用户名: 密码: 验证码:
La-Ce同位素分析技术及其在岩浆侵位和沉积过程氧化环境研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
La-Ce和Sm-Nd同位素体系均属长寿命轻稀土元素衰变体系,其中La-Ce同位素体系中衰变子体元素Ce在氧化条件下易由Ce3+转化为Ce4+,产生不同于其它+3价REE的地球化学行为,继而改变地质样品138La/142Ce比值和138Ce增长速率,导致La-Ce与Sm-Nd同位素体系脱偶。因此,εCe-εNd参数对可对存在明显氧化还原条件变化的地质过程进行地球化学示踪研究。La-Ce同位素体系在示踪研究中具有的独特优势使其在地球科学领域具有广阔的应用前景,但因La-Ce同位素体系较长的半衰期(-100 Ga)和极低的138La丰度(0.090%),多数地质样品的εCe变化范围(约-3-+5)低于ENd近一个数量级,使得La-Ce同位素体系的地质应用仍处于不断探索阶段。鉴于上述原因,高精度的La-Ce同位素分析技术显得尤为重要。
     目前国内外大多数实验室均沿用a-HIBA法进行La-Ce分离,尽管这种实验方法大大降低了Ba的干扰,但耗时长,且全流程La、Ce本底相对偏高。本文报道作者建立的La-Ce同位素分离的无机酸淋洗法,避免了难纯化有机酸的使用,进而降低了样品分离的流程本底;使用高精度热电离质谱(Triton Ti)对样品的同位素比值进行了测量,并采用自编程序对分析数据进行离线处理。应用所建立的方法对黄陵侵入杂岩体和三峡地区沉积岩具不同程度Ce异常的样品进行了Ce同位素比值分析,结合样品的微量元素和Sr-Nd同位素特征,探讨了区域新元古代岩浆岩的构造背景和地层沉积环境。具体内容包括:
     (1)在“地质过程和矿产资源”重点实验室同位素室建立了无机酸淋洗法La-Ce同位素分离方法和相应的质谱测定流程。样品的化学制备过程包括REEs分离和La、Ce分离两个阶段,在REEs分离阶段采用AG 50W-X12树脂和1.5N HNO3将地质样品中的Ba等主量元素完全洗脱后,以6.0N HCl收集REEs;在La、Ce分离阶段,采用LN特效树脂和0.18N HCl淋洗液,洗脱收集样品中的Ce,并对所收集的Ce洗脱液作二次强化分离,目的是进一步提高Ce与La、Nd的分离效率。整个化学制备过程Ce的回收率大于80%,Ce空白值低于2.8ng。
     Ce同位素比值分析包括质谱测定和离线数据处理两部分。质谱分析选择氧化物测量方式,具体操作:在CeO+信号出现之前低电流下(1200mA-1400mA)停留较长时间,目的是烧掉残留的BaO+以排除其干扰;数据测量在蒸发带电流1500mA-1800mA范围内完成,测量过程以160(144NdO)/158(142CeO)<0.002054为判断依据监测NdO+的干扰。对所测得的各组氧化物比值依次进行干扰和脱氧校正,计算过程采用的18O/16O比值(R18)根据样品的160/158测量值计算得出,而不采用常数值,这种方法避免了样品间不同同位素分馏程度引起的误差,本研究获得的R18平均值为0.001986,同位素比值完成干扰校正和脱氧校正后,以136Ce/142Ce=0.01688进行归一化计算。
     对标准溶液JMC304的长期测量获得的138Ce/142Ce比值平均值为0.0225787±0.0000010,与文献平均值0.0225780±0.0000012在误差范围内一致。以国家岩石标样EQB为本次实验的全流程标样,138Ce/142Ce比值测定结果为0.0225743±0.0000010,与推荐值0.0225755±0.0000003在误差范围内一致。以上结果表明,本研究建立的La-Ce同位素分离实验方法和TIMS质谱分析流程合理,Ce同位素比值测定结果准确可信。此外,本文首次对国际岩石标样BCR-2、BHVO-2与AGV-2进行了分析,其138Ce/142Ce比值分别为0.0225804±0.0000015、0.0225842±0.0000024和0.0225781±0.0000011,εCe(0)值为3.6±0.7、5.3±1.1和2.6±0.5。结合已发表的Nd同位素分析结果,显示三件标样与BCR-1类似,具有中国东部新生代碱性玄武岩Ce、Nd同位素特征。
     (2)对新元古代黄陵中酸性侵入体(包括黄陵庙、三斗坪和大老岭)和基性侵入体中具不同程度Ce异常的样品进行了Ce同位素分析。在TAS岩性判别图上,基性侵入岩体具有辉长岩-闪长岩的岩性组合特征,中酸性侵入岩体具有辉长闪长岩-闪长岩-花岗闪长岩的岩性组合。在SiO2-K2O关系图上,基性岩体显示低钾拉斑玄武质特征,中酸性侵入岩体显示中钾钙碱性岩石的特征。基性岩中除1件样品Ce异常不明显外,其余的Ce/Ce*为0.43-0.87,中酸性侵入岩的Ce/Ce*范围为0.79-1.08。在REE球粒陨石标准化图中,多数基性岩样品表现为La略有富集的近水平分布特征,LaN/YbN为1.40-9.80,中酸性岩表现出右倾型REE分布模式,LaN/YbN为6.45-43.1。以t=820Ma计算,基性岩Sr同位素初始比值(87Sr/86Sr)t为0.702663-0.704831、ENd(t)值为+1.95-+7.76,相应的模式年龄(T2DM)为0.83-1.24Ga,指示了相对年轻的亏损地幔源区性质。中酸性侵入岩相对高的Sr同位素初始比值(0.704381-0.708734)和负εNd(t)值(-3.86--19.67),相应较老的模式年龄(1.64-2.72Ga),反映出重熔地壳物质的源区特征。
     中酸性岩样品εCe(t)值的变化范围为-1.18-+3.22,而基性岩样品的εCe(t)值具有-6.89-+7.58的较大变化范围。在εCe-εNd关系图上,黄陵庙单元样品沿“地壳分布”线附近分布,指示了偶合的Ce-Nd同位素组成,反之,大老岭、三斗坪单元样品和基性岩样品则明显偏离“地壳分布”线,表现为在相近的ENd(t)值条件下,εCe(t)值呈较大范围变化,显示出不同程度的Nd-Ce同位素脱偶现象。在εCe(t)-Ce/Ce*图上,基性岩体样品表现为正相关性,指示了该岩体的负Ce异常形成于岩浆结晶以后的后期蚀变或变质;相反,中酸性侵入岩ECe(t)与Ce/Ce*之间不存在明显的相关性,表明其负Ce异常由岩浆作用所致,即岩浆上侵过程中伴随了明显的向强氧化环境的演化。
     微量元素和矿物学特征也表明基性侵入体样品经历了后期流体交代蚀变。样品的蚀变年龄TCe的计算结果显示,蚀变事件的平均年龄≥350Ma。前人的研究表明,黄陵侵入杂岩的中酸性侵入岩体主要由太古宙-古元古代高级变质基底岩系部分熔融形成,但这些基底岩系缺乏明显的负Ce异常(Ce/Ce*=0.92-1.12),说明中酸性岩体的负Ce异常并非继承了源岩的特征,而中下地壳还原条件下的部分熔融也不能导致负Ce异常,因此,中酸性侵入体的负Ce异常指示了岩浆侵位过程中的氧逸度增高,即岩浆的结晶分异发生于地壳浅部氧化环境,该现象可能与岩浆作用过程中区域地壳的快速抬升有关。
     (3)对三峡地区南华纪莲沱组-南沱组、震旦纪陡山沱组-灯影组和寒武纪水井沱组泥质粉砂岩、黑色页岩、泥质岩和碳酸岩进行了元素和Sr-Nd-Ce同位素研究。所有样品均具有LREE富集特征(LaN/YbN为6.44-18.1),泥质岩的REE含量低于PAAS。绝大多数样品表现出不同程度的负Eu异常(Eu/Eu*=0.49-0.92)和负Ce异常(Ce/Ce*=0.42-0.91)。
     微量元素和同位素组成的判别结果表明,泥质岩样品的负Ce异常负指示了其沉积岩形成时的氧化还原环境,而非后期改造的结果。沿地层剖面,南沱组、陡山沱组顶部和水井沱组底部样品出现Ce/Ce*低值。这些样品所代表的层位附近同时出现明显的Co、Zr、Th、Sc、Cr、Ni等微量元素含量变化,并与前人发现的δ13C负异常现象相对应,指示了发生于南沱冰期、陡山沱期(-550Ma)和寒武纪初期(-542Ma)的缺氧事件。
     南华-震旦系和震旦-寒武系边界附近出现的εCe(t)值突然降低现象,与大洋缺氧事件相伴随的大陆岩石的风化剥蚀强度减弱密切相关。大陆岩石风化速率的降低导致大洋盆地沉积物中来自大陆地壳Ce的贡献降低,而幔源物质Ce的贡献相对增加。此外,陡山沱期约580Ma的短期缺氧事件附近εCe(t)值显示出相对于εNd(t)值更明显的波动现象,表现为较低的εCe(t)值,这种现象表明Ce同位素在示踪短期沉积环境变化和沉积物源组成方面更具优势。
     南华纪至寒武纪εCe(t)值整体降低趋势虽然与同期海相碳酸岩Sr同位素记录相符,指示了地幔源区贡献不断增加的特征,但Ce同位素组成在地层剖面上出现的复杂的多周期旋迴过程,进一步说明Ce同位素不仅可识别出具全球背景的地质事件,还可对区域性地质事件提供更详细的信息。
Both La-Ce and Sm-Nd isotopic systems are long-lived decay system of light rare earth element (LREE). In contrast to Nd, Ce is a variant-valence element, converting from Ce3+ to Ce4+ in natural oxidizing condition. This feature makes Ce in high valence state separated from other REEs in +3 valence, which results in decoupled Sm-Nd and La-Ce systems in geological units due to elevated 138La/142Ce ratio and high radiogenic Ce isotope. TheεCe-εNd correlation thus has been used to trace paleo-redox conditions in geological history. Although the La-Ce system has shown a wide range of potential applications in the Earth sciences, documented studies remain limited owing to a long half-life (~100Ga) and extremely low abundance (0.08%) of 138La, resulting in a restricted range inεCe (ca.-3 to +5, about one order of magnitude lower than that of sNd) for most geological samples. Thus, high-precise La-Ce isotope analysis is extraordinarily essential.
     Most laboratories traditionally useα-hydroxy-isobutyric acid (a-HIBA) eluent to separate Ce from matrix elements, through which interfering element Ba is effectively removed. However, this technique shows disadvantages of time-consuming operation and relatively high procedure blanks in La and Ce. In this thesis, a new chemical protocol is reported for La-Ce sample separation using hydrochloric acid (HC1), replacedα-HIBA, as eluent. Prepared samples by this protocol were measured by an up-to-date TIMS (Triton Ti), and the collected data were treated using off-line software designed by the present authors. Samples with variable Ce anomalies collected from the Neoproterozoic Huangling intrusive complex and the Neoproterozoic to Cambrian sedimentary strata from the eastern Three Gorges were analyzed using the analytical method mentioned above. Along with their trace element and Sr-Nd isotope features, regional tectonic regime of the Neoproterozoic magmatism and the evolution trends of depositional environment from the Neoproterozoic to Cambrian were discussed. The major experimental works and conclusions of the application research are listed below:
     (1) A new chemical protocol of Ce separation and purification using HCl elution for geological samples, along with corresponding TIMS analytical procedure, were established in the State Key Laboratory of Geological Process and Mineral Resources. The chemical protocol comprises steps of REEs separation from matric elements, and La and Ce purifications. During the first step, cation-exchange resin (AG 50W-X12) and 1.5N HNO3 are used to wash off Ba and other matrix elements before REEs collection by 6.ON HCl eluent. The La and Ce collection and purification are realized using the Ln-spec resin and 0.18N HCl eluent. For a higher degree of purification, the second step is repeated for the collected Ce fraction. The whole procedure shows a recovery>80% and a Ce blank<2.8ng.
     The Ce isotopic data are obtained by TIMS measurement followed by an off-line data processing. Ce isotope ratios were measured under an ion status of oxide species (CeO+). During the measurement, electric current of the evaporation filament was set at a range of 1200-1400mA for a time until the isobaric interference from 138Ba is eliminated by burning off. The isotopic data are then collected when the evaporation current is increased to 1500-1800mA and the monitored 160/158 (144NdO/142CeO) ratio is less than 0.002054, indicating no NdO+ interfering. The final Ce isotopic composition is calculated by deoxy and interference corrections to the raw data. During the deoxy correction, the real-time 18O/16O (i.e. R18) ratios were estimated by the measured 160/158 ratios, instead of using a constant value measured at a room temperature, which is usually different from those within the TIMS'ion source at high-temperature varying from sample to sample. A weighted average Rig value of 0.001986 was obtained during the analyses. For a mass discrimination correction, the 138Ce/142Ce and 140Ce/142Ce ratios were normalized by 136Ce/142Ce=0.01688.
     Long-term analysis of the Reference JMC304 (Ce isotope standard liquid) gave a weighted average 138Ce/142Ce ratio of 0.0225780±0.0000012 (2σm, the same below), which agrees well with the documented values in literature within analysis error. A Chinese Reference basalt rock (EQB) for La-Ce isotopic chronology was also analyzed and gave a mean 138Ce/142Ce ratio of 0.0225743±0.0000010, which remains consistent with its referring value (0.0225755±0.0000003) within analysis error. These results suggest that the established chemical protocol, TIMS analysis procedure and correction programming are reliable and suitable for high-precise La-Ce isotopic analysis in geology. Besides, Ce isotope analysis of the international References BCR-2, BHVO-2 and AGV-2 were also carried out by this study, which firstly reports average 138Ce/142Ce ratios of 0.0225804±0.0000015,0.0225842±0.0000024 and 0.0225781±0.0000011 (correspondingεCe(0) values are 3.6±0.7,5.3±1.1 and 2.6±0.5), respectively. It thus reveals that these standars as well as BCR-1 have Ce-Nd isotope signatures basically resambling those of the Cenozoic alkali basalts in eastern China.
     (2) Ce isotope analysis of the samples with variable extents of negative Ce anomaly from the Neoproterozoic Huangling felsic (comprising the Huanglingmiao, Sandouping and Dalaoling suites) and mafic intrusives were carried out. The TAS classification shows that the mafic rocks consist of gabbros with minor diorite, whereas the felsic suites are dominated by gabbrodiorite, diorite and granodiorite. On the SiO2-K2O plot, the mafic suite displays a low-K tholeiitic trend, whereas the felsic rocks show a mid-K calc-alkaline feature. All of the mafic rocks but one exhibit variable negative Ce anomalies with Ce/Ce* values ranging from 0.43 to 0.87, whereas the felsic samples show a range of 0.79-1.08. On the chondrite-normalized REE diagram, most mafic rocks show nearly flat to right-inclined patterns with (La/Yb) N ratios of 1.40 to 9.80, whereas the felsic rocks are featured by LREE enriched patterns with a (La/Yb) N range of 6.45 to 43.1. The mafic samples have initial (820 Ma) Sr isotope ratios of 0.702663-0.704831,εNd(t) values of+1.95 to +7.76 and Nd model ages (T2DM) of 0.83-1.24Ga, suggesting a derivation of young depleted mantle source. In contrast, the felsic suites display evidently higher initial Sr isotope ratios of 0.704381-0.708734, negativeεNd(t) values of -19.7 to -3.86 and older Nd model ages of 1.64-2.72Ga, indicative of source rocks dominated by old crustal basement.
     The felsic and the mafic suites possesse (t) values of -1.18 to +3.32 and -6.89 to +7.58, respectively. On theεCe-εNd plot, the Huanglingmiao samples scatter near the "crustal array", exhibiting a coupled Ce-Nd isotope correlation. By the contrary, samples from the Dalaoling, Sandouping and the mafic suites display locations obviously apart from the "crustal array", which is featured by an evidently largerεCe(t) variation for a givenεNd(t) value and thus reveals a decoupled Ce-Nd isotope correlation. The mafic rocks show a positively coherentεCe (t)-Ce/Ce* variation, indicating that their negative Ce anomalies stemmed from post-magmatic alteration or metamorphism. In contrast, a coherentεCe(t)-Ce/Ce* relation among the felsic samples is absent, it thus suggests that their negative Ce anomalies were cast during the Neoproterozoic magmatism, indicative of a highly oxidizing trend in environmental evolution during the melt ascent.
     This alteration- or metamorphism-related explanation for the Ce anomalies of the mafic rocks is further supported by their trace element and mineralogical signatures. An alteration age (TCe) calculation reveals that the alteration event occurred at>350Ma). It has been suggested that the Huangling felsic intrusive complex was derived from the Archean-Paleoproterozoic basement by anatexis. Given that no negative Ce anomalies are recognized in the basement rocks (0.92-1.12 Ce/Ce*), it is unlikely that the negative Ce anomalies in felsic samples was inherited from their source rocks. Besides, it is well known that partial melting of lower crust occurring under reducing conditions may not lead to a negative Ce anomaly. Thus, it is suggested that the negative Ce anomalies in the felsic rocks indicate an increase of oxygen fugacity during magmatism when the melts ascending towards shallow depth. This explanation implies that the Neoproterozoic magmatism occurred in a tectonic setting of rapid regional crust uplifting.
     (3) A comprehensive trace element and Sr-Nd-Ce isotope study was carried out on the fine-grain sedimentary and carbonate rocks from the strata, from the bottom upward, of the Liantuo and Nantuo Formations (the Neoproterozoic Nanhua), the Doushantuo and Dengying Formations (the Neoproterozoic Sinian) and the Shuijingtuo Formation (the latest Cambrian). Both the carbonate and pelite samples are LREE-enriched. Of them, the pelites have LaN/YbN ratios of 6.44-18.1 and lower REE content relative to that of the PAAS. Most pelites display variable negative Eu (0.49-0.92) and Ce anomalies (0.42-0.91).
     Trace element and Nd-Sr-Ce isotope features of the pelite rocks suggest that the negative Ce anomalies were developed during their depositional and diagenetic processess, rather than the results from later alteration. Extremely low Ce/Ce* values are recorded in the black shales from the Nantuo Formation, the top Doushantuo Formation and the bottom Shuijingtuo Formation. These samples also show distinct variations in Co, Zr, Th, Sc, Cr and Ni contents relative to the samples from their neighboring strata. It is noted that this evidently elemental change coincides with theδ13C shifts along the strata documented by previous works. These geochemical anomalies are interpreted as indicative of anoxic events occurred at the Nantuo glacial eppoch, the Doushantuo (-550Ma) and the early Cambrian (-542 Ma), respectively.
     ObviousεCe(t) decrease near the Nanhua-Sinian and Sinian-Cambrian boundaries is inferred to correlate with reductions in weathering intensity of continental rocks during the anoxic events, which resulted a decrease in Ce flux from continents into oceans and thus a relative increase of Ce flux there derived from mantle-related rocks. It is worth to note that a wider range ofεCe (t) variation relative to that of theεNd(t) is recognized from samples collected across the geochemical anomaly boundaries. This suggests that the La-Ce system is more sensitive relative to the Sm-Nd system in tracing variations in depositional environment and sediment provenance.
     Furthermore, although the deceaseεCe (t) trend along the strata from the Nanhua to Cambrian matchs the reducing trend in Sr isotopic ratio recorded by the interbedded marine carbonates, which implies an increasing mantle flux into oceans with time. However, much more complicated multi-cycle variations in Ce isotope along the strata profile suggest that the La-Ce system, due to a short oceanic residence time, may provide more detailed information about the regional geological evolution in addition to global events.
引文
Amakawa H, Ingri J, Masuda A., et al.,1991. Isotopic compositions of Ce, Nd and Sr in ferromanganesenodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas and the Gulf of Bothnia. Earth and Planetary Science Letters,105:554-565.
    Amakawa H, Nozaki Y, Masuda A,1996. Precise determination of variations in the 138Ce/142Ce ratios of marine ferromanganese nodules. Chemical Geology,131: 183-195.
    Amakawa H, Shimizu H, Masuda A,1992. Reply to comment by H. Elderfield on "Isotopic compositions of Ce, Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas and the Gulf of Bothnia". Earth and Planetary Science Letters,111:563-565.
    Amthor J E, Grotzinger J P, Schroder S, et al.,2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology,31:431-434.
    Allen P A, Etienne J L,2008. Sedimentary challenge to Snowball Earth. Nature Geoscience, 1:817-825.
    Alibo D S, Nozaki Y,1999. Rare earth elements in seawater:Particle association, shale-normalization, and Ce oxidaton. Geochimica et Cosmochimica Acta,63: 363-372.
    Alan K J, Stein J B, Andrew K H,1993. The Vendian record of Sr and C isotopic variations in seawater:implications for tectonics and paleoclimate. Earth and Planetary Science Letters,120:409-430.
    Bau M,1991.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93:219-230.
    Bau M, Koschinsky A, Dulski P, et al.,1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta,60: 1709-1725.
    Bau M, Dulski P,1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Suergroup, South Africa. Precambrian Research, 79:37-55.
    Bowring S A, Grotzinger J P, Isachsen C E, et al.,1993. Calibrating rates of Early Cambrian evolution. Science,261:1293-1298.
    Chang T I, Qian Q Y, Zhao M T, et al.,1995. The absolute isotopic composition of cerium. International Journal of Mass Spectrometry and Ion Processes,142:125-131.
    Cloud P,1973. Paleoecological significance of the banded ironformation.Economic Geology,68:1135-1143.
    Class C, Roex A,2008. Ce anomalies in Gough Island lavas-Trace element characteristics of a recycled sediment component. Earth and Planetary Science Letters,265:475-486.
    Chu X L, Todt W, Zhang Q R, et al.,2005. U-Pb zircon age for the Nanhua-Sinian boundary. Chinese Science Bulletin,50:716-718.
    Condon D C, Zhu M Y, Samuel B, et al.,2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science,308:95-98.
    Christopher G, Brenda H, Henry E,1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea.Geochimica et Cosmochimica Acta,55:3553-3558.
    Dickin A P,1987. Cerium isotope geochemistry of ocean island basalts. Nature,326(19): 283-284.
    Dickin A P, Jones N W, Thirlwall M F, et al.,1987. A Ce/Nd isotope study of crustal contamination processes affecting Palaeocene magmas in Skye, northwest Scotland. Contributions to Mineralogy and Petrology,96:455-464.
    Dickin A P,2005. Radiogenic Isotope Geology. Cambridge University Press, New York: 1-492.
    Dixon T H, Batica R,1979. Petrology and chemistry of recent lavas in the northern Marianas:Implications for the origin of island arc basalts. Contributions to Mineralogy and Petrology,70:167-181.
    Eugster O, Tera F, Burnett D S, et al.,1970. The isotopic composition of gadolinium and neutron capture effects in some meteorites. Geophysics Research,75:53-68.
    Fike D A, Grotzinger J P, Pratt L M, et al.,2006. Oxidation of the Ediacaran Ocean. Nature, 444:744-747.
    Gao S, Ling W L, Qiu Y M, et al.,1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution redistribution of REE during crustal anatexis.Geochimica et Cosmochimica Acta,63(13):2071-2088.
    Gradstein F M, Ogg J G, Smith A G,2005. A Geologic Time Scale 2004. Cambridge University Press,0521786738.
    Guo Q J, Strauss H, Liu C Q, et al.,2007a. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian:Evidence from the Yangtze Platform, South China. Palaeogeography Palaeoclimatology Palaeoecology,254:140-157.
    Guo Q J, Shields G A, Liu C Q, et al.,2007b. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeoclimatology Palaeoecology,254:194-216.
    Haas J R, Shock E L, Sassani D C,1995. Rare earth elements in hydrothermal systems: estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta,59:4329-4350.
    Hayashi T, Tanimizu M, Tanaka T,2004. Origin of negative Ce anomalies in Barberton sedimentary rocks, deduced from La-Ce and Sm-Nd isotope systematic. Precambrian Research,135:345-357.
    Heming R F, Rankin P C,1979. Ce-anomalous lavas from Rabul cadera, Papua New Guinea. Geochimica et Cosmochimica Acta,43:1351-1355.
    Hole M J, Saunders A D, Marriner G F, et al.,1984. Subduction of pelagic sediment: Implications for the origin of Ce-anomalous basalts from the Mariana Islands. Journal of Geological Society,141:453-472.
    Hannigan R E, Basu A R,1998. Late diagenetic trace element remobilization in organic-rich black shales of the Taconic Foreland Basin of Quebec, Ontario and New York. In:Schieber W Z J, Sethi P S, (Editors), Shales and mudstones II:209-233.
    Hir G L, Donnadieu Y, Godderis Y, et al.,2009. The snowball Earth aftermath:Exploring the limits of continental weathering processes. Earth and Planetary Science Letters, 277:453-463.
    Ishikawa T, Ueno Y, Komiya T, et al.,2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Research,14:193-208.
    Jiang G Q, Kennedy M J, Christie B N,2003. Stable isotopic evidence for methane seeps in Neoproterozoic. Nature,426:822-826.
    Jiang G Q, Alan A J, Christie B N, et al.,2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China:implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters,261:303-320.
    Karhu J A, Holland H D,1996. Carbon isotopic and the rise of atmospheric oxygen. Geology,24:867-870.
    Kasting J F,1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research,34:205-229.
    Komiya T, Hirata T, Kitajima K, et al.,2008. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Research, 14:159-174.
    Lee S G, Masuda A, Shimizu H, et al.,2001. Crustal evolution history of Korean Peninsula in East Asia:The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneisses. Geochemical Journal,35:175-187.
    Ling W L, Gao S, Zhang B R, et al.,2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research,122:111-140.
    Li X H, Li Z X, Sinclair J A et al.,2006. Revisiting the "Yanbian Terrane":Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China.Precambrian Res.151:14-30.
    Li Z X, Li X H, Kinny P D, et al.2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research,122: 85-109.
    Liu Y G, Miah M R, Schmitt R A,1988. Cerium, a chemical tracer for paleo-oceanic redox conditions. Geochimica et Cosmochimica Acta,52:1361-1371.
    Lev S M, Filer J K,2004. Assessing the impact of black shale processes on REE and the U-Pb isotope system in the southern-Appalachian Basin. Chemical Geology,206: 393-406.
    Michard A,1989. Rare earth element systematics in hydro thermal fluids.Geochimica et Cosmochimica Acta,53(3):745-750.
    Makishima A, Nakamura E,1991. Precise measurement of cerium isotope composition in rock samples. Chemical Geology,94:1-11.
    Makishima A, Masuda A,1993. Primordial Ce isotopic composition of the solar system. Chemical Geology,106:197-205.
    Makishima A, Masuda A,1994. Ce isotope ratios of N-type MORB. Chemical Geology, 118:1-8.
    Masuda A, Shimizu H, Nakloai S,1988.138La-decay constant estimated from geochronological studies. Earth and Planetary Science Letters,89:316-322.
    Mckenzie D, Bickle M J,1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology,29:625-679.
    Michard A,1989. Rare earth element systematics in hydrothermal fluid.Geochimica et Cosmochimica Acta,53:745-750.
    McFadden K A, Huang J, Chu X L, et al.,2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceeding of National Academy of Science of the United States of America,105(9):3197-3202.
    McFadden K A, Xiao S H, Zhou C M, et al.,2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Research,173: 170-190.
    McLennan S M,1989. Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes. Mineralogical Society of America. Reviews in Mineralogy, 21:169-200.
    McLennan S M, Hemming S, McDaniel D K, et al.,1993.Geochemical approaches to sedimentation, provenance and tectonics. In:Johnson, M.J., Basu, A.R. (Eds.), Processes controlling the composition of clastic sediments. Geological Society of America Special Paper,21-40.
    Milodowski A E, Zalasiewicz J A,1991. Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from Central Wales. In:A.C.M.e., et al. (Ed.), Developments in Sedimentary Provenance Studies. Geological Society of America Special Paper,101-125.
    Norman E, Nelson M,1983a. Half-life and decay scheme of 138La. Physical Review C: Nuclear Physics,27:1321-1324.
    Norman E, Nelson M,1983b. On the half-life of 138La. Nature,306:503-504.
    Patocka F,1987.The geochemistry of mafic metavolcanics:implications for the origin of the Devonian massive sulfide deposit at Zlate Hory, Czechoslovakia. Mineralium Deposita, 22(2):144-150.
    Parsapoor A, Khalili M, Mackizadeh M A,2009. The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). Journal of Asian Earth Sciences,34:123-134.
    Piepgras D J, Jacobsen S B,1992. The behavior of rare-earth elements in seawater-precise determination of variations in the North Pacific water column. Geochimica et Cosmochimica Acta,56,1851-1862.
    Ramsay W R H, Crawford A J, Foden J D,1984. Field setting mineralogy chemistry and genesis of arc picrites New Georgia Solomon Islands. Contributions to Mineralogy and Petrology,88:336-402.
    RehkAmper M, Gartner M, Goldstein L,1996. Separation of Ce from other rare-earth elements with application to Sm-Nd and La-Ce chronometry. Chemical Geology,129: 201-208.
    Rosman K J, Taylor P,1999. Report of the IUPAC Subcommittee for Isotopic Abundance Measurements. Pure Application Chemistry,71:1593-1607.
    Raczek I, Jochum K P, Hofmann A W,2003. Neodymium and Strontium Isotope Data for USGS Reference Materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and Eight MPI-DING Refer ence Glasses. Geostandards Newsletter,27: 173-179.
    Ramanand C, Peter A, Robyn E, et al.,2007. Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies. Chemical Geology,244:221-231.
    Schreiber H D, Lauer H V, Thanyasir T,1980. The redox state of cerium in basaltic magmas:An experimental study of iron-cerium interaction in silicate melts. Geochimica Cosmochimica Acta,44:1599-1612.
    Shimizu H, Tanaka T, Masuda A,1984. Meteoritic 138Ce/142Ce ratio and its evolution. Nature,307:251-252.
    Shimizu H, Nakai S, Tasaki S, et al.,1988. Geochemistry of Ce and Nd isotopes and REE abundances in the Amitsoq gneisses, West Greenland. Earth and Planetary Science Letters,91:159-169.
    Shimizu H, Amano M, Masuda A,1991. La-Ce and Sm-Nd systematics of siliceous sedimentary rocks:A clue to marine environment in their deposition. Geology,19: 369-371.
    Shimizu H, Umemoto N, Masuda A, et al.,1990. Source of iron-formation in the Archean Isua and Malene supracrustals, West Greenland:Evidence from La-Ce and Sm-Nd isotopic data and REE abundances. Geochimica et Cosmochimica Acta,54: 1147-1154.
    Shimizu H, Lee S G, Masuda A, et al.,1996. Geochemistry of Nd and Ce isotopes and REE abundaces in Precambrain orthogneiss clasts from the Kamiaso conglomerate, central Japan. Geochemical Journal,30:57-69.
    Shen Y N,2002. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Research,113:121-133.
    Smith M P, Henderson P, Campbell L S,2000. Fractionation of the REE during hydrothermal processes:Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochimica et Cosmochimica Acta,64(18):3141-316.
    Sato J, Hirose T,1981. Half-life of 138La. Radiochemical Radioanalytical Letter,46: 145-152.
    Schreiber H D, Lauer HV, Thitinant T,1980. The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts. Geochimica et Cosmochimica Acta,44:1599-1612.
    Shields G, Stille P,2001 Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:an isotopic and REE study of Cambrian phosphorites. Chemical Geology,175:29-48.
    Sawaki Y, Ohno T, Fukushi Y, Komiya T, et al.,2008. Sr isotope excursion across the Precambrian-Cambrian boundary in the Three Gorges area, South China. Gondwana Research,14:134-147.
    Shields G, Stille P,2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:an isotopic and REE study of Cambrian phosphorites. Chemical Geology,175:29-48.
    Sawaki Y, Ohno T, Tahata M, et al.,2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research,176:46-64.
    Tanimizu M, Tanaka T,2002. Coupled Ce-Nd isotope systematics and rare earth elements differentiation of the moon. Geochimica et Cosmochimica Acta,66(22):4007-4014.
    Takahashi Y, Tada A, Shimizu H,2004. Distribution of pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions. Analytical Sciences,20:1301-1306.
    Tazoe H, Obata H, Amakawa H, et al.,2007. Precise determination of the cerium isotopic compositions of surface seawater in the Northwest Pacific Ocean and Tokyo Bay. Marine Chemistry,103:1-14.
    Tanaka T, Shimizu H, Kawata Y, et al.,1987. Combined La-Ce and Sm-Nd isotope systematics in petrogenetic studies. Nature,327:113-117.
    Tanaka T, Masuda A,1982. The La-Ce geochronometer:a new dating method. Nature,300: 515-518.
    Tanaka T, Shimizu H, Masuda A,1988. Mantel and crustal Ce/Nd isotope systematics. Nature,333:403-404.
    Taylor S R, McLennan S M,1985. The continental crust:its composition and evolution. Blackwell Scientific Publication, Oxford,312.
    Veizer, J.1989. Strontium isotopes in seawater through time. Annual Review of Earth and Planetary Science,17:141-167.
    White W M, Pactchett J,1984. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs:implications for magma origins and crust-mantle relations. Earth and Planetary Science Letters,67:167-185.
    White W M, Hofmann A W, Puchelt H,1987. Isotope geochemistry of Pacific mid ocean ridge basalt. Geophysics Research,92:4881-4893.
    Whitney P R.1998, Olmsted J F, Rare earth element metasomatism in hydrothermal systems:The Willsboro-Lewis wollastonite ores, New York, USA.
    Wang X,2002. Protection of precise geological remains in the Yangtze Gorge area, China with the study of the Archean-Mesozoic multiple stratigraphic subdivision and sea-level change. Geological Publishing House, Beijing, China. (In Chinese with English abstract),341.
    Wright J, Schrader H, Shaw H F,1984. REEs and Nd isotopes in conodont apatite, variations with geological age and depositional environment. Geological Society of America, Special paper,196:325-340.
    Yokoyama T, Makishima A, Nakamura E,1999. Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chemical Geology,157:175-187.
    Yang J D, Sun W G, Wang Z Z, et al.,1999. Variations in Sr and C isotopes and Ce anomalies in successions from China:evidence for the oxygenation of Neoproterozoic seawater. Precambrian Research,93:215-233.
    Zhang Y H, Shinichiro G, Masao N, et al.,2005. Observation of cerium isotope fractionation in ion-exchange chromatography of Ce(Ⅲ)-malate complex. Journal of Chromatography A,1069:133-139.
    Zhao Y Y, Zheng Y F,2010. Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China. Chemical Geology,27:86-100.
    Zhao Y Y, Zheng Y F, Chen F K,2009. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China.Chemical Geology,265:345-362.
    Zhou C M, Xiao S H,2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology,237:89-108.
    Zhu M Y, Zhang J M, Yang A H,2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol,254(1-2):7-61.
    陈福坤,李秋立,李潮峰,等,2005.高精度质谱计在同位素地球化学的应用前景.地球科学,30(6):639-645.
    陈德潜,陈刚,1990.实用稀土元素地球化学.北京:冶金工业出版社,18-21.
    曹烨,李胜荣,申俊峰,等,2009.豫西前河金矿热液蚀变地球化学研究.中国地质,36(1):156-165.
    常华进,储雪蕾,冯连君,等,2008.湖南安化留茶坡硅质岩的REE地球化学特征及其意义.中国地质,35(5):880-888.
    陈炳辉,韦慧晓,黄志国,等,2007.表生地质体的Ce异常及其影响因素综述.稀土,28(4):79-83.
    丁林,钟大赉,1995.滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和钵异常特征.中国科学(B),25(1):93-100.
    丁振举,刘丛强,姚书振,等,2000.海底热液系统高温流体的稀土元素组成及其控制因素.地球科学进展,15(3):307-312.
    董榕生,李建林,1987.中国震旦系下界问题地质矿产部《前寒武纪地质》编辑委员会主编.国际晚前寒武纪地质讨论会论文选集.北京地质出版社,171-178.
    高山,张本仁,1990.扬子地台北部太古宙TTG片麻岩的发现及其地质意义.地球科学,15(6):675-779.
    高维,张传恒,2009.长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义.地质通报,28:45-60.
    冯连君,储雪蕾,张同钢,等,2006.莲沱砂岩-南华大冰期前气候转冷的沉积记录.岩石学报,22(9):2387-2393.
    冯洪真,Wallis E,刘家润,等,2001.川西南阿什及而期地层中的Ce异常及其古海洋意义.火山地质与矿产,22(2):126-134.
    冯洪真,俞剑华,方一亭,等,1997. Ceanom对古海洋氧化还原条件相对变化的另一种可能解释.南京大学学报(自然科学),33(3):402-408.
    湖北地质矿产局,1990.湖北省区域地质志.北京:地质出版社,1-705.
    蒋德和,杨振强,赵时久,1994.湘中地区中奥陶统沉积岩的稀土元素地球化学.沉积学报,12(1):106-111.
    蒋干清,张世红,史晓颖,等,2008.华南埃迪卡拉纪陡山沱盆地氧化界面的迁移与碳同位素异常.中国科学(D),38(12):1481-1495.
    李潮峰,陈福坤,王芳,2008.采用氧化物方式高精度测量微量样品钕同位素比值.地球科学,33(2):243-250.
    刘丛强,解广轰,增田彰正,1995.中国东部新生代玄武岩的地球化学(Ⅱ) Sr, Nd, Ce同位素组成.地球化学,24(3):203-214.
    刘鸿允等,1991.中国震旦系.北京:科学出版社,1-388.
    李剑,吕志成,董方浏,2005.中酸性岩浆体系成矿流体及微量元素地球化学特征.中国地质,32(4):614-624.
    李志昌,方向,刘文贵,2002. La-Ce法与Ce同位素地球化学.武汉:中国地质大学出版社,1-93.
    李志昌,黄圭成,刘文贵,2000.粤西新榕锰矿成矿物质来源的Ce, Nd同位素证据.矿产与地质,14(6):408-411.
    李益龙,周汉文,李献华,罗清华,2007.黄陵花岗岩基英云闪长岩的黑云母和角闪石40Ar-39Ar年龄及其冷却曲线.岩石学报,23:1067-1074.
    李志昌,方向.1998a.Ce同位素-一个新的地球化学示踪器.华南地质与矿产.2:1-8.
    李志昌,方向.1998b.鄂西黄陵地区太古宙变质岩La-Ce同位素体系.地球化学,27(2):117-124.
    李志昌,肖志发,刘文贵,2001.鄂西黄陵地区“孔兹岩”的Ce-Nd同位素特征.华南地质与矿产,2:8-12.
    凌其聪,刘丛强,2002.低级变质岩在热液蚀变过程中的微量元素地球化学行为-以赣东北银山地区双桥山群为例.岩石学报,18(1):100-108.
    凌文黎,高山,郑海飞,等,1998.扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究.科学通报,43(1):86-89.
    凌文黎,高山,程建萍,等,2006.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义-来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束.岩石学报,22(2):387-396.
    凌文黎,段瑞春,邱啸飞,等,2009.新元古代黄陵岩体的成因与Rodinia裂解.全国岩石学与地球动力学研讨会(论文摘要),254.
    刘丛强,解广轰,增田彰正,1995.中国东部新生代玄武岩的地球化学(Ⅱ) Sr, Nd, Ce同位素组成.地球化学,24(3):203-214.
    马大铨,杜绍华,肖志发.2002.黄陵花岗岩基的成因.矿物岩石学杂志,21(2):151-161
    王莉娟,王京彬,王玉往,等,2002.内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学.岩石学报,18(4):575-684.
    王伟,松本良,王海峰,等,2002.长江三峡地区上震旦统稳定同位素异常及地层意义.微体古生物学报,19(4):382-388.
    王剑,2000.华南新元古代裂谷盆地演化理论与Rondinia解体的关系.北京:地质出版社,78-99.
    吴明清,欧阳自远,1992.Ce异常-一个寻迹古海洋氧化还原条件变化的化学示踪剂.科学通报,3:242-244.
    薛耀松,曹瑞骥,唐天福,等,2001.扬子区震旦纪地层序列和南、北方震旦系对比.地层学杂志,25(3):207-234.
    杨红梅,段桂玲,凌文黎,2009. La-Ce法岩石标准物质和Ce同位素标准溶液研制.地球化学,38(2):179-186.
    赵斌,赵劲松,刘海臣,1999.长江中下游地区若干Cu(Au)、 CuFe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学.地球化学,28(2):113-125.
    赵振华,1997.微量元素地球化学.科学出版社,1-153.
    张少兵,2008.扬子陆核古老地壳及其深熔产物花岗岩的地球化学研究.博士学位论文,合肥:中国科学技术大学.
    张永清,凌文黎,李方林,2008.峡东地区南华纪-寒武纪地层风化过程元素及Sr-Nd同位素演化特征及其地球化学意义.地球科学,33:301-312.
    郑永飞,2003.新元古代岩浆活动与全球变化.科学通报,48:1705-1720.
    周忠友,杨金香,周汉文,2007.湖北黄陵杂岩在Rodinia超大陆演化中的意义.资源环境与工程,21(4):380-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700