用户名: 密码: 验证码:
缺氧条件下雷帕霉素抗人乳腺癌细胞MCF-7细胞增殖能力的研究及其机制的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的缺氧是实体肿瘤微环境的基本特征之一,也是造成肿瘤耐药的重要因素,其中缺氧诱导因子-1α(HIF-1α)是介导细胞低氧反应最关键的核转录因子。本研究通过比较新型抗肿瘤药雷帕霉素在常氧和缺氧条件下抗人乳腺癌MCF-7细胞的增殖能力,观察其能否抵抗缺氧造成的耐药,并对其机制进行初步探讨;检测雷帕霉素与目前乳腺癌一线化疗药阿霉素联用的效果,观察有无协同作用。
     方法采用密封培养罐快速冲入混合气体(1%的O_2、5%的CO_2、94%的N_2)模拟缺氧环境;根据常用血药浓度设定药物浓度;采用MTT法检测在常氧或缺氧状态下雷帕霉素、阿霉素单独或联合使用时,对MCF-7细胞增殖能力的影响;采用流式细胞仪检测两种药物单独或联合使用对MCF-7细胞细胞周期的影响;Western blot检测两种氧浓度下不同药物处理下的MCF-7细胞HIF-1α蛋白及影响雷帕霉素敏感性的指标(pAkt蛋白)的表达。
     结果与阿霉素相反,在缺氧条件下,5ng/ml-40ng/ml的雷帕霉素对MCF-7细胞的增殖抑制能力明显高于常氧条件下。在两种氧浓度下,临床常用浓度的雷帕霉素(10ng/ml)和各个浓度的阿霉素(0.25μg/ml-2.0μg/ml)联合使用均无协同作用。雷帕霉素单独作用于McF-7细胞主要表现为G1期阻滞,与阿霉素联用则表现为G2期细胞增多。缺氧使HIF-1α、pAkt蛋白表达均增加。但10ng/ml的雷帕霉素对HIF-1α、pAkt表达无明显影响。
     结论临床常用浓度范围内的雷帕霉素在缺氧状态下抗MCF-7细胞增殖能力增强,其原因除雷帕霉素对细胞的增值抑制作用不受HIF-1α表达的影响外,另一原因可能是缺氧使肿瘤细胞pAkt表达增加而增加了细胞对雷帕霉素的敏感性。
Objective Hypoxia is a basic characteristic of micro-enviroment of solid tumors and also leads to drug resistance.The key factor regulating cellular O_2 homeostastis is hypoxia-inducible factor-1α(HIF-1α).This study was to determine the anti-proliferation effects of using rapamycin, a novel anti-tumor drug,on human breast cancer MCF-7 cells exposed to normal oxygen concentration or hypoxic enviroment and its related mechanism in vitro and to investigate the possibility of anti-hypoxia of this drug and the synergistic possibility of using rapamycin combined with adriamycin.
     Methods Hypoxic enviroment is acquired by a modular incubator chamber flushed with an atmosphere saturated with 1%O_2,5%CO_2 and 94%N_2.MTT assay and flow cytometry were used to examine the influence of the drugs on cell proliferation and cell cycle of MCF-7 cells. MCF-7 cells were exposed to normal or hypoxic enviroment and treated with rapamycin or adriamycin alone or co-treated with rapamycin and adriamycin.Western blot analysis was used to assess the expression level of HIF-1αand pAkt,which expression can enhance the sensitivity of rapamycin.
     Results Opposite to adriamycin,the effect of rapamycin at 5ng/ml to 40ng/ml on inhibiting cell proliferation of MCF-7 cells was enhanced when exposed to hypoxia compared with the effect under normal oxygen environment.Regardless of oxygen concentrations,no synergistic interaction was observed when rapamycin at clinical normal drug level (10ng/ml)combined with adriamycin at 0.25μg/ml to 2.0μg/ml on MCF-7 cells.The MCF-7 cells treated with rapamycin alone were arrested at G1,while co-treated with rapamycin and adriamycin were arrested at G2.Hypoxia enhanced the expression levels of HIF-1αand pAkt,while rapamycin at 10ng/ml had no influence on the expression levels of HIF- 1αand pAkt.
     Conclusions Hypoxia increase the sensitivity of rapamycin at clinical normal drug level on MCF-7 cells and may be caused by increasing pAkt expression subsequent to hypoxia.
引文
1.沈镇宙,邵志敏.现代乳腺肿瘤学进展.上海:上海科技文献出版社,2002,1.
    2.Marx J.Cell biology How cells endure low oxygen[J].Science,2004,303(2):1454-1456.
    3.Giaccia AJ,Simon MC,Johnsin R.The biology of hypoxia:the role of oxygen sensing in development,normal function and disease[J].Genes Dev,2004,18(18):2183-2194.
    4.Koch S,Mayer F,Honecker F,et al.Efficacy of cytotoxic agents used in the treatment of testicular germ cell tumors under normoxic and hypoxic conditions in vitro[J].Br J Cancer,2003,89(11):2133-2139.
    5.Kalra R,Jones AM,Kirk J,et al.The effect of hypoxia on acquired drug resistance and response to epidermal growth factor in Chinese hamster lung fibroblasts and human breast cancer cells in vitro[J].Int J Cancer,1993,54(4):650-655.
    6.Liang BC.Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines[J].J Neurooncol,1996,29(9):149-155.
    7.Lee JW,Bae SH,Jeong JW,et al.Hypoxia-inducible factor(HIF1)alpha:it's protein stability and biological functions[J].Exp Mol Med,2004,36(1):1-12.
    8. Semenza GL. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer, 2003, 3(10): 721-732.
    9. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the mutidrug resistance (MDR1) gene[J]. Cancer Res, 2002,62(12): 3387-3394.
    10. Wartenberg M, Ling FC, Muschen M, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellar tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen spieces[J]. FASEB J, 2003, 17(3): 503-505.
    11. Britz-Cunningham SH, Adelstein SJ. Molecular targeting with radionuclides: state of the science[J]. J Nucl Med, 2003, 44(12): 1945-1961.
    12. Xia S, Yu S, Yuan X. Effect of hypoxia on expression of P-gp and multidrug resistance protein in human lung adenocarcinoma A549 cell line[J]. J Huazhong Univ Sci Technolog Med Sci, 2005, 25(3): 279-281.
    13. Zhu H, Chen XP, Luo SF, et al. Involvement of hypoxia- inducible factor-1-alpha in multidrug resistance protein induced by hypoxia in HepG2 cells[J]. J Exp Clin Cancer Res, 2005, 24(4): 565-574.
    14. Suzuki H, Tomida A, Tsuruo T, et al. Dephosphorylated hypoxia-inducible factor 1 a as a mediator of p53 dependent apoptosis during hypoxia[J]. Oncogene, 2001, 20 (41): 5779-5788.
    15. Greiier AE, Van der Wall E. The role of hypoxia inducible factor-1 (HIF-1) in hypoxia induced apoptosis[J]. Clin Pathol, 2004, 57(10): 1009-1014.
    16. Koshiji M, Kageyama Y, Pete EA, et al. HIF-1 alpha induces cell cycle arrest by functionally counteracting Myc[J]. EMBO J, 2004, 23(9): 1949-1956.
    17. Easton JB, Houghton PJ. mTOR and cancer therapy [J]. Oncogene, 2006, 25(48): 6436-6446.
    18. Hay N, Sonenberg N. Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18(16): 1926-1945.
    19. Zelzer E, Levy Y, Kahana C, et al. Insulin induce transcription of target genes through the Hypoxia-inducible factor HIF-1 α /ARNT[J]. EMBO J, 1998,17(17): 5085-5094.
    20. Jiang BH, Jiang G, Zheng JZ, et al. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1[J]. Cell Growth Differ, 2001, 12(7): 363-369.
    21.Kietzmann T, Samoylenko A, Roth U, et al. Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes[J]. Blood, 2003,101(3): 907-914.
    22. Tang TT, Lasky LA. The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 by a von hippel-lindau protein-independent mechanism[J]. J Biol Chem, 2003, 278(32): 30125-30135.
    23. Pore N, Jiang ZB, Shu HK, et al. Akt1 activation can augment hypoxia-inducible factor-la expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol Cancer Res, 2006, 4(7): 471-479.
    24. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor la expression by the epidermal growth factor/ phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics [J]. Cancer Res, 2000, 60(6), 1541-1545.
    25. Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J]. Cancer Res, 2005, 65(2): 613-621.
    26. Semenza GL, Nejfelt MK, Chi SM, et al. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene[J]. Proc Natl Sci USA, 1991, 88(3): 5680-5694.
    27. Richard DE, Berra E, Gothie E, et al. P42/P44 mitogen- activated protein kinases phosphorylate hypoxia-inducible factor 1α (HIF-1α) and enhance the transcriotional activity of HIF-1[J]. J Biol Chem, 1999, 274(46): 32631-32637.
    28.Mircea I,Keiichi K,Gothie E,et al.HIF1α Targeted for VHL-Mediated destruction by proline hydroxyation:Implications for O_2sensing[J].Science,2001,292(5516):464-468.
    29.Jiang MS,Park JE,Lee JA,et al.Binding and regulation of hypoxia-inducible factor-1 by the inhibitory PAS proteins[J].BBRC,2005,337(1):209-215.
    30.Bae SH,Jeong JW,Park JA,et al.Sumoylation increases HIF-1αstability and its transcrip tional activity[J].BBRC,2004,324(1):394-400.
    31.马超,周庚寅,肖颖,等.RNA干扰沉默缺氧诱导因子-1α逆转乳腺癌的耐药性[J].中华病理学杂志,2006,35(6):357-360.
    32.Kreis H,Cisterne JM,Land W,et al.The rapamycin sensitivity[J].Transplantation,2000,69(7):1252-1260.
    33.Perralba J,DeGraffenried L,Friedrichs W,et al.Pharmacodynamic evaluation of CCI-779,an inhibitor of mTOR,in cancer patients[J].Clin Cancer Res,2003,9(8):2887-2892.
    34.Boulay A,Zumstein-Mecker S,Stephan C,et al.Antitumor efficacy of intermittent treatment Schedules with the rapamycin derivative RAD0011 correlates with prolonged inactivative of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells[J].Cancer Res,2004,64(1):252-261.
    35.Dancey JE.Inhibitors of mammalian target of rapamycin[J].Expert Opin Investing Drugs, 2005,14(3): 313-328.
    36. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy[J]. Nat Rev Cancer, 2004,4(5): 335-348.
    37. Mahalati K, Kahan BD. Clinical phamacokinetics of sirolimus[J]. Clin Pharmacokinet, 2001, 40(8): 573-585.
    38. Petroulakis E, Mamane Y, Bacquer OL, et al. mTOR signaling: implications for cancer and anticancer therapy[J]. Br J Cancer, 2007, 96(Suppl):R11-15.
    39. Noh WC, Mondesire WH, Peng J, et al. Determinants of rapamycin sensitivity in breast cancer cells[J]. Clin Cancer Res, 2004, 10(3): 1013-1023.
    40. Witton CJ. Determining sensitivity to rapamycin and its analogues in breast cancer patients[J]. Breast Cancer Res, 2005, 7 (1): 41-42.
    41. Hidalgo M, Rowinsky EK. The-rapamycin-sensitive signal transduction pathway as a target for cancer therapy [J]. Oncogene, 2000, 19(56): 6680-6686.
    1.Heitman J,Movva NR,Hall MN.Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J].Science,1991,253(5022):905-909.
    2.Gingras AC,Raught B,Sonenberg N.Regulation of translation initiation by FRAP/mTOR[J].Genes Dev,2001,15(7):807-826.
    3.Schmelzle T,Hall MN.TOR,a central controller of cell growth[J].Cell,2000,103(2):253-262.
    4.Sarbassov DD,Guertin DA,Ali SM,et al.Phosphorylation and regulation of Akt/PKB by rictor-mTOR complex[J].Science,2005,307(5712):1098-1101.
    5.Tee AR,Fingar DC,Manning BD,et al.Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin(mTOR)-mediated downstream signaling[J].Proc Natl Acad Sci USA,2002,99(21):13571-13576.
    6.Cheadle JP,Reeve MP,Sampson JR,et al.Moleculargenetic advances in tuberous sclerosis[J].Hum Genet,2000,107(2):97-114.
    7.Inoki K,Li Y,Xu T,et al.Rheb GTPase is a direct target of TSC2GAP activity and regulates mTOR signaling[J].Genes Dev,2003, 17(15): 1829-1834.
    8. Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2[J]. Mol Cell, 2003,11(6): 1457-1466.
    9. Long X, Lin Y, Ortiz-Vega S, et al. Rheb binds and regulates the mTOR kinase[J]. Curr Biol, 2005, 15(8): 702-713.
    10. Baserga R. The insulin-like growth factor-I receptor as a target for cancer therapy[J]. Expert Opin Ther Targets, 2005,9(4): 753-768.
    11. Penault-Llorca F, Bertucci F, Adelaide J, et al. Expression of FGF and FGF receptor genes in human breast cancer[J]. Int J Cancer, 1995, 61(2): 170-176.
    12. Bange J, Prechtl D, Cheburkin Y, et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele[J]. Cancer Res, 2002, 62(3): 840-847.
    13. Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life [J]. Annu Rev Pharmacol Toxicol, 2004, 44: 195-217.
    14. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow[J]. Trends Biochem Sci, 2001, 26 (11): 657-664.
    15. Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling[J]. Nat Cell Biol, 2002, 4(9): 648-657.
    16. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2[J]. Nat Cell Biol, 2002,4(9): 658-665.
    17. Feilotter HE, Coulon V, McVeigh JL, et al Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma[J]. Br J Cancer, 1999,79(5-6): 718-723.
    18. Rhei E, Kang L, Bogomolniy F, et al. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas[J]. Cancer Res, 1997, 57(17): 3657-3659.
    19. Law BK. Rapamycin: an anti-cancer immumosuppressant[J]? Crit Rev Oncol Hematol, 2005, 56(1): 47-60.
    20. Enc C. PTEN: one gene, many syndrome[J]. Hum Mutant, 2003, 22(3): 183-198.
    21. Prigent SA, Gullick WJ. Identification of c-erbB-3 binding sites for phosphatidylinositol 3' -kinase and SHC using an EGF receptor/ c-erbB-3 chimera[J]. Embo J, 1994, 13(12): 2831-2841.
    22. Alessi DR, Sakamoto K, Bayascas JR. LKB1-Dependent signaling pathways[J]. Ann Rev Biochem, 2006, 75: 137-163.
    23. Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome[J]. Nature, 1998, 391 (6663): 184-187.
    24. Jenne DE, Reimann H, Nezu J, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase[J]. Nat Genet, 1998,18(1): 38-43.
    25. Giardiello FM, Welsh SB, Hamilton SR, et al. Increased risk of cancer in the Peutz-Jeghers syndrome[J]. N Engl J Med, 1987, 316(24): 1511-1514.
    26. Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alph/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade [J]. J Biol, 2003,2(4): 28.
    27. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival[J]. Cell, 2003,115(5): 577-590.
    28. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC- mTOR pathway in human disease[J]. Nat Genet, 2005, 37 (1): 19-24.
    29. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR[J]. Genes Dev, 2001,15(7): 807-826.
    30. Mothe-Satney I, Brunn GJ, McMahon LP, et al. Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/ T)P sites detected by phospho-specific antibodies[J]. J Biol Chem, 2000, 275(43): 33836-33843.
    31. Koziczak M, Holbro T, Hynes NE. Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins[J], Oncogene, 2004, 23(20): 3501-3508.
    32. Yeo EJ, Chun YS, Park JW. New anticancer strategies targeting HIF-1[J]. Biochem Pharmacol, 2004, 68 (6): 1061-1069.
    33. Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin[J]. Mol Cell Biol, 2002,22 (20): 7004-7014.
    34. Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level[J]. Eur J Biochem, 2000,267(21): 6321-6330.
    35. Easton JB, Houghton PJ. mTOR and cancer therapy [J]. Oncogene, 2006,25(48): 6436-6446.
    36. Pegram M, Hsu S, Lewis G, et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers[J]. Oncogene, 1999, 18(13): 2241-2251.
    37. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing meta-static breast cancer[J]. J Clin Oncol, 2002, 20(3): 719-726.
    38. Albain K, Elledge R, Gradishar WJ, et al. Open-label, phase (?)o, multicenter trial of ZD1839 ('Iressa') in patients with advanced breast cancer[J]. Breast Cancer Res treat, 2002, 76: S33 (abstr 20).
    39. Hortobagyi GN, Sauter G. Challenges and opportuneities for Erlotinib (Tarceva): What dose the futuree hold[J]? Semin Oncol, 2003, 30(suppl 3): 47-53.
    40. Johnston SR, Head JE, Valenti MR, et al. Endocrine therapy combined with the famesyltransferase inhibitor (FTI) R115777 produces enhanced tumor growth inhibition in hormone-sensitive MCF-7 human breast cancer xenografts in vivo[J]. Breast Cancer Res Treat, 2002, 76 (suppl 1): S71 (abstr).
    41. Kucab JE, Lee C, Chen CS, et al. Cexecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumors [J]. Breast Cancer Res, 2005, 7(5): R796-807.
    42. Kreis H, Cisterne JM, Land W, et al. The rapamycin sensitivity [J]. Transplantation, 2000, 69(7): 1252-1260.
    43. Peralba JM, DeGraffenried L, Friedrichs W, et al. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients[J]. Clin Cancer Res, 2003, 9: 2887-2892.
    44. Boulay A, Zumstein-Mecker S, Stephan C, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells [J]. Cancer Res, 2004, 64(1): 252-261.
    45. Dancey JE. Inhibitors of the mammalian target of rapamycin[J]. Expert Opin Investig Drugs, 2005,14(3): 313-328.
    46. Johnston SR. Clinical trials of intracellular signal transductions inhibitors for breast cancer-a strategy to overcome endocrine resistance[J].Endocr Relat Cancer,2005,12(Suppl 1):S145-157.
    47.Hudes G,Carducci M,Tomczak P,et al.Temsirolimus,interferon alfa,or both for advanced renal-cell carcinoma[J].N Engl J Med,2007,356(22):2271-2281.
    48.O'Donnell A,Faivre S,Burris HA 3rd,et al.Phase Ⅰ pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors[J].J Clin Oncol,2008,26(10):1588-1595.
    49.Wullschleger S,Loewith R,Hall MN.TOR Signaling in growth and metabolism[J].Cell,2006,124(3):471-484.
    50.Kim DH,Sarbassov DD,Ali SM,et al.mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery[J].Cell,2002,110(2):163-175.
    51.Sarbassov DD,Ali SM,Kim DH,et al.Rictor,a novel binding partner of mTOR,defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton[J].Curr Biol,2004,14(14):1296-1302.
    52.Chan S,Scheulen ME,Johnston S,et al.Phase Ⅱ study of temsirolimus(CCI-779),a novel inhibitor of mTOR,in heavily pretreated patients with locally advanced or metastatic breast cancer[J].J Clin Oncol,2005,3(23):5314-5322.
    53.徐兵河.乳腺癌分子靶向治疗的临床应用及其评价[J].中国处方 药.2005,12 (45) :15-18.
    54. Witton CJ. Determining sensitivity to rapamycin and its analogues in breast cancer patients [J]. Breast Cancer Res, 2005, 7 (1): 41-42.
    55. Noh WC, Mondesire WH, Peng J, et al. Determinants of rapamycin sensitivity in breast cancer cells[J]. Clin Cancer Res. 2004, 10(3): 1013-1023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700