma,2σ) of the host gneiss. The initial 176Hf/177Hf ratios of zircon rims from the quartz vein are obviously lower than zircons from eclogite lens, but overlap with the coeval zircon domains from the nearby granite dikes produced by partial melting of orthogneiss. These observations suggest that the quartz vein and corresponding fluid flow could be associated with partial melting of the host gneiss. On the other hand, amphibole-bearing and HREE-rich zircon rims from the amphibolite pool an amphibolite-facies metamorphic age of 217±5 Ma (2σ), overlaping with the formation age of the quartz vein. This implies that retrogression of the eclogite lens could have been caused by melting-induced fluid flow. Based on the above observations, we speculate that partial melting of the gneiss in the continental subduction-related UHP belt could have induced significant fluid flow during the exhumation stage, and thus contributed a lot to the extensive retrogression of eclogites in the Sulu UHP terrane.
引文
[1]Dietz R S. Continent and ocean basin evolution by spreading of the sea floor. Nature, 1961,190(4779):854-857.
    [2]Hess H H. History of ocean basins. In:A.E.J. Engel et al. (Editors), Petrologic studies:a volume in honor of A.F. Buddington. Geological Society of America,1962, pp.599-620.
    [3]Wilson J T. Hypothesis of Earth's behaviour. Nature,1963,198(4884):925-929.
    [4]Hess H H. Mid-oceanic ridges and tectonics of the sea-floor. In:W.F. Whittard and R. Bradshaw (Editors), Submarine Geology and Geophysics (Proc. Symp. Colston Res. Soc.). Butterworths, London,1965, pp.317-333.
    [5]Wilson J T. A new class of faults and their bearing on continental drift. Nature,1965, 207(4995):343-347.
    [6]Morgan W J. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research,1968,73(6):1959-1982.
    [7]Tatsumi Y, Kogiso T. The subduction factory:its role in the evolution of the Earth's crust and mantle. In:R.D. Larter and P.T. Leat (Editors), Intra-oceanic subduction systems: tectonic and magmatic processes, Geological Society, London, Special Publications,219, 2003, pp.55-80.
    [8]Ernst W G. Subduction-zone metamorphism, calcalkaline magmatism, and convergent-margin crustal evolution. Gondwana Research,2009: doi:10.1016/j.gr.2009.05.010.
    [9]Taylor S R, McLennan S M. The geochemical evolution of the continental crust. Reviews of Geophysics,1995,33(2):241-265.
    [10]Hansen V L. Subduction origin on early Earth:a hypothesis. Geology,2007,35(12): 1059-1062.
    [11]Bebout G E. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters,2007,260(3-4):373-393.
    [12]Manning C E. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters,2004,223(1-2):1-16.
    [13]Peacock S M, Wang K. Seismic consequences of warm versus cool subduction metamorphism:examples from southwest and northeast Japan. Science,1999,286(5441): 937-939.
    [14]Billen M I. Modeling the dynamics of subducting slabs. Annual Review of Earth and Planetary Sciences,2008,36(1):325-356.
    [15]Sengor A M C. Plate tectonics and orogenic research after 25 years:synopsis of a Tethyan perspective. Tectonophysics,1991,187(1-3):315-330,337-344.
    [16]Chopin C. Coesite and pure pyrope in high-grade blueschists of the Western Alps:a first record and some consequences. Contributions to Mineralogy and Petrology,1984,86(2): 107-118.
    [17]Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature,1984,310(5979):641-644.
    [18]Sobolev N V, Shatsky V S. Diamond inclusions in garnets from metamorphic rocks:a new environment for diamond formation. Nature,1990,343(6260):742-746.
    [19]Xu S T, Okay A I, Ji S Y, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science,1992,256(5053):80-82.
    [20]Zheng Y F.25 years of continental deep subduction. Chinese Science Bulletin,2009, 54(22):4266-4270.
    [21]Ernst W G, Liou J G. High-and ultrahigh-pressure metamorphism:past results and future prospects. American Mineralogist,2008,93(11-12):1771-1786.
    [22]Chopin C. Ultrahigh-pressure metamorphism:tracing continental crust into the mantle. Earth and Planetary Science Letters,2003,212(1-2):1-14.
    [23]Liou J G, Zhang R Y, Ernst W G. Very high-pressure orogenic garnet peridotites. Proceedings of the National Academy of Sciences,2007,104(22):9116-9121.
    [24]郑永飞,叶凯,张立飞.发展板块构造:从洋壳俯冲到大陆碰撞.科学通报,2009,54(13):1799-1803.
    [25]Schertl H-P, Gilotti J A, Cuthbert S J, et al. Twenty-five years of ultrahigh-pressure metamorphism Preface. European Journal of Mineralogy,2009,21(6):1083-1084.
    [26]Wang X M, Liou J G, Mao H K. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology,1989,17(12):1085-1088.
    [27]Okay A I, Xu S T, Sengor A M C. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy,1989,1(4):595-598.
    [28]Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200 km. Nature,2000,407(6805):734-736.
    [29]Liu L, Zhang J F, Green Ⅱ H W, et al. Evidence of former stishovite in metamorphosed sediments, implying subduction to> 350 km. Earth and Planetary Science Letters,2007, 263(3-4):180-191.
    [30]从柏林,王清晨.中国超高压变质岩研究评述.科学通报,1994,39(24):2214-2218.
    [31]从柏林,王清晨.大陆深俯冲作用研究引起的新思维.自然科学进展,2000,10(9):777-782.
    [32]郑永飞.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例.科学通报,2008,53(18):2129-2152.
    [33]Liou J G, Ernst W G, Zhang R Y, et al. Ultrahigh-pressure minerals and metamorphic terranes—the view from China. Journal of Asian Earth Sciences,2009,35(3-4): 199-231.
    [34]Zhang R Y, Liou J G, Ernst W G The Dabie-Sulu continental collision zone:a comprehensive review. Gondwana Research,2009,16(1):1-26.
    [35]Ji S C, Xu Z Q. Drilling deep into the ultrahigh pressure (UHP) metamorphic terrane. Tectonophysics,2009,475(2):201-203.
    [36]Shimizu N, Hart S R. Applications of the ion microprobe to geochemistry and cosmochemistry. Annual Review of Earth and Planetary Sciences,1982,10(1):483-526.
    [37]Burnett D S, Woolum D S. In situ trace element microanalysis. Annual Review of Earth and Planetary Sciences,1983,11:329-358.
    [38]Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. Analyst,1985,110(5):551-556.
    [39]Reed S J B. Recent developments in geochemical microanalysis. Chemical Geology, 1990,83(1-2):1-9.
    [40]Giinther D, Jackson S E, Longerich H P. Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochimica Acta Part B-Atomic Spectroscopy,1999,54(3-4):381-409.
    [41]Russo R E, Mao X L, Liu H C, et al. Laser ablation in analytical chemistry-a review. Talanta,2002,57(3):425-451.
    [42]Gunther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trac-Trends in Analytical Chemistry,2005,24(3):255-265.
    [43]Griffin W L, Smith D, Boyd F R, et al. Trace-element zoning in garnets from sheared mantle xenoliths. Geochimica et Cosmochimica Acta,1989,53(2):561-567.
    [44]Bestel M, Gawronski T, Abart R, et al. Compositional zoning of garnet porphyroblasts from the polymetamorphic Wolz Complex, Eastern Alps. Mineralogy and Petrology, 2009,97(3):173-188.
    [45]Burger P V, Papike J J, Shearer C K, et al. Jarosite growth zoning as a recorder of fluid evolution. Geochimica et Cosmochimica Acta,2009,73(11):3248-3259.
    [46]Konrad-Schmolke M, Zack T, O'Brien P J, et al. Combined thermodynamic and rare earth element modelling of garnet growth during subduction:examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth and Planetary Science Letters,2008,272(1-2):488-498.
    [47]Kohn M J. Geochemical zoning in metamorphic minerals. In:R.L. Rudnick (Editor), The Crust. Treatise On Geochemistry. Elsevier,2003, pp.229-261.
    [48]Chernoff C B, Carlson W D. Trace element zoning as a record of chemical disequilibrium during garnet growth. Geology,1999,27(6):555-558.
    [49]Pearson N J, O'Reilly S Y, Griffin W L, et al. Linking crustal and mantle events using in situ trace-element and isotope analysis. Geochimica et Cosmochimica Acta,2006, 70(18S):A479.
    [50]Muller W. Strengthening the link between geochronology, textures and petrology. Earth and Planetary Science Letters,2003,206(3-4):237-251.
    [51]Jourdan A L, Vennemann T W, Mullis J, et al. Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy,2009,21(1): 219-231.
    [52]Gregory C J, McFarlane C R M, Hermann J, et al. Tracing the evolution of calc-alkaline magmas:in-situ Sm-Nd isotope studies of accessory minerals in the Bergell Igneous Complex, Italy. Chemical Geology,2009,260(1-2):73-86.
    [53]Yang J H, Wu F Y, Wilde S, et al. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology, 2007,153(2):177-190.
    [54]Storkey A C, Hermann J, Hand M, et al. Using in situ trace-element determinations to monitor partial melting processes in metabasites. Journal of Petrology,2005,46(6): 1283-1308.
    [55]Jackson S E, Longerich H P, Dunning G R, et al. The application of laser-ablation microprobe-inductively coupled plasma-mass-spectrometry (LAM-ICP-MS) to in situ trace-element determination in minerals. Canadian Mineralogist,1992,30:1049-1064.
    [56]Perkins W T, Pearce N J G, Jeffries T E. Laser ablation inductively coupled plasma mass-spectrometry-a new technique for the determination of trace and ultra-trace elements in silicates. Geochimica et Cosmochimica Acta,1993,57(2):475-482.
    [57]Pearce N J G, Perkins W T, Abell I, et al. Mineral microanalysis by laser ablation inductively coupled plasma mass-spectrometry. Journal of Analytical Atomic Spectrometry,1992,7(1):53-57.
    [58]Falkner K K, Klinkhammer G P, Ungerer C A, et al. Inductively coupled plasma mass spectrometry in geochemistry. Annual Review of Earth and Planetary Sciences,1995, 23(1):409-449.
    [59]Gunther D, Horn I, Hattendorf B. Recent trends and developments in laser ablation-ICP-mass spectrometry. Fresenius Journal of Analytical Chemistry,2000, 368(1):4-14.
    [60]罗彦,胡圣虹,刘勇胜,等.激光剥蚀电感耦合等离子体质谱微区分析新进展.分析化学,2001,29(11):1345-1352.
    [61]Sylvester P. Laser Ablation ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues. Canada. Mineralogical Association of Canada. Short Course,2008.
    [62]Sylvester P. Laser-Ablation-ICPMS in the Earth Sciences. Principles and Applications. Canada. Mineralogica Association of Canada.2001.
    [63]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology,2008,247(1-2):100-118.
    [64]Godard G. Eclogites and their geodynamic interpretation:a history. Journal of Geodynamics,2001,32(1-2):165-203.
    [65]Birch F. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research,1952,57(2):227-286.
    [66]Lovering J F. The nature of the Mohorovicic discontinuity. Transactions-American Geophysical Union,1958,39(5):947-955.
    [67]Kennedy G C. The origin of continents, moutain ranges, and ocean basins. American Scientist,1959,47:491-504.
    [68]Carr J B. Long-term (geotectonic) stress generation, propagation and accumulation in the Earth. Nature,1966,210(5033):239-245.
    [69]Ito K, Kennedy G C. The fine structure of the basalt-eclogite transition. Mineralogical Society of America, Special Paper,1970,3:77-83.
    [70]Verhoogen J. Petrological evidence on temperature distribution in the mantle of the Earth. Transactions-American Geophysical Union,1954,35:85-98.
    [71]Kuno H. Discussion of paper by J. F. Lovering, "The nature of the Mohorovicic discontinuity". Journal of Geophysical Research,1959,64(8):1071-1073.
    [72]Harris P G, Rowell J A. Some geochemical aspects of the Mohorovicic discontinuity. Journal of Geophysical Research,1960,65(8):2443-2459.
    [73]Ringwood A E. A model for the upper mantle. Journal of Geophysical Research,1962, 67(2):857-867.
    [74]Wyllie P J. Ultramafic rocks and the upper mantle. Mineralogical Society of America, Special Paper,1970,3:3-32.
    [75]Smith D C. Eclogites and eclogite-facies rocks. Developments in petrology, Vol.12. Amsterdam, Elsevier,1988,534 pp.
    [76]Rubie D C. Role of kinetics in the formation and preservation of eclogites. In:D.A. Carswell (Editor), Eclogite facies rocks. Blackie,1990, pp.111-140.
    [77]Cong B L, Wang Q C. The Dabie-Sulu UHP rocks belt:review and prospect. Chinese Science Bulletin,1999,44(12):1074-1086.
    [78]Ernst W G, Liou J G. Ultrahigh-pressure metamorphism and geodynamics in collision-type orogenic belts:international book series, Volume 4. Columbia, MD, Geol. Soc. America, Boulder, CO, and Bellwether Publishing Ltd,2000,292 pp.
    [79]Ernst W G, Liou J G. Overview of UHP metamorphism and tectonics in well-studied collisional orogens. International Geology Review,1999,41(6):477-493.
    [80]Hamilton B M. The influence of the polarising microscope on late nineteenth century geology. Janus,1982,69(1-2):51-68.
    [81]Ringwood A E, Green D H. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics,1966,3(5):383-427.
    [82]Green D H, Ringwood A E. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta, 1967,31(5):767-833.
    [83]Green D H, Ringwood A E. A comparison of recent experimental data on the gabbro-garnet granulite-eclogite transition. Journal of Geology,1972,80(3):277-288.
    [84]Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime. Earth-Science Reviews,2003,62(1-2):105-161.
    [85]Zheng Y F, Chen R X, Zhao Z F. Chemical geodynamics of continental subduction-zone metamorphism:insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics,2009,475(2):327-358.
    [86]许志琴.深俯冲和折返动力学:来自中国大陆科学钻探主孔及苏鲁超高压变质带的制约.岩石学报,2007,23(12):3041-3053.
    [87]郑永飞,赵子福,陈仁旭.大陆碰撞和超高压变质的化学地球动力学:来自中国大陆科学钻探的结果.岩石学报,2007,23(12):3078-3094.
    [88]王鹤年.苏北榴辉岩的特征及成因探讨.南京大学学报(自然科学版),1963(1):109-122.
    [89]Xu Z Q. Etude tectonique et microtectonique de la chaine paleozoique et triasique des Quilings (Chine). These de doctorate, Univ. Sci. Tech. Languedoc, Montpellier,1987.
    [90]Yang J, Smith D C. Evidence for a former sanidine-coesite-eclogite at Lanshantou, east China, and the recognition of the Chinese "Su-Lu coesite-eclogite province", Third International Eclogite Conference. Blackwell scientific Publications, Oxford,1989, pp. 26.
    [91]Zhang R Y, Hirajima T, Banno S, et al. Coesite-eclogite from Donghai area, Jiangsu Province in China, The 15th General Meeting of the Int'l Mineral. Assoc. Abs,1989, pp. 923-924.
    [92]Ye K, Yao Y P, Katayama I, et al. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China:new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos,2000,52(1-4):157-164.
    [93]Zhang Z M, Shen K, Wang J L, et al. Petrological and geochronological constraints on the formation, subduction and exhumation of the continental crust in the southern Sulu orogen, eastern-central China. Tectonophysics,2009,475(2):291-307.
    [94]Zhang Z M, Xu Z Q, Xu H F. Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China. Lithos,2000,52(1-4):35-50.
    [95]Yang J J, Jahn B M. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. Journal of Metamorphic Geology,2000, 18(2):167-180.
    [96]张泽明,张金凤,游振东,等.苏鲁造山带超高压变质作用及其P-T-t轨迹.岩石学报,2005,21(2):257-270.
    [97]Zhang R Y, Hirajima T, Banno S, et al. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. Journal of Metamorphic Geology,1995,13(6): 659-675.
    [98]Zhang R Y, Liou J G. Coesite-bearing eclogite in Henan Province, central China:detailed petrography, glaucophane stability and PT-path. European Journal of Mineralogy,1994, 6(2):217-233.
    [99]Zhang R Y, Liou J G, Tsai C H. Petrogenesis of a high-temperature metamorphic terrane: a new tectonic interpretation for the North Dabieshan, central China. Journal of Metamorphic Geology,1996,14(3):319-333.
    [100]Zhang R Y, Hirajima T, Banno S, et al. Petrology of ultrahigh-pressure rocks from the southern Sulu region, eastern China. Journal of Metamorphic Geology,1995,13(6): 659-675.
    [101]Li S G, Xiao Y L, Liou D 1, et al. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites:timing and processes. Chemical Geology,1993, 109(1-4):89-111.
    [102]Liou J G, Zhang R Y, Jahn B M. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China. Lithos,1997,41(1-3):59-78.
    [103]Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of, the northern Dabie complex, central China. Chemical Geology,1999,157(1-2):119-146.
    [104]Li S G, Jagoutz E, Chen Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta,2000,64(6): 1077-1093.
    [105]Jahn B M, Liu X C, Yui T F, et al. High-pressure/ultrahigh-pressure eclogites from the Hong'an Block,East-Central China:geochemical characterization, isotope disequilibrium and geochronological controversy. Contributions to Mineralogy and Petrology,2005, 149(5):499-526.
    [106]Zheng Y F. Fluid regime in continental subduction zones:petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society,2009,166(4): 763-782.
    [107]Wang Q, Burlini L G, Mainprice D, et al. Geochemistry, petrofabrics and seismic properties of eclogites from the Chinese Continental Scientific Drilling boreholes in the Sulu UHP terrane, eastern China. Tectonophysics,2009,475(2):251-266.
    [108]Xu H J, Jin Z M, Mason R, et al. Magnetic susceptibility of ultrahigh pressure eclogite: the role of retrogression. Tectonophysics,2009,475(2):279-290.
    [109]Gao S, Kern H, Jin Z M, et al. Poisson's ratio of eclogite:the role of retrogression. Earth and Planetary Science Letters,2001,192(4):523-531.
    [110]Kern H, Gao S, Jin Z M, et al. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China:implications for the composition and delamination of the lower crust. Tectonophysics,1999,301(3-4): 191-215.
    [111]Kern H, Jin Z M, Gao S, et al. Physical properties of ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern central China:implications for the seismic structure at the Donghai (CCSD) drilling site. Tectonophysics,2002,354(3-4):315-330.
    [112]Hacker B R, Ratschbacher L, Webb L, et al. Exhumation of ultrahigh-pressure continental crust in east central China:Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research,2000,105(B6):13339-13364.
    [113]Zhong Z Q, Suo S T, You Z D. Regional-scale extensional tectonic pattern of ultrahigh-pressure and high-pressure metamorphic belts from the Dabie massif, China. International Geology Review,1999,41(11):1033-1041.
    [114]Suo S T, Zhong Z Q, You Z D. Extensional deformation of post ultrahigh-pressure metamorphism and exhumation process of ultrahigh-pressure metamorphic rocks in the Dabie massif, China. Science in China Series D-Earth Sciences,2000,43(3):225-236.
    [115]Suo S T, Zhong Z Q, Zhou H W, et al. Tectonic evolution of the Dabie-Sulu UHP and HP metamorphic belts, east-central China:structural record in UHP rocks. International Geology Review,2005,47(11):1207-1221.
    [116]Wang L, Jin Z M, Kusky T, et al. Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite and eclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology,2009, doi:10.1111/j.1525-1314.2009.00859.x.
    [117]Hacker B R, Wallis S R, McWilliams M O, et al.40Ar/39Ar constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen. Journal of Metamorphic Geology,2009,27(9):827-844.
    [118]Ames L, Tilton G R, Zhou G Z. Timing of collision of the Sino-Korean and Yangtse cratons:U-Pb zircon dating of coesite-bearing eclogites. Geology,1993,21(4):339-342.
    [119]Ames L, Zhou G Z, Xiong B C. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics,1996,15(2):472-489.
    [120]Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology. Earth and Planetary Science Letters,1997,151(3-4):191-203.
    [121]Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters,1998,161(1-4):215-230.
    [122]Ayers J C, Dunkle S, Gao S, et al. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology,2002,186(3-4): 315-331.
    [123]Liu D Y, Jian P, Kroner A, et al. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters,2006,250(3-4):650-666.
    [124]Liu F L, Gerdes A, Liou J G, et al. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China:constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology,2006,24(7):569-589.
    [125]Wan Y S, Li R W, Wilde S A, et al. UHP metamorphism and exhumation of the Dabie Orogen, China:evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochimica et Cosmochimica Acta,2005, 69(17):4333-4348.
    [126]Wu Y B, Zheng Y F, Gao S, et al. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos,2008,101(34):308-322.
    [127]Wu Y B, Zheng Y F, Zhao Z F, et al. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta,2006,70(14):3743-3761.
    [128]Liu F L, Liou J G, Xu Z Q. U-Pb SHRIMP ages recorded in the coesite-bearing zircon domains of paragneisses in the southwestern Sulu terrane, eastern China:new interpretation. American Mineralogist,2005,90(5-6):790-800.
    [129]Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China:evidence from zircon U-Pb age, trace element and Hf isotope composition. Contributions to Mineralogy and Petrology,2008,155(1):123-133.
    [130]Sassi P, Harte B, Carswell D A, et al. Trace element distribution in Central Dabie eclogites. Contributions to Mineralogy and Petrology,2000,139(3):298-315.
    [131]Xiao Y L, Hoefs J, Van Den Kerkhof A M, et al. Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. Journal of Metamorphic Geology,2001,19(1):3-19.
    [132]Xiao Y L, Hoefs J, van den Kerkhof A M, et al. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China:constraints from mineral chemistry, fluid Inclusions and stableisotopes. Jounal of Petrology,2002,43(8):1505-1527.
    [133]Jahn B M, Fan Q C, Yang J J, et al. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan:chemical and isotopic constraints. Lithos,2003,70(3-4):243-267.
    [134]罗彦,高山,袁洪林,等.大别-苏鲁榴辉岩和石榴辉石岩中矿物Ce异常:对氧化环境下形成沉积物深俯冲作用的示踪.中国科学D辑,2004,34(1):14-23.
    [135]邱检生,王汝成,蒋少涌,等.中国大陆科学钻探主孔榴辉岩中石榴石和绿辉石原位激光探针分析及其成岩成矿指示意义.岩石学报,2007,23(12):3221-3230.
    [136]Tang H F, Liu C Q, Nakai S i, et al. Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China:new insights into protoliths and trace element behaviour during UHP metamorphism. Lithos,2007,95(3-4):441-457.
    [137]Zhang Z M, Shen K, Sun W D, et al. Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta,2008,72(13): 3200-3228.
    [138]石超,张泽明.超高压变质过程中的元素地球化学行为—CCSD主孔榴辉岩的矿物化学研究.岩石学报,2007,23(12):3180-3200.
    [139]Cheng H, Nakamura E, Zhou Z Y. Garnet Lu-Hf dating of retrograde fluid activity during ultrahigh-pressure metamorphic eclogites exhumation. Mineralogy and Petrology, 2009,95(3):315-326.
    [140]Griffin W L, Jaques A L, Sie S H, et al. Conditions of diamond growth:a proton microprobe study of inclusions in West Australian diamonds. Contributions to Mineralogy and Petrology,1988,99(2):143-158.
    [141]O'Reilly S Y, Griffin W L. Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites:P-T-X controls. Chemical Geology,1995, 121(1-4):105-130.
    [142]Pearce N J G, Perkins W T, Fuge R. Developments in the quantitative and semiquantitative determination of trace-elements in carbonates by laser ablation inductively coupled plasma mass-spectrometry. Journal of Analytical Atomic Spectrometry,1992,7(4):595-598.
    [143]Perkins W T, Pearce N J G, Fuge R. Analysis of zircon by laser ablation and solution inductively coupled plasma mass-spectrometry. Journal of Analytical Atomic Spectrometry,1992,7(4):611-616.
    [144]Perkins W T, Fuge R, Pearce N J G Quantitative-analysis of trace-elements in carbonates using laser ablation inductively coupled plasma mass-spectrometry. Journal of Analytical Atomic Spectrometry,1991,6(6):445-449.
    [145]Huang Y, Shibata Y, Morita M. Micro laser ablation-inductively coupled plasma mass spectrometry.1. instrumentation and performance of micro laser ablation system. Analytical Chemistry,1993,65(21):2999-3003.
    [146]Longerich H P, Jackson S E, Fryer B J, et al. Machinations-the laser ablation microprobe inductively-coupled plasma-mass-spectrometry. Geoscience Canada,1993,20(1):21-27.
    [147]Jenner G A, Foley S F, Jackson S E, et al. Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry. (LAM-ICP-MS). Geochimica et Cosmochimica Acta,1993,57(23-24):5099-5103.
    [148]Feng R, Machado N, Ludden J. Lead geochronology of zircon by LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS). Geochimica et Cosmochimica Acta,1993,57(14):3479-3486.
    [149]Fryer B J, Jackson S E, Longerich H P. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology. Chemical Geology,1993,109(1-4):1-8.
    [150]Zack T, Rivers T, Foley S F. Cs-Rb-Ba systematics in phengite and amphibole:an assessment of fluid mobility at 2.0 GPa in eclogites from Trescolmen, Central Alps. Contributions to Mineralogy and Petrology,2001,140(6):651-669.
    [151]Zack T, Foley S F, Rivers T. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). Jounal of Petrology,2002,43(10): 1947-1974.
    [152]Wiesli R A, Taylor L A, Valley J W, et al. Geochemistry of eclogites and metapelites from Trescolmen, Central Alps, as observed from major and trace elements and oxygen isotopes. International Geology Review,2001,43(2):95-119.
    [153]Rudnick R L, Barth M, Horn I, et al. Rutile-bearing refractory eclogites:missing link between continents and depleted mantle. Science,2000,287(5451):278-281.
    [154]Zack T, Kronz A, Foley S F, et al. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology,2002,184(1-2):97-122.
    [155]Hermann J, Rubatto D, Korsakov A, et al. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology,2001,141(1):66-82.
    [156]Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology,2002,184(1-2):123-138.
    [157]宗克清,刘勇胜,柳小明,等.CCSD主孔100-1100m榴辉岩中单矿物的原位微区微量元素地球化学研究.岩石学报,2006,22(7):1891-1904.
    [158]吴元保,陈道公,夏群科,等.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征.科学通报,2002,47(11):859-863.
    [159]Sun W D, Williams I S, Liu S G. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China:evidence for protracted convergence of the North and South China Blocks. Journal of Metamorphic Geology,2002,20(9):873-886.
    [160]Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters,2005,240(2):378-400.
    [161]Wallis S, Tsuboi M, Suzuki K, et al. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology,2005,33(2):129-132.
    [162]刘福来,薛怀民,刘平华.苏鲁超高压岩石部分熔融时间的准确限定:来自含黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据.岩石学报,2009,25(5):1039-1055.
    [163]Banno S, Enami M, Hirajima T, et al. Decompression P-T path of coesite eclogite to granulite from Weihai, eastern China. Lithos,2000,52(1-4):97-108.
    [164]Nakamura D, Hirajima T. Granulite-facies overprinting of ultrahigh-pressure metamorphic rocks, northeastern Su-Lu region, eastern China. Journal of Petrology, 2000,41(4):563-582.
    [165]Yao Y P, Ye K, Liu J B, et al. A transitional eclogite-to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, eastern China. Lithos,2000,52(1-4):109-120.
    [166]Wang Q C, Ishiwatari A, Zhao Z Y, et al. Coesite-bearing granulite retrograded from eclogite in Weihai, eastern China. European Journal of Mineralogy,1993,5(1):141-152.
    [167]O'Brien P J, Vrana S. Eclogites with a short-lived granulite facies overprint in the Moldanubian Zone, Czech Republic:petrology, geochemistry and diffusion modelling of garnet zoning. Geologische Rundschau,1995,84(3):473-488.
    [168]O'Brien P J. Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European variscides:a record of their thermal history during exhumation. Lithos, 1997,41(1-3):119-133.
    [169]Knutson C, Peacor D R, Kelly W C. Luminescence, color and fission track zoning in apatite crystals of the Panasqueira tin-tungsten deposit, Beira-Baixa, Portugal. American Mineralogist,1985,70(7-8):829-837.
    [170]Jolliff B L, Papike J J, Shearer C K, et al. Inter-and intra-crystal REE variations in apatite from the Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta,1989,53(2):429-441.
    [171]Rakovan J, Reeder R J. Differential incorporation of trace elements and dissymmetrization in apatite; the role of surface structure during growth. American Mineralogist,1994,79(9-10):892-903.
    [172]Tepper J H, Kuehner S M. Complex zoning in apatite from the Idaho Batholith:a record of magma mixing and intracrystalline trace element diffusion. American Mineralogist, 1999,84(4):581-595.
    [173]Kempe U, Gotze J. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine,2002,66(1):151-172.
    [174]Dempster T J, Jolivet M, Tubrett M N, et al. Magmatic zoning in apatite:a monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology, 2003,145(5):568-577.
    [175]Boyce J W, Hodges K V. U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite:insights regarding the impact of recoil redistribution of radiogenic He on (U-Th)/He thermochronology. Chemical Geology,2005,219(1-4):261-274.
    [176]Liu F L, Xu Z Q, Liou J G, et al. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology,2004,22(4):315-326.
    [177]Liu F L, Gerdes A, Zeng L S, et al. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochimica et Cosmochimica Acta,2008,72(12):2973-3000.
    [178]Moller A, O'Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In:D. Vance et al. (Editors), Geochronology: linking the isotopic record with petrology and textures, Geological Society, London, Special Publications,220,2003, pp.65-81.
    [179]Monteleone B D, Baldwin S L, Webb L E, et al. Late Miocene-Pliocene eclogite facies metamorphism, D'Entrecasteaux Islands, SE Papua New Guinea. Journal of Metamorphic Geology,2007,25(2):245-265.
    [180]Tomkins H S, Williams I S, Ellis D J. In situ U-Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, S W Norway. Journal of Metamorphic Geology,2005,23(4):201-215.
    [181]Whitehouse M J, Platt J P. Dating high-grade metamorphism-constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 2003,145(1):61-74.
    [182]Simonetti A, Heaman L M, Chacko T, et al. In situ petrographic thin section U-Pb dating of zircon, monazite, and titanite using laser ablation-MC-ICP-MS. International Journal of Mass Spectrometry,2006,253(1-2):87-97.
    [183]Franz L, Romer R L, Klemd R, et al. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China):pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology,2001,141(3):322-346.
    [184]Wu Y B, Gao S, Zhang H F, et al. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains:constraints on fluid flow during early exhumation of ultrahigh-pressure rocks. American Mineralogist, 2009,94(2-3):303-312.
    [185]Zheng Y F, Gao T S, Wu Y B, et al. Fluid flow during exhumation of deeply subducted continental crust:zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology,2007,25(2):267-283.
    [186]Putlitz B, Valley J W, Matthews A, et al. Oxygen isotope thermometry of quartz-Al2SiO5 veins in high-grade metamorphic rocks on Naxos island (Greece). Contributions to Mineralogy and Petrology,2002,143(3):350-359.
    [187]Molina J F, Poli S, Austrheim H, et al. Eclogite-facies vein systems in the Marun-Keu complex (Polar Urals, Russia):textural, chemical and thermal constraints for patterns of fluid flow in the lower crust. Contributions to Mineralogy and Petrology,2004,147(4): 484-504.
    [188]Manning C E. Fractal clustering of metamorphic veins. Geology,1994,22(4):335-338.
    [189]Cartwright I, Buick I S. Fluid generation, vein formation and the degree of fluid-rock interaction during decompression of high-pressure terranes:the Schistes Lustres, Alpine Corsica, France. Journal of Metamorphic Geology,2000,18(6):607-624.
    [190]Breeding C M, Ague J J. Slab-derived fluids and quartz-vein formation in an accretionary prism, Otago Schist, New Zealand. Geology,2002,30(6):499-502.
    [191]Liati A, Gebauer D. Constraining the prograde and retrograde P-T-t path of Eocene H P rocks by SHRIMP dating of different zircon domains:inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contributions to Mineralogy and Petrology,1999,135(4):340-354.
    [192]Bucholz C E, Ague J J. Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, Scotland. Journal of Metamorphic Geology,2010,28(1):19-39.
    [193]Castelli D, Rolfo F, Compagnoni R, et al. Metamorphic veins with kyanite, zoisite and quartz in the Zhu-Jia-Chong eclogite, Dabie Shan, China. Island Arc,1998,7(1-2): 159-173.
    [194]Li X P, Zheng Y F, Wu Y B, et al. Low-T eclogite in the Dabie terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology,2004,148(4):443-470.
    [195]Li Y L, Zheng Y F, Fu B, et al. Oxygen isotope composition of quartz-vein in ultrahigh-pressure eclogite from Dabieshan and implications for transport of high-pressure metamorphic fluid. Physics and Chemistry of the Earth (A),2001, 26(9-10):695-704.
    [196]Zheng Y F, Fu B, Gong B, et al. Oxygen isotope constraints on fluid flow during eclogitization in the Sulu terrane. Progress in Natural Science,1998,8(1):98-105.
    [197]Gao T S, Wang S S, Gong B, et al. Postcollisional flow of aqueous fluid within ultrahigh-pressure eclogite in the Dabie orogen. Journal of Geochemical Exploration, 2006,89(1-3):115-118.
    [198]许志琴,杨经绥,张泽明,等.中国大陆科学钻探终孔及研究进展.中国地质,2005,32(2):177-183.
    [199]许志琴.中国大陆科学钻探工程的科学目标及初步成果.岩石学报,2004,20(1):1-8.
    [200]Kornprobst J, Piboule M, Roden M, et al. Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco):original plagioclase-rich gabbros recrystallized at depth within the mantle? Journal of Petrology,1990,31(3):717-745.
    [201]Morishita T, Arai S. Petrogenesis of corundum-bearing mafic rock in the Horoman peridotite complex, Japan. Journal of Petrology,2001,42(7):1279-1299.
    [202]Morishita T, Arai S, Gervilla F. High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain:significance of sapphirine-and corundum-bearing mineral assemblages. Lithos,2001,57(2-3):143-161.
    [203]Enami M, Zang Q J. Magnesian staurolite in garnet-corundum rocks and eclogite from the Donghai District, Jiangsu Province, East China. American Mineralogist,1988, 73(1-2):48-56.
    [204]Zhang R Y, Liou J G, Zheng J P. Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contributions to Mineralogy and Petrology,2004,147(1): 21-31.
    [205]Zong K Q, Liu Y S, Gao C G, et al. Garnet-spinel-corundum-quartz-bearing titanohematite vein in eclogite from the Sulu ultrahigh-pressure terrane:Imprint of a short-lived high-temperature metamorphic stage. Journal of Asian Earth Sciences, 2010(Minor revision).
    [206]Kretz R. Some applications of thermodynamics to coexisting minerals of variable compostion.Examples:orthopyroxene-clinopyroxene and orthopyroxene. Journal of Petrology,1961,69(4):361-387.
    [207]Hickmott D D, Shimizu N, Spear F S, et al. Trace-element zoning in a metamorphic garnet. Geology,1987,15(6):573-576.
    [208]Hickmott D D, Shimizu N. Trace element zoning in garnet from the Kwoiek Area, British Columbia:disequilibrium partitioning during garnet growth? Contributions to Mineralogy and Petrology,1990,104(6):619-630.
    [209]Lanzirotti A. Yttrium zoning in metamorphic garnets. Geochimica et Cosmochimica Acta,1995,59(19):4105-4110.
    [210]Spear F S, Kohn M J. Trace element zoning in garnet as monitor of crustal melting. Geology,1996,24(12):1099-1102.
    [211]宗克清,刘勇胜,高山,等.汉诺坝辉石岩包体中单斜辉石的微区微量元素组成特征及其地球动力学意义.岩石学报,2005,21(3):909-920.
    [212]Schneider J, Bosch D, Monie P, et al. Micro-scale element migration during eclogitisation in the Bergen arcs (Norway):a case study on the role of fluids and deformation. Lithos,2007,96(3-4):325-352.
    [213]Barth M G, Rudnick R L, Horn I, et al. Geochemistry of xenolithic eclogites from West Africa, Part I:A link between low MgO eclogites and Archean crust formation. Geochimica et Cosmochimica Acta,2001,65(9):1499-1527.
    [214]Harte B, Kirkley M B. Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chemical Geology,1997,136(1-2):1-24.
    [215]梁凤华,苏尚国,游振东,等.中国大陆科学钻探主孔0-2000m榴辉岩的退变质过程.中国地质,2005,32(2):218-229.
    [216]游振东,苏尚国,梁凤华,等.中国大陆科学钻探主孔榴辉岩类岩石退变质过程—对超高压变质地体隆升的启示.岩石学报,2005,21(2):381-388.
    [217]张泽明,张金凤,许志琴,等.中国大陆科学钻探工程主孔榴辉岩的岩石学研究.中国地质,2005,32(2):205-217.
    [218]Chen S, Yang J, Li T. Petrological investigation of the Ganyu peridotite in the Sulu ultrahigh-pressure terrane, eastern China. Tectonophysics,2009,475(2):383-395.
    [219]Zhu Y F, Massonne H J, Theye T. Eclogites from the Chinese continental scientific drilling borehole, their petrology and different P-T evolutions. Island Arc,2007,16(4): 508-535.
    [220]Li S, Wang C, Dong F, et al. Common Pb of UHP metamorphic rocks from the CCSD project (100-5000 m) suggesting decoupling between the slices within subducting continental crust and multiple thin slab exhumation. Tectonophysics,2009,475(2): 308-317.
    [221]Zhang Z M, Liou J G, Zhao X D, et al. Petrogenesis of Maobei rutile eclogites from the southern Sulu ultrahigh-pressure metamorphic belt, eastern China. Journal of Metamorphic Geology,2006,24(8):727-741.
    [222]Zhang Z M, Xiao Y L, Hoefs J, et al. Ultrahigh pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project:Ⅰ. petrology and geochemistry of the main hole (0-2,050 m). Contributions to Mineralogy and Petrology,2006,152(4): 421-441.
    [223]Xiao Y L, Zhang Z M, Hoefs J, et al. Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project:Ⅱ oxygen isotope and fluid inclusion distributions through vertical sections. Contributions to Mineralogy and Petrology,2006, 152(4):443-458.
    [224]Zhao Z F, Zheng Y F, Chen R X, et al. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta,2007,71(21):5244-5266.
    [225]Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole:subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,2008, 247(1-2):133-153.
    [226]刘福来,许志琴,杨经绥,等.中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别.岩石学报,2004,20(1):9-26.
    [227]薛怀民,刘福来.中国大陆科学钻探工程主孔0-2000米斜长片麻岩的地球化学性质及成因研究.岩石学报,2005,21(1):355-368.
    [228]刘勇胜,张泽明,Lee C T,等.CCSD主孔高Ti榴辉岩非耦合的高Ti、低Nb (Zr)特征:对玄武质岩浆房中磁体矿分离结晶作用的指示.岩石学报,2005,21(2):339-346.
    [229]陈意,金振民,欧新功,等.韧性剪切带中片麻岩和超高压榴辉岩变形特征及其与地震波速各向异性的关系:来自中国大陆科学钻探(CCSD) 680-1200m岩心的证据.岩石学报,2004,20(1):97-108.
    [230]金振民,欧新功,徐海军,等.中国大陆科学钻探主孔100-2000岩石弹性波速:对地震深反射的制约.岩石学报,2004,20(1):81-96.
    [231]Liang J L, Ding X, Sun X M, et al. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology,2009,268(1-2): 27-40.
    [232]Gao C G, Liu Y S, Zong K Q, et al. Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole:implications for the fluid activity and thermo-history of the UHP metamorphism. Lithos,2009:doi:10.1016/j.lithos.2009.11.007.
    [233]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008, 257(1-2):34-43.
    [234]Gao S, Liu X M, Yuan H L, et al. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter,2002,26(2):181-195.
    [235]Norman M D, Griffin W L, Pearson N J, et al. Quantitative analysis of trace element abundances in glasses and minerals:a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry,1998,13(3):477-482.
    [236]Eggins S M, Woodhead J D, Kinsley L P J, et al. A simple method for the precise determination of≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology,1997,134(4):311-326.
    [237]Taylor S R, McLennan S M. The continental crust:its composition and evolution. Blackwell Scientific Publication,1985.
    [238]Schwandt C S, Papike J J, Shearer C K. Trace element zoning in pelitic garnet of the Black Hills, South Dakota. American Mineralogist,1996,81(9-10):1195-1207.
    [239]陈能松,孙敏,杨勇,等.变质石榴石的成分环带与变质过程.地学前缘,2003,10(3):315-320.
    [240]Hauri E H, Wagner T P, Grove T L. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology,1994,117(1-4):149-166.
    [241]Skora S, Lapen T J, Baumgartner L P, et al. The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy. Earth and Planetary Science Letters,2009,287(3-4):402-411.
    [242]Frei D, Liebscher A, Franz G, et al. Trace element geochemistry of epidote minerals. Reviews in Mineralogy and Geochemistry,2004,56(1):553-605.
    [243]Watson E B, Green T H. Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters,1981,56:405-421.
    [244]Klein M, Stosch H G, Seck H A, et al. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Chemical Geology,2000,64(1):99-115.
    [245]Kosler J. Laser-ablation ICPMS strudy of metamorphic minerals and processes. In:P. Sylvester (Editor), Laser-ablation-ICPMS in the earth sciences. Mineralogical Association of Canada,2001, pp.185-202.
    [246]Zhang Z M, Xiao Y L, Liu F L, et al. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos,2005,81(1-4):189-207.
    [247]Skulski T, Minarik W G, Watson E B. High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chemical Geology,1994, 117(1-4):127-147.
    [248]Dunn T. Partitioning of Hf, Lu, Ti, and Mn between olivine, clinopyroxene and basaltic liquid. Contributions to Mineralogy and Petrology,1987,96(4):476-484.
    [249]Nicholls I A, Harris K L. Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochimica et Cosmochimica Acta,1980,44(2):287-308.
    [250]Fujimaki H, Tatsumoto M, Aoki K I. Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. Journal of Geophysical Research,1984,89(S2): B662-B672.
    [251]Tirone M, Ganguly J, Dohmen R, et al. Rare earth diffusion kinetics in garnet: Experimental studies and applications. Geochimica et Cosmochimica Acta,2005,69(9): 2385-2398.
    [252]Cherniak D J. Rare earth element diffusion in apatite. Geochimica et Cosmochimica Acta,2000,64(22):3871-3885.
    [253]Crank J. The mathematics of diffusion. London,2nded. Oxford Univ,1975.
    [254]Ayers J C, Watson E B. Apatite/fluid partitioning of rare-earth elements and strontium: experimental results at 1.0 GPa and 1000℃ and application to models of fluid-rock interaction. Chemical Geology,1993,110(1-3):299-314.
    [255]Prowatke S, Klemme S. Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta,2006,70(17):4513-4527.
    [256]Macdonald R, Baginski B, Belkin H E, et al. REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. Mineralogical Magazine,2009,72(6): 1147-1161.
    [257]Harrison T M, Watson E B. The behavior of apatite during crustal anatexis:equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta,1984,48(7):1467-1477.
    [258]Watson E B, Harrison T M, Ryerson F J. Diffusion of Sm, Sr, and Pb in fluorapatite. Geochimica et Cosmochimica Acta,1985,49(8):1813-1823.
    [259]Boyce J W, Hervig R L. Magmatic degassing histories from apatite volatile stratigraphy. Geology,2008,36(1):63-66.
    [260]Boyce J, Hervig R. Apatite as a monitor of late-stage magmatic processes at Volcan Irazu, Costa Rica. Contributions to Mineralogy and Petrology,2009,157(2):135-145.
    [261]R(?)nsbo J G. Apatite in the Illmaussaq alkaline complex:occurrence, zonation and compositional variation. Lithos,2008,106(1-2):71-82.
    [262]Sirbescu M-L C, Leatherman M A, Student J J, et al. Apatite textures and compositions as records of crystallization processes in the Animikie Red Ace pegmatite dike, Wisconsin, USA. Canadian Mineralogist,2009,47(4):725-743.
    [263]Seifert W, Kampf H, Wasternack J. Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany:implication for cooling history of carbonatites. Lithos,2000,53(2):81-100.
    [264]Chu M F, Wang K L, Griffin W L, et al. Apatite composition:tracing petrogenetic processes in Transhimalayan granitoids. Journal of Petrology,2009,50(10):1829-1855.
    [265]Samson S D, Matthews S, Mitchell C E, et al. Tephrochronology of highly altered ash beds:the use of trace element and strontium isotope geochemistry of apatite phenocrysts to correlate K-bentonites. Geochimica et Cosmochimica Acta,1995,59(12):2527-2536.
    [266]Sha L-K, Chappell B W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta,1999,63(22):3861-3881.
    [267]Konzett J, Frost D J. The high P-T stability of hydroxyl-apatite in natural and simplified MORB-an experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. Journal of Petrology,2009,50(11): 2043-2062.
    [268]Ayers J C, Watson E B. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions of the Royal Society of London, Series A:Mathematical and Physical Sciences,1991,335(1638):365-375.
    [269]O'Reilly S Y, Griffin W L. Apatite in the mantle:implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos,2000,53(3-4):217-232.
    [270]Fleischer M. Distribution of the lanthanides and yttrium in apatites from iron ores and its bearing on the genesis of ores of the kiruna type. Economic Geology,1983,78(5): 1007-1010.
    [271]Frietsch R, Perdahl J-A. Rare earth elements in apatite and magnetite in kiruna-type iron ores and some other iron ore types. Ore Geology Reviews,1995,9(6):489-510.
    [272]Belousova E A, Griffin W L, O'Reilly S Y, et al. Apatite as an indicator mineral for mineral exploration; trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration,2002,76(1):45-69.
    [273]朱笑青,王中刚,黄艳,等.磷灰石的稀土组成及其示踪意义.稀土,2004,25(5):41-45,63.
    [274]Shatrov V A, Voitsekhovskii G V. Reconstruction of phosphate formation environments (from data on distribution of lanthanides). Russian Geology and Geophysics,2009, 50(10):850-862.
    [275]Trotter J A, Eggins S M. Chemical systematics of conodont apatite determined by laser ablation ICPMS. Chemical Geology,2006,233(3-4):196-216.
    [276]赵来时,吴元保,胡兆初,等.牙形石微量元素对生物绝灭事件的响应:以二叠—三叠系全球层型剖面第一幕绝灭事件为例.地球科学(中国地质大学学报),2009,34(5):725-732.
    [277]周炼,胡兆初,袁红林,等.扬子克拉通早奥陶世古海水地球化学特征:来自牙形石微量元素的证据.地球化学,2005,3.
    [278]王汝成,王硕,邱检生,等.东海超高压榴辉岩中绿帘石、褐帘石、磷灰石和钍石集合体的电子探针成分和化学定年研究.岩石学报,2006,22(07):1855-1866.
    [279]陈振宇,曾令森,梁凤华,等.CCSD主孔榴辉岩中磷灰石的矿物化学特征及对榴辉岩中F、Cl、Sr等元素地球化学行为的影响.地质学报,2006,80(12):1842-1850.
    [280]陈振宇,曾令森,孟丽娟.苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化学.岩石学报,2009,25(7):1663-1677.
    [281]Sun X M, Tang Q, Sun W D, et al. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochimica et Cosmochimica Acta,2007,71(11):2896-2905.
    [282]汤倩,孙晓明,徐莉,等.中国大陆科学钻探(CCSD) UHP岩石石英脉中磷灰石团块独居石出溶物的U-Th-Pb化学定年.岩石学报,2006,22(07):1927-1932.
    [283]汤倩,孙晓明,徐莉,等.中国大陆科学钻探(CCSD)榴辉岩磷灰石脉体中铁的氧化物、重晶石和独居石出溶物的发现及其意义.岩石学报,2006,22(07):1915-1920.
    [284]陈晶,曾令森,陈方远,等.江苏青龙山磷灰石中出溶体的初步研.岩石学报,2006,22(07):1921-1926.
    [285]朱永峰,Massonne H J.中国大陆科学钻探主孔中磷灰石的磁黄铁矿出溶结构.岩石学报,2007,23(12):3249-3254.
    [286]Ague J J, Baxter E F. Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth and Planetary Science Letters,2007,261(3-4):500-516.
    [287]Farver J R, Giletti B J. Oxygen and strontium diffusion kinetics in apatite and potential applications to thermal history determinations. Geochimica et Cosmochimica Acta,1989, 53(7):1621-1631.
    [288]Cherniak D J, Lanford W A, Ryerson F J. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques. Geochimica et Cosmochimica Acta,1991,55(6):1663-1673.
    [289]Cherniak D J, Ryerson F J. A study of strontium diffusion in apatite using Rutherford backscattering spectroscopy and ion implantation. Geochimica et Cosmochimica Acta, 1993,57(19):4653-4662.
    [290]Exley R A, Jones A P.87Sr/86Sr in kimberlitic carbonates by.ion microprobe: hydrothermal alteration, crustal contamination and relation to carbonatite. Contributions to Mineralogy and Petrology,1983,83(3):288-292.
    [291]Creaser R A, Gray C M. Preserved initial87Sr/86Sr in apatite from altered felsic igneous rocks:a case study from the Middle Proterozoic of South Australia. Geochimica et Cosmochimica Acta,1992,56(7):2789-2795.
    [292]Zaitsev A, Bell K. Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contributions to Mineralogy and Petrology,1995,121(3): 324-335.
    [293]Bizzarro M, Simonetti A, Stevenson R K, et al. In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS. Geochimica et Cosmochimica Acta,2003,67(2):289-302.
    [294]Tsuboi M. The use of apatite as a record of initial 87Sr/86Sr ratios and indicator of magma processes in the Inagawa pluton, Ryoke belt, Japan. Chemical Geology,2005, 221(3-4):157-169.
    [295]Arppe L, Karhu J A, Vartanyan S L. Bioapatite 87Sr/86Sr of the last woolly mammoths-implications for the isolation of Wrangel Island. Geology,2009,37(4): 347-350.
    [296]Liu Y S, Hu Z C, Yuan H L, et al. Volume-optional low-memory (VOLM) chamber for laser ablation-ICP-MS:application to fiber analyses. Journal of Analytical Atomic Spectrometry,2007,22(5):582-585.
    [297]Longerich H P, Jackson S E, Gunther D. Laser ablation-inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry,1996,11(9):899-904.
    [298]Cherniak D J. Uranium and manganese diffusion in apatite. Chemical Geology,2005, 219(1-4):297-308.
    [299]Harlov D E, Forster H J. High-grade fluid metasomatism on both a local and regional scale:the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy. Part Ⅱ:Phosphate mineral chemistry. Journal of Petrology,2002,43(5): 801-824.
    [300]Yang P, Rivers T. The origin of Mn and Y annuli in garnet and the thermal dependence of P in garnet and Y in apatite in calc-pelite and pelite, Gagnon terrane, western Labrador. Geological Materials Research,2002,4(1):1-35 (http://gmr.minsocam.org/contents.html).
    [301]Nakamura D, Banno S. Thermodynamic modelling of sodic pyroxene solid-solution and its application in a garnet-omphacite-kyanite-coesite geothermobarometer for UHP metamorphic rocks. Contributions to Mineralogy and Petrology,1997,130(1):93-102.
    [302]R(?)nsbo J G. Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq Intrusion, South Greenland, and the petrological implications. American Mineralogist,1989,74(7-8):896-901.
    [303]Hughes J M, Cameron M, Mariano A N. Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. American Mineralogist,1991,76(7-8): 1165-1173.
    [304]Krenn E, Finger F. Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif. American Mineralogist,2004,89(8-9): 1323-1329.
    [305]Cherniak D J, Hanchar J M, Watson E B. Rare-earth diffusion in zircon. Chemical Geology,1997,134(4):289-301.
    [306]Cherniak D J, Hanchar J M, Watson E B. Diffusion of tetravalent cations in zircon. Contributions to Mineralogy and Petrology,1997,127(4):383-390.
    [307]Cherniak D J, Watson E B. Pb diffusion in zircon. Chemical Geology,2000,172(1-2): 5-24.
    [308]Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon. Nature, 1997,390(6656):159-162.
    [309]Bingen B, Austrheim H, Whitehouse M J, et al. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contributions to Mineralogy and Petrology,2004,147(6):671-683.
    [310]Hermann J, Rubatto D. Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology,2003,21(9):833-852.
    [311]Liati A. Identification of repeated Alpine (ultra) high-pressure metamorphic events by U-Pb SHRIMP geochronology and REE geochemistry of zircon:the Rhodope zone of Northern Greece. Contributions to Mineralogy and Petrology,2005,150(6):608-630.
    [312]Miller C, Mundil R, Thoni M, et al. Refining the timing of eclogite metamorphism:a geochemical, petrological, Sm-Nd and U-Pb case study from the Pohorje Mountains, Slovenia (Eastern Alps). Contributions to Mineralogy and Petrology,2005,150(1): 70-84.
    [313]Buick I S, Hermann J, Williams I S, et al. A SHRIMP U-Pb and LA-ICP-MS trace element study of the petrogenesis of garnet-cordierite-orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos,2006,88(1-4):150-172.
    [314]Rubatto D, Hermann J, Buick I S. Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, Central Australia). Journal of Petrology,2006,47(10):1973-1996.
    [315]Schaltegger U, Fanning C M, Gunther D, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism:conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology,1999,134(2):186-201.
    [316]Martin L A J, Duchene S, Deloule E, et al. Mobility of trace elements and oxygen in zircon during metamorphism:consequences for geochemical tracing. Earth and Planetary Science Letters,2008,267(1-2):161-174.
    [317]Moser D E, Bowman J R, Wooden J, et al. Creation of a continent recorded in zircon zoning. Geology,2008,36(3):239-242.
    [318]Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen. Chemical Geology,2006,231(1-2):135-158.
    [319]Gerdes A, Zeh A. Zircon formation versus zircon alteration-new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology,2009, 261(3-4):230-243.
    [320]Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size. Chinese Science Bulletin, 2007,52(9):1257-1264.
    [321]Liu Y S, Hu Z C, Zong K. Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,2010, 55(15),1535-1546.
    [322]Xu S T, Liu Y C, Chen G B, et al. New finding of microdiamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Science Bulletin,2003,48(10): 988-994.
    [323]Cong B L. Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Beijing, China, Science Press,1996.
    [324]Ernst W G, Liou J G. Overview of UHP metamorphism and tectonics in well-studied collisional orogens. International Geology Review,1999,41(6):477-493.
    [325]Cheng H, King R L, Nakamura E, et al. Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. Journal of Metamorphic Geology,2008,26(7):741-758.
    [326]Liou J G, Zhang R Y. Occurrences of intergranular coesite in ultrahigh-P rocks from the Sulu region, eastern China:implications for lack of fluid during exhumation. American Mineralogist,1996,81(9-10):1217-1221.
    [327]Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry,2008, 23(8):1093-1101.
    [328]Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology,2010,51(1-2): 537-571.
    [329]Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,2004,211(1-2):47-69.
    [330]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter,1995,19(1):1-23.
    [331]Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research,2004,28(1):9-39.
    [332]Martin L, Duchene S, Deloule E, et al. The isotopic composition of zircon and garnet:a record of the metamorphic history of Naxos, Greece. Lithos,2006,87(3-4):174-192.
    [333]Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):an ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology,1996,122(4):337-358.
    [334]Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry,2003,53(1):469-500.
    [335]Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology,2000,18(4):423-439.
    [336]Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry,2003,53(1):27-62.
    [337]Rimsa A, Whitehouse N, Johansson L, et al. Brittle fracturing and fracture healing of zircon:an integrated cathodoluminescence, EBSD, U-Th-Pb, and REE study. American Mineralogist,2007,92(7):1213-1224.
    [338]Gebauer D, Schertl H P, Brix M, et al.35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos, 1997,41(1-3):5-24.
    [339]Tomaschek F, Kennedy A K, Villa I M, et al. Zircons from Syros, Cyclades, Greece— recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology,2003,44(11):1977-2002.
    [340]Zhang Z M, Shen K, Xiao Y L, et al. Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole:a record of metamorphism and fluid activity. Lithos,2006,92(3-4):378-398.
    [341]Zhang Z M, Schertl H P, Wang J L, et al. Source of coesite inclusions within inherited magmatic zircon from Sulu UHP rocks, eastern China, and their bearing for fluid-rock interaction and SHRIMP dating. Journal of Metamorphic Geology,2009,27(4): 317-333.
    [342]Huang J, Zheng Y F, Zhao Z F, et al. Melting of subducted continent:element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology,2006,229(4):227-256.
    [343]Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia. Precambrian Research,2003,122(1-4): 85-109.
    [344]Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters,2002,196(1-2): 51-67.
    [345]Liu F L, Xu Z Q, Xue H M. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos,2004,78(4):411-429.
    [346]Kylander-Clark A R C, Hacker B R, Johnson C M, et al. Coupled Lu-Hf and Sm-Nd geochronology constrains prograde and exhumation histories of high-and ultrahigh-pressure eclogites from western Norway. Chemical Geology,2007,242(1-2): 137-154.
    [347]Rubatto D, Hermann J. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta,2003,67(12):2173-2187.
    [348]Rubatto D, Hermann J. Zircon behaviour in deeply subducted rocks. Elements,2007, 3(1):31-35.
    [349]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology,1999,134(4):380-404.
    [350]Williams I S, Buick I S, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. Journal of Metamorphic Geology,1996,14(1):29-47.
    [351]Grant M L, Wilde S A, Wu F Y, et al. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology,2009,261(1-2):154-170.
    [352]Jahn B M, Liu X C, Yui T F, et al. High-pressure/ultrahigh-pressure eclogites from the Hong'an Block, east-central China:geochemical characterization, isotope disequilibrium and geochronological controversy. Contributions to Mineralogy and Petrology,2005, 149(5):499-526.
    [353]Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust:1. experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters,1997,148(1-2):193-205.
    [354]Agard P, Goffe B, Touret J L R, et al. Retrograde mineral and fluid evolution in high-pressure metapelites (Schistes lustres unit, Western Alps). Contributions to Mineralogy and Petrology,2000,140(3):296-315.
    [355]Hermann J, Spandler C, Hack A, et al. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:implications for element transfer in subduction zones. Lithos,2006,92(3-4):399-417.
    [356]Miller J A, Buick I S, Cartwright I, et al. Fluid processes during the exhumation of high-P metamorphic belts. Mineralogical Magazine,2002,66(1):93-119.
    [357]Rumble D. Water circulation in metamorphism. Journal of Geophysical Research,1994, 99(B8):15499-15502.
    [358]Yardley B W D. The role of water in the evolution of the continental crust. Journal of the Geological Society,2009,166(4):585-600.
    [359]Wannamaker P E, Caldwell T G, Jiracek G R, et al. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature,2009,460(7256): 733-736.
    [360]Ragozin A L, Liou J G, Shatsky V S, et al. The timing of the retrograde partial melting in the Kumdy-Kol region (Kokchetav Massif, Northern Kazakhstan). Lithos,2009, 109(3-4):274-284.
    [361]Zheng Y F. Fluid activity during exhumation of deep-subducted continental plate. Chinese Science Bulletin,2004,49(10):985-998.
    [362]张斌辉,刘勇胜,宗克清,等.榴辉岩退变质过程中的微量元素地球化学行为:对CCSD主孔退变质榴辉岩的研究.岩石学报,2006,22(7):1833-1844.
    [363]Berger A, Burri T, Alt-Epping P, et al. Tectonically controlled fluid flow and water-assisted melting in the middle crust:an example from the Central Alps. Lithos, 2008,102(3-4):598-615.
    [364]Prince C, Harris N, Vance D. Fluid-enhanced melting during prograde metamorphism. Journal of the Geological Society,2001,158:233-241.
    [365]Rubatto D, Hermann J, Berger A, et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contributions to Mineralogy and Petrology,2009,158(6):703-722.
    [366]Breton N L, Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology,1988, 99(2):226-237.
    [367]Skjerlie K P, Patino Douce A E. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3. GPa:implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology,2002,43(2):291-314.
    [368]Rumble D, Liou J G, Jahn B M, et al. Continental crust subduction and ultrahigh pressure metamorphism, Treatise on Geochemistry. Pergamon, Oxford,2003, pp. 293-319.
    [369]Liou J G, Zhang R Y, Ernst W G. Lack of fluid during ultrahigh-P metamorphism in the Dabie-Sulu region, Eastern China (in Precambrian geology and metamorphic petrology), Proceedings of the 30th International Geological Congress,1997, pp.141-155.
    [370]Hermann J. Experimental constraints on phase relations in subducted continental crust. Contributions to Mineralogy and Petrology,2002,143(2):219-235.
    [371]Auzanneau E, Vielzeuf D, Schmidt M W. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contributions to Mineralogy and Petrology,2006,152(2):125-148.
    [372]Hermann J. Experimental evidence for diamond-facies metamorphism in the Dora-Maira massif. Lithos,2003,70(3-4):163-182.
    [373]Bureau H, Keppler H. Complete miscibility between silicate melts and hydrous fluids in the upper mantle:experimental evidence and geochemical implications. Earth and Planetary Science Letters,1999,165(2):187-196.
    [374]Stalder R, Ulmer P, Thompson A B, et al. Experimental approach to constrain second critical end points in fluid/silicate systems:near-solidus fluids and melts in the system albite-H2O. American Mineralogist,2000,85(1):68-77.
    [375]Enami M, Zang Q J, Yin Y J. High-pressure eclogites in northern Jiangsu-southern Shandong Province, eastern China. Journal of Metamorphic Geology,1993,11(4): 589-603.
    [376]Zhang R Y, Li T, Rumble D, et al. Multiple metasomatism in Sulu ultrahigh-P garnet peridotite constrained by petrological and geochemical investigations. Journal of Metamorphic Geology,2007,25(2):149-164.
    [377]Zhang R Y, Liou J G, Yang J S, et al. Ultrahigh-pressure metamorphism in the forbidden zone:the Xugou garnet peridotite, Sulu Terrane, eastern China. Journal of Metamorphic Geology,2003,21(6):539-550.
    [378]Zhang R Y, Liou J G, Yang J S, et al. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology,2000,18(2):149-166.
    [379]Ye K, Hirajima T. High-pressure marble at Yangguantun, Rongcheng County, Shandong Province, eastern China. Mineralogy and Petrology,1996,57(3-4):151-165.
    [380]Zhu Y F, Massonne H J, Zhu M F. Petrology of low-temperature, ultrahigh-pressure marbles and interlayered coesite eclogites near Sanqingge, Sulu terrane, eastern China. Mineralogical Magazine,2009,73(2):307-332.
    [381]Chen J F, Xie Z, Li H M, et al. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal,2003, 37(1):35-46.
    [382]Yang J H, Chung S L, Wilde S A, et al. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China:geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology,2005,214(1-2):99-125.
    [383]Jahn B M, Cornichet J, Cong B L, et al. Ultrahigh-εNd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology,1996,127(1-3): 61-79.
    [384]Zheng Y F, Fu B, Gong B, et al. Extreme 18O depletion in eclogite from the Su-Lu terrane in East China. European Journal of Mineralogy,1996,8(2):317-323.
    [385]Sawyer E W. Criteria for the recognition of partial melting. Physics and Chemistry of the Earth Part A:Solid Earth and Geodesy,1999,24(3):269-279.
    [386]Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology,2009:doi: 10.1093/petrology/egp082.
    [387]Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology,2008,255(1-2):231-235.
    [388]Woodhead J D, Hergt J M. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 2005,29(2):183-195.
    [389]Watson E, Wark D, Thomas J. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology,2006,151(4):413-433.
    [390]Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997, 148(1-2):243-258.
    [391]Liou J G, Zhang R Y, Ernst W G. Occurrences of hydrous and carbonate phases in ultrahigh-pressure rocks from east-central China:implications for the role of volatiles deep in cold subduction zones. Island Arc,1995,4(4):362-375.
    [392]Ernst W G. Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices-implications for arcs and continental growth. Physics of The Earth and Planetary Interiors,2001,127(1-4):253-275.
    [393]Huang W L, Wyllie P J. Phase relationships of S-type granite with H2O to 35 kbar: muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research, 1981,86(B11):10515-10529.
    [394]Hermann J, Green D H. Experimental constraints on high pressure melting in subducted crust. Earth and Planetary Science Letters,2001,188(1-2):149-168.
    [395]Xia Q X, Zheng Y F, Zhou L G. Dehydration and melting during continental collision: constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chemical Geology,2008,247(1-2):36-65.
    [396]Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,1983, 64(2):295-304.
    [397]Scharer U, Labrousse L. Dating the exhumation of UHP rocks and associated crustal melting in the Norwegian Caledonides. Contributions to Mineralogy and Petrology,2003, 144(6):758-770.
    [398]Luo Y, Ayers J C. Experimental measurements of zircon/melt trace-element partition coefficients. Geochimica et Cosmochimica Acta,2009,73(12):3656-3679.
    [399]Rubatto D, Hermann J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 2007,241(1-2):38-61.
    [400]Wang Q, Wyman D A, Li Z X, et al. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China:petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research,2010, doi:DOI: 10.1016/j.precamres.2010.02.004.
    [401]Schmidt M W, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures:the key role of white mica. Earth and Planetary Science Letters,2004, 228(1-2):65-84.
    [402]Wu Y, Fei Y, Jin Z, et al. The fate of subducted upper continental crust:an experimental study. Earth and Planetary Science Letters,2009,282(1-4):275-284.
    [403]Gordon S M, Grove M, Whitney D L, et al. Fluid-rock interaction in orogenic crust tracked by zircon depth profiling. Geology,2009,37(8):735-738.
    [404]Engvik L, Stockhert B, Engvik A K. Fluid infiltration, heat transport, and healing of microcracks in the damage zone of magmatic veins:numerical modeling. Journal of Geophysical Research,2009,114:B05203.
    [405]Heinrich C A. Kyanite-eclogite to amphibolite facies evolution of hydrous mafic and pelitic rocks, Adula Nappe, Central Alps. Contributions to Mineralogy and Petrology, 1982,81(1):30-38.
    [406]Zheng Y F, Fu B, Xiao Y L, et al. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains. Lithos,1999,46(4):677-693.
    [407]Chen R X, Zheng Y F, Gong B, et al. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks:constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen. Geochimica et Cosmochimica Acta,2007,71(9):2299-2325.
    [408]Zhao Z F, Chen B, Zheng Y F, et al. Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite-gneiss contacts from Chinese Continental Scientific Drilling Project cores. Journal of Metamorphic Geology,2007,25(2): 165-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700