用户名: 密码: 验证码:
微量吸附量热技术及其在几种酸碱材料研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要介绍了微量吸附量热技术及其在研究几种固体酸碱材料表面性质上的应用。使用探针分子的吸附量热测定固体表面的酸碱性质,并定量地描述固体表面酸碱中心的数目和强度分布。本论文中利用自行设计、安装和调试的吸附量热装置,并结合其他催化剂表征手段研究了几种酸碱材料的酸碱性质。研究工作分为这样几个部分:
     (1)使用CO_2的微量吸附量热技术优化催化剂合成条件,合成了既有碱性,又有SBA-15介孔孔道的样品——NH_2-SBA-15。合成条件为:SBA-15在550℃焙烧6h,3-氨丙基三乙氧基硅烷与SBA-15的质量比为1.5。
     (2)使用NH3的微量吸附量热技术和其他酸性表征手段,全面地考察了具有MWW结构的MCM-22族分子筛(包括MCM-22、MCM-36、MCM-49和MCM-56)的酸性质,包括酸类型、酸强度和酸量以及酸分布。
     (3)固态胺树脂作为CO_2吸附剂,有很多的优越性。为了从理论上解释我们合成的固态胺树脂的CO_2吸附性能,我们使用微量吸附量热技术定量地讨论了固态胺树脂作为二氧化碳吸附剂的吸附能力。
     (4)HMCM-49分子筛,是典型的酸性材料,为了改善其在苯与丙烯液相烷基化反应的催化性能,用硝酸酸洗的方法对其进行脱铝改性。我们使用NH3的微量吸附量热技术定量地测定脱铝分子筛的酸强度和酸量并与烷基化反应相关联。
     (5)在合成具有高热稳定的P/Al组成接近理想的介孔磷酸铝材料中,使用NH_3和CO_2的微量吸附量热测定固体表面的酸碱性质。和邻苯二酚与甲醇的气相选择O-单醚化反应性能关联,推断出表面四配位的酸性的P-OH可能是该反应的主要活性中心。
Microcalorimetric adsorption technique is a method of mensurating the relation between adsorbed capacity and heat when the adsorbate was adsorbed in the sorbent suface. The differential heat means the adsorbed strength of the adsorbed center and the adsorbate coverage means the quantity of the adsorbed center with microcaloric adsorption, consequently obtaining the adsorbed strength distribution.
     Microcalorimetric adsorption technique can reflect excellently the actual status for the catalyst of gas reaction comparing the titration method of indicator in the non-water solution, and its precision is much better. And with the small molecule NH3 as the probe molecule, this method can resolve the problem of diffuse control in the zeolite with small or resistant pore. Microcalorimetric adsorption technique can character the comparative accurate acid/base strength distribution comparing the TPD method which can only give the average acid/base strength with gas adsorbed dynamic methods. But there is still some localization. Combining the other investigating methods for example the FT-IR spectrum, Mossbaur and so on, it can also gain the information relative to the character of the adsorbed center in the surface. If we choose the proper acid/base probe molecule, the calorimetric adsorption technique is a very effective quantitative analysis method of the acid/base catalysis materials.
     In this paper we have ourselves built a microcalorimetric adsorption system and used the microcalorimetric adsorption technique combining with some other mensuration to see the adsorption performance of five kinds of acid/base materials, and we can gain these primary conclusions as follow:
     (1)In this paper, alkalescent aminopropyl-functionalized SBA-15 materials are synthesized by postgrafting method. To synthesize NH_2-SBA-15 with the best efficiency of the flavanone, we have seen about the synthesized condition of the NH2-SBA-15 with the microcalorimetric CO_2 adsorption technique of getting the alkali strength and quantity at the same time, and changed the temperature and the time of baking SBA-15, and adjusted the amount of aminopropyl-triethoxysilane. We have found a conclusion via the calorimetric adsorption data of CO_2 in 150℃: the SBA-15(550,6,1.5)whose the initial adsorption heat is 228 kJ /mol and the saturation cover degree is 68.7μmol/g is a type of solid alkali catalyst which have the uniform mesopore distribution, the bigger alkali quantity, complete aminopropyl-functionalization, and which have the big pore, the thick bore wall and good water-heat stability and so on. We realize optimizing synthesized condition of NH2-SBA-15 with microcalorimetric adsorption technique of CO_2: high-temperature baking SBA-15 6 hours in 550℃, the mass ratio is 1:5 between aminopropyl-triethoxysilane and SBA-15. We can also know that microcalorimetric adsorption technique is a good method of basicity quantity and strength, and it can be used to watch and measure the change of the catalyst in synthesis.
     (2)The MCM-22 family zeolite, include MCM-22、MCM-36、MCM-49 and MCM-56, those all have the MWW framework and independent 10MR and 12MR pore at the same time, shows the favorable catalysis performance in the reaction of isomerization, alkylation, cracking, alkyl translation into alkene or aromatic hydrocarbon and so on. It is a typical microporous solid acid catalyst. The acidity of these solid acid catalysts influences the catalytic activity and the selectivity intensively, so we used calorimetric adsorption technique with NH3 to study the acid strength and quantity of MCM-22、MCM-36、MCM-49和MCM-56 zeolite, combining the FT-IR spectrum of pyridine adsorption. The result shows: HMCM-49、HMCM-56、HMCM-22 and HMCM-36 are all have two kinds of acidity strength centers, the overall acidity quantity of these four zeolites is 1.106mmol/g,1.123mmol/g,0.382mmol/g and 0.357mmol/g. The four acidity zeolites all have B and L acidity, the acid quantity of HMCM-49 is bigger and the most is B acid; HMCM-56 has big acid quantity and close to HMCM-49, but more L acidity; The acid quantity of HMCM-22 and HMCM-36 is close and small, HMCM-22 has more B acid; The proportion of B acid and L acid of HMCM-36 is close, and the B acidity is more.
     (3) As the absorbent of carbon dioxide, solid-state amine resin has a large of advantages. The physical and chemical character of solid-state amine resin is good. And it has light density, fine regeneration capability, long life, nontoxic and no the second pollution. So the solid-state amine resin is an applied cleaning carbon dioxide absorbent with high efficiency in the sealed circumstance. For explaining the carbon dioxide adsorption capability of solid-state amine resin which we synthesized, we used the homemade calorimetric adsorption system to determine the carbon dioxide adsorption efficiency. We can conclude those conclusions: carbon dioxide adsorption capacity of solid-state amine resin decreases with the increase of surrounding temperature in the anhydrous condition; As the absorbent of carbon dioxide, the solid-state amine resin I and II can be repeated adsorption under the anhydrous condition; When solid-state amine resin I adsorbed trace water, the initial differential heat of adsorption increases remarkably, and the adsorption capacity for carbon dioxide is boosted up; And solid-state amine resin II is a better carbon dioxide adsorbent than solid-state amine resin I with uniform basic strength distribution.
     (4)HMCM-49 zeolite is a typical acidic material, its acidity corresponds to the acidity of HZSM-5 and HMCM-22, and it displays excellent catalysis performance. In this paper we eliminate the aluminum atoms from the HMCM-49 zeolite effectively with the nitric acid washing-up method. The calorimetric adsorption of NH3 shows that washing-up the aluminum atoms by nitric acid can change the acidity of the HMCM-49 zeolite with two kinds of acid strength. The degree of eliminating aluminum increases with the increase of the time and temperature of the nitric acid washing-up. From the curve of NH3 heat of adsorption vs the coverage, we can see that acid strength was not modified and the two kinds of acid quantity decreased at low-grade comparing HMCM-49; The dealumination samples not only decreased the two kinds of acid strength but also reduced the acid quantity in strong-grade. The dealumination sample is eliminated the strong L acid and the B acid at low-grade and strong-grade. From the catalytic activity and the selective data of the HMCM-49 zeolite dealumination sample on the liquid-phase alkylation of benzene with propylene reaction, we can see that the catalytic activity of the dealumination sample decreased, but selectivity of the cymene increased.
     (5)Amorphous mesoporous aluminophosphates (AlPO) is a non-silicon group mesoporous material. There is big BET surface area, uniform mesopore, and the pore diameter which can be adjusted in a certain range in the AlPO. The task group where the teacher Zhang wenxiang and Jia mingjun work synthesized the mesoporous aluminophosphates(AlPO) which have uniform mesopore by using the citric acid (CA) route successfully first. The heat stability of this AlPO material is high, and the P/Al ratio can be easy to control. The investigation shows that the change of P/Al ratio can influence the composing, structure, the heat stability and numbers of acidic and basic sites on the surface of the catalyst of AlPO. In this paper we investigated the acidity and the alkalescence of AlPO material with microcalorimetric adsorption technique. The result shows that there are weak acidity and basicity in the AlPO material with different P/Al ratio, and acidic P-OH’s are likely to active sites in the vapor phase selective O-methylation of catechol with methanol reaction, and the acidic-basic property probably influences the selective of guaiacol.
引文
[1] 辛勤主编,固体催化及研究方法(上册),北京:科学出版社,2004.4: 261-268
    [2] P. Y. Hsieh, Heats of adsorption of ammonia on silica-alumina catalysts and their surface energy distributions, J. Catal., 1963, 2(3):211-212
    [3] Stone F. S., Whalley L., Heats of Ammonia on Acidic Catalyst, J. Catal., 1967, 8(2):173-182
    [4] H. Yoshizumi, Y. Shimada, T. Shirasaki, Micro-calorimetric determination of the distribution of acid strength on silica-alumina catalyst, Chem. Lett., 1973, 2(2):107-110
    [5] A. Auroux, V. Bolis, P. Wierzchowski, P. C. Gravelle, J. C. Vedrine, Study of the acidity of ZSM-5 zeolite by microcalorimetry and infrared spectroscopy, J Chem. Soc., Faraday Trans., 1979, 75:2544-2555
    [6] A. Auroux, J. C. Vedrine, Catalysis by Acids and Bases, Stud. Surf. Sci. Calal., 1985, 20:311
    [7] D. T. Chen, S. B. Sharma, I. Filiminov, J.A. Dumesic, Microcalorimetric studies of zeolite acidity,Catal. Lett., 1992, 12: 201-212
    [8] J. Shen, R. D. Cortright, Y. Chen, J.A. Dumesic, Microcalorimetric and Infrared Spectroscopic Studies of γ-Al 2 O3 Modified by Basic Metal Oxides., J. Phys. Chem., 1994, 98 (33):8607-8073
    [9] A. Auroux, A. Gervasini, Microcalorimetric study of the acidity and basicity of metal oxide surfaces, J. Phys. Chem., 1990, 94(16):6371-6379
    [10] A. Gervasini, G. Bellussi, J. Fenyvesi, A. Auroux,Microcalorimetric and Catalytic Studies of the Acidic Character of Modified Metal Oxide Surfaces. 1. Doping Ions on Alumina, Magnesia and Silica, J. Phys. Chem., 1995, 99(14):5117-5125
    [11] 沈俭一,吸附量热技术和金属氧化物催化剂的表面酸碱性, 催化学报,2000, 21 (2):186-194
    [12] 甄开吉,王国甲,毕颖丽等,催化作用基础,北京:科学出版社,第三版,2005.2:20-24
    [13] Jianyi Shen, Josephine M. Hill, Ramchandra M. Watwe, et al., Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pt/SiO2 and Pt-Sn/SiO2 Catalysts, J. Phys. Chem. B 1999, 103: 3923-3934
    [14] 章燕豪编著,吸附作用,上海:上海科学技术文献出版社,1989.12,第一版,64-69
    [15] Gravelle P. C., Heat-flow microcalorimetry and its application to heterogeneous catalysis,Adv. Catal., 1972,22:191
    [16] Gravelle P. C., Calorimetry in adsorption and heterogeneous catalysis studies, Catal rev-Sci Eng, 1977,16:37
    [17] Cardona Martinez N, Dumesic J. A., Applications of adsorption microcalorimetry to the study of heterogeneous catalysis,Adv. Catal., 1992,38:149-244
    [18] Handy B E, Sharma S B, Spiewak B E et al., For measurement of differential heats of adsorption, Meas Sci Technol, 1993,4:1350
    [19] A. Auroux, A. Gervasini, Microcalorimetric study of the acidity and basicity of metal oxide surfaces, J. Phys. Chem., 1990; 94(16):6371-6379
    [20] 朱玉霞,林伟,田辉平等,固体酸催化剂酸性分析方法的研究进展,石油化工,2006,35(7):607-614
    [21] 何农跃,李大塘,沈俭一等,MCM-41介孔分子筛材料的氨微量吸附量热法酸性研究,催化学报,1999.7,20(4):476-478
    [22] Auroux A., Acidity characterization by microcalorimetry and relationship with reactivity, Top Catal, 1997, 4:71-89
    [23] 韩毓旺,沈俭一,陈懿,B-P-O系催化剂表面酸性的吸附量热研究, 物理化学学报,1997, 13(10):916-919
    [24] Jozefowicz L C, Karge H G, Coker E N, Microcalorimetric Investigation of H-ZSM-5 Zeolites Using an Ultrahigh-Vacuum System for Gas Adsorption, J. Phys. Chem.,1994, 98(33): 8053-8060
    [25] J. Kijenski, A. Baiker, Preface, Catal. Today, 1989, 5(1):1-9
    [26] J. Shen, R. D. Cortright, Y. Chen, J.A. Dumesic, Microcalorimetric and Infrared Spectroscopic Studies of γ-Al 2 O3 Modified by Basic Metal Oxides., J. Phys. Chem., 1994, 98 (33):8607-8073
    [27] V. Quaschning, A. Auroux, J. Deutsch, H. Lieske, and E. Kemnitz, Microcalorimetric and Catalytic Studies on Sulfated Zirconia Catalysts of Different Preparations, J. Catal., 2001(203): 426-433
    [28] Shen Jianyi ,Lochhead M J, Bray K L et al., Structural and Acid/Base Properties of Supported Europium Oxides, J. Phys. Chem, 1995, 99(8):2384-2392
    [29] Huheey J.E., Inorganic Chemistry: Principles of Structure and Reactivity, 3rded, New York: Harper & Row Publisher Inc,1983:936
    [30]N. Cardona-Martinez, J.A. Dumesic, Applications of adsorption microcalorimetry to the study of heterogeneous catalysis,Adv. Catal, 1992, 38:216
    [31] Cardona-Martinez N., Dumesic J.A., Acid strength of silica-supported oxide catalysts studied by microcalorimetric measurements of pyridine adsorption,Journal of Catalysis, 1991,127(2):706-718
    [32] J. A. 杜梅西克,D. F. 拉德,L. M. 阿帕里西奥等著,沈俭一译,多相催化微观动力学,北京:国防工业出版社,第一版,1998.10:63-64
    [33] Mingshi Li, Jianyi Shen, Weijie Ji , Microcalorimetric and infrared spectroscopic studies of C2H4 adsorption on Ni/SiO2 and NiBi/SiO2 catalysts,Thermochimica Acta, 2000, 345:19-23
    [34] 李明时,葛欣,邹琥,沈俭一等,微量吸附量热技术研究Pd-Cu/SiO2的表面吸附,高等学校化学学报,2000, 21(12):1896-1899
    [35] Heinrichs B., Delhez P., Schoebrechts J. P. et al., Palladium–Silver Sol-Gel Catalysts for Selective Hydrodechlorination of 1,2-Dichloroethane into Ethylene, Journal of Catalysis, 1997,172(2):322-335
    [36] Spiewak B E, Shen Jianyi, Dumesic J A, Microcalorimetric Studies of CO and H Adsorption on Nickel Powders Promoted with Potassium and Cesium,2J. Phys. Chem., 1995, 99(49):17640-17644
    [37] Al-Sarraf N, Stuckless J T, KingD A, Direct measurement of potassium- promoted change in heat of adsorption of CO on Ni(100), Nature, 1992, 360: 243
    [38] Sheppard N., Cruz C. D., Vibrational spectra of hydrocarbons adsorbed on metals. Part I. Introductory principles, ethylene, and the higher acyclic alkenes, Adv.Catal.[J], 1996, 41:1-112
    [39] De La Cruz, C., Sheppard, N., In situIR spectroscopic study of the adsorption and dehydrogenation of ethene on a platinum-on-silica catalyst between 100 and 294 K, Faraday Trans., 1997,93(19): 3569-3576
    [40] Gay I., Chemisorption of ethylene on supported platinum studied by high- resolution solid-state NMR, Journal of Catalysis, 1987, 108(1): 15-23
    [41] Cassuto, A., Kiss, J., White, J. M., On the orientation of low temperatureπ-bonded ethylene on Pt(111), Surface Science, 1991, 255 (3, 2): 289-294
    [42] Steininger, H., Ibach, H., Lehwald, S., Surface reactions of ethylene and oxygen on Pt(111), Surface Science, 1982, 117( 1-3): 685-698
    [43] Ibach, H., Lehwald, S., Identification of surface radicals by vibration spectroscopy: Reactions of C2 H2 , C2 H4 , and H2 on Pt (111), J. Vac. Sci. Technol., 1979, 15:407-415
    [44] Salmeron, M., Somorjai, G. A., Desorption, decomposition, and deuterium exchange reactions of unsaturated hydrocarbons (ethylene, acetylene, propylene, and butenes) on the platinum(111) crystal face, J. Phys. Chem., 1982, 86(3): 341-350
    [45] Cremer, P., Stanners, C., Niemantsverdriet, J. W., Shen, Y. R., Somorjai, G., The conversion of di-σ bonded ethylene to ethylidyne on Pt(111) monitored with sum frequency generation: evidence for an ethylidene (or ethyl) intermediate, Surface Science, 1995, 328(1-2):111-118
    [46] Spiewak B. E., Cortright R. D., Dumesic J. A., Microcalorimetric Studies of H2 , C2 H4 , and C2 H2 Adsorption on Pt Powder, Journal of Catalysis, 1998, 176(2): 405-414
    [47] 李智渝,王益,沈俭一,表面反应动力学机理研究的新进展,化学通报1998, 8:11-16
    [48] 赵学纯,化学反应动力学,北京:高等致育出版社, 1984:115-116
    [49] 韩毓旺,乳酸乙酯催化氧化反应研究及异丙醇脱氢反应的微观动力学分析,南京大学博士学位论文,1999.11,44-51
    [50] 沈俭一,吸附量热技术和多相催化微观动力学,化学进展,1997.12,9(4):371-378
    [51] Satoshi Inagaki, Kohei Kamino, Eiichi Kikuchi, et al., Shape selectivity of MWW-type aluminosilicate zeolites in the alkylation of toluene with methanol, Applied Catalysis A: General 2007, 318:22-27
    [52] Y. J. He, G.S. Nivarthy, F. Eder, et al., Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36, Microporous and Mesoporous Materials, 1998,25(1):207-224
    [53] 李工,阚秋斌,佟惠娟等,纳米级MCM-49分子筛催化苯与1-十二烯烷基化反应的性能,催化学报,2004.10,25(10):809-813
    [54] Gopalakrishnan G. Juttu, Raul F. Lobo, Characterization and catalytic properties of MCM-56 and MCM-22 zeolites, Microporous and MesoporousMaterials, 2000,40:9-23
    [55] 王红霞,谭大力,徐奕德,包信和,硅烷化处理对Mo/HZSM-5 催化剂上甲烷脱氢芳构化活性的影响,催化学报, 2004, 25:445
    [56] Eller Karsten, DE., Kummer Rudolf., Preparation of amines from olefins on zeolites of the MCM-49 or MCM-56 type, US 5840988 [P], 1998
    [57] Cheng Jane C., Huang Tracy J., Process for the alkylation of benzene-rich reformate using MCM-49 , US 5545788 [P], 1996
    [58] Brown Stephen H., Crane Robert A., De Caul Lorenzo., Ethyl acetate synthesis from ethylene and acetic acid using solid acid catalysts, US 5973193 [P], 1999
    [1] 沈俭一,王谷丰,吸附量热仪及其体积校正,催化学报,1998.3,19(2):159-162
    [2] 辛勤主编,固体催化剂研究方法(上册),北京:科学出版社,2004.4,第一版:262-268
    [1] Kresge C T, Leonowicz M E, Roth W J, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992,359:710-712
    [2] Dongyuan Zhao, Jianglin Feng, Qisheng Huo, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279:548-552
    [3] K. Yamamoto, T. Tatsumi, Organic functionalization of mesoporous molecular sieves with Grignard reagents, Microporous Mesoporous Mater., 2001, 44-45: 459-464
    [4] J. H. Clark, D. J. Macquarrie, Catalysis of liquid phase organic reactions using chemically,modified,mesoporous inorganic solids,Chem. Commun., 1998:853
    [5] R. Anwander; I. Nagl, M. Widenmeyer, G. Engelhardt, O. Groeger, C. Palm, T. Roser, Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation,J. Phys. Chem. B.(Article), 2000,104(15):3532-3544
    [6] X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu, Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA, J. Phys. Chem., 1997,101:6525
    [7] C. J. Liu, S. G. Li, W. Q. Pang, C. M. Che, Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve,MCM-41 for alkene oxidation,Chem. Commun., 1997:65
    [8] S. L. Burkett, S. D. Sims, S. Mann, Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors, Chem. Commun., 1996:1367-1368
    [9] D. J. Macquarrie, Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM, Chem. Commun., 1996:1961-1962
    [10] A. Bhaumik, T. Tatsumi, Organically Modified Titanium-Rich Ti-MCM-41, Efficient Catalysts for Epoxidation Reactions,Journal of Catalysis, 2000, 189(1):31-39
    [11] C. E. Fowler, S. L. Burkett, S. Mann, Synthesis and characterization of ordered organo–silica–surfactant mesophases , with functionalized MCM-41-type architecture, Chem. Commun., 1997:1769
    [12] W. M. Van Rhijn, D. E. De Vos, B. R. Sels, W. D. Bossaert, P. A. Jacobs,Sulfonic acid functionalised ordered mesoporous materials as catalysts, condensation and esterification reactions, Chem. Commun., 1998:317
    [13] R. Richer, L. Mercier, Direct synthesis of functionalized mesoporous silica by non-ionic,alkylpolyethyleneoxide surfactant assembly,Chem. Commun., 1998:1775
    [14] R. Richer, L. Mercier, Direct Synthesis of Functional Mesoporous Silica by Neutral pH Nonionic Surfactant Assembly: Factors Affecting Framework Structure and Composition,Chem. Mater,. (Article),2001,13(9):2999-3008
    [15] R. Huq, L. Mercier, Incorporation of Cyclodextrin into Mesostructured Silica, Chem. Mater.(Article), 2001, 13(12):4512-4519
    [16] Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes,J. Phys. Chem. B, 1998, 102(28):5503-5510
    [17] 田金星,潘丽娜,雷绍民,硅烷偶联剂及其对矿物的表面改性[J],国外建材科技,1995,16(2):54-58,66
    [18] 刘健,杨启华,张磊等,有机-无机杂化氧化硅基介孔材料,化学进展[J],2005,17(5):809-817
    [19] 刘丰袆,符连社,王俊等,有机-无机杂化中孔材料研究进展[J],化学通报,2002(10):657-662
    [20] D. Das, J. F. Lee, S. Cheng, Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups, Journal of Catalysis, 2004, 223(1):152-160
    [21] Q. Yang, J. Liu, J. Yang, M. P. Kapoor, S. Inagaki, C. Li, Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas, Journal of Catalysis, 2004,228(2): 265-272
    [22] I. Rodriguez, S. Iborra, A. Corma, F. Rey, J. L. Jorda, MCM-41–Quaternary organic tetraalkylammonium hydroxide composites as,strong and stable Br?nsted base catalysts,Chem. Commun., 1999:593
    [23] 王奂玲,严亮,赵睿等,氨丙基官能化 SBA-15 介孔分子筛的合成及催化性能的研究,分子催化,2005.2,19(1):1-5
    [23] A. S. M. Chong, X. S. Zhao, Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials, J. Phys. Chem. B. (Article),2003,107(46):12650-12657
    [24] H. H. P. Yiu, P. A. Wright, N. P. Botting, Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces, J. Mol. Catal. B: Enzymes. 2001,15:81-92
    [25] A. S. M. Chong, X. S. Zhao, A. T. Kustedjo, S. Z. Qiao, Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis, Microporous. Mesoporous. Mater., 2004, 72:33-42
    [26] Xueguang Wang, Kyle S. K. Lin, Jerry C. C. Chan et al., Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl- Functionalized SBA-15 Mesoporous Materials, J. Phys. Chem. B. (Article), 2005, 109(5):1763-1769
    [27] X. Wang, Y. H. Tseng, J. C. C. Chan, S. Cheng, Direct synthesis of highly ordered large-pore functionalized mesoporous SBA-15 silica with methylaminopropyl groups and its catalytic reactivity in flavanone synthesis,Microporous. Mesoporous. Mater., 2005,85:241-251
    [28] Boissière C , kummel M , Persin M , Larbot A , Prouzet E., Spherical MSU-1 mesoporous silica particles tuned for HPLC, Adv. Funct. Mater., 2001, 2:129-135
    [29] K. R. Koletstra, H. Van Bekkum, H. Chin, S. K. Ihm, K. S. Uh, Solid mesoporous base catalysts comprising of MCM-41 supported intraporous cesium oxide, Stud. Surf. Sci. Catal., 1997, 105:431
    [30] A. Cauvel, G. Renard, D. Brunel, Monoglyceride Synthesis by Heterogeneous Catalysis Using MCM-41 Type Silicas Functionalized with Amino Groups, J. Org. Chem., 1997, 62:749-751
    [31] Y. V. Subba Rao, D. De Vos, P. A. Jacobs, 1,5,7-Triazabicyclo 4.4.0 DEC-5- ENE Immobilized in MCM-41: a Strongly Basic Porous Catalyst,Angew. Chem. Int. Ed. Engl., 1997, 36(2323):2661-2663
    [32] J. E. G. Mdoe, J. H. Clark, D. J. Macquarrie, Michael Additions Catalysed by N,N-Dimethyl-3-Aminopropyl-Derivatised Amophous Silica abd Hexagonal Mesoporous Silica(HMS), Synlett., 1998, 6:625-627
    [33] S. Kaskel, D. Farrusseng, and K. Schlichte, Synthesis of mesoporous silicon imido nitride with high surface area and,narrow pore size distribution,Chem. Commun., 2000:2481
    [34] S. Kaskel, K. Schlichte, Porous Silicon Nitride as a Superbase Catalyst,Journal of Catalysis, 2001, 201(2): 270-274
    [35] M. P Kaoor, S. Inagaki, Synthesis of mesoporous silicon oxyni- trides via direct nitridation with nitrogen,Chem. Lett., 2003, 32:94
    [36] Rongshi Li, Xiaowu Chen, Baoqing Gong, Jose N. Dominguez, Eugene Davidson, Gary Kurzban, Robert E. Miller, Edwin O. Nuzum, Philip J. Rosenthal, and et al.,In Vitro Antimalarial Activity of Chalcones and Their Derivatives,J. Med. Chem., 1995,38:5031-5037
    [37] A. T. Dinkova-Kostova, C. Abeygunawardana, P. Talaley, Chemoprotective Properties of Phenylpropenoids, Bis(benzylidene)cycloalkanones, and Related Michael Reaction Acceptors: Correlation of Potencies as Phase 2 Enzyme Inducers and Radical Scavengers, J. Med. Chem., 1998, 41:5287-5296
    [38] J. F. Ballesteros, M. J. Sanz, A. Ubeda, M. A. Miranda, S. Iborra, M. Paya, M. J.Alcaraz,Synthesis and Pharmacological Evaluation of 2'-Hydroxychalcones and Flavones as Inhibitors of Inflammatory Mediators Generation, J. Med. Chem., 1995,38:2794-2797
    [39] A. mantas, E. Deretey, F. H. Ferretti, M. R. Estrada, I. G. Csizmadia, Structural analysis of flavonoids with anti-HIV activity , Journal of Molecular Structure: THEOCHEM, 2000,504(1):171-179
    [40] D. N. Dahr, The Chemistry of Chalcones and Related Compounds, Wiley, New York, 1981
    [41] J. B. Harbone, T. J. Mabry, H. Mabry, The Flavonoids, Academic Press, New York, 1976
    [42] J. B. Harbone, T. J. Mabry, The Flavonoids: Advances in Research, Chapman & Hall, New York, 1982
    [43] M. T. Drexler, M. D. Amiridis, The effect of solvents on the heterogeneous synthesis of flavanone over MgO,Journal of Catalysis, 2003,214(1):136-145
    [44] G. Sartori, F. Bigi, R. Maggi, R. Sartorio, D, J. Macquarrie, M. Lenarda, L. Storaro, . Coluccia, G. Martra, Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes,Journal of Catalysis, 2004, 222(2): 410-418
    [45] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem.Soc., 1998, 120:6024-6036
    [46] X. Wang, K. S. K. Liu, J. C. C. Chan, S. Cheng, Preparation of ordered large pore SBA-15 silica functionalized with aminopropyl groups through one-pot synthesis, Chem. Commun., 2004:2762-2763
    [47] 黄家辉,介孔固体酸碱催化剂的合成、表征及催化应用,吉林大学博士论文,长春,2006
    [48] Alex C. C. Chang, Steven S. C. Chuang, McMahan Gray et al., In-Situ Infrared Study of CO Adsorption on SBA-15 Grafted with γ -(Aminopropyl) triethoxysilane, 2Energy & Fuels[J], 2003, 17:468-473
    [49] X. Wang, Y. H. Tseng, J. C. C. Chan, S. Cheng, Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis,Journal of Catalysis, 2005, 233(2): 266-275
    [50] L. Mercier, T. J. Pinnavaia,Access in mesoporous materials: advantages of uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation,Adv. Mater., 1997,9(6):500-503
    [1] Rubin, Mae K. Chu, Pochen et al., Composition of synthetic porous crystalline material, its synthesis and use, US 4,954,325,1990
    [2] Chu, Cynthia T-W. et al., Catalyst comprising MCM-36,US 5292698, 1994
    [3] J. Michael Bennett, Clarence D. Chang, Stephen L. Lawton et al., Synthetic porous crystalline MCM-49, its synthesis and use, US 5236575, 1993
    [4] Sena C. Emerson, Shiu Lun Anthony Fung, Setphen Latham Lawton, Process for preparing the synthetic porous crystalline material MCM-56, US 5827491,1998
    [5] Miguel A. Camblor, Avelino Corma, Diaz-Cabanas Maria-Jose et al., Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25,J.Phys.Chem.B.(Article),1998, 102(1):44-51
    [6] A. Corma, V. Formes, S. B. Pergher., Delaminated zeolite precursors as selective acidic catalysts, Nature, 1998, 396:353-356,
    [7] M.E.Leonowicz, J.A.Lawton, S.L.Lawton, M.K.Rubin, MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems, Science,1994, 264:1910-1913
    [8] Nakagawa Y, Lee G S, et al., Guest/host relationships in zeolite synthesis: ring-substituted piperidines and the remarkable adamantane mimicry by 1-azonio spiro [5.5] undecanes,Microporous and Mesoporous Materials, 1998, 22(1-3): 69-85
    [9] S. Nicolopoulos, J. M. González-Calbet, M. Vallet-Regi, M. A. Camblor, C. Corell, A. Corma, and M. J. Diaz-Caba?as, Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison, J Am Chem Soc, 1997,119:11000-11005
    [10] M.E.Leonowicz, J.A.Lawton, S.L.Lawton, M.K.Rubin, MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems, Science,1994, 264:1910-1913
    [11] Lawton S. L., Leonowicz M. E., Partridge R.D. et al., Twelve-ring pockets on the external surface of MCM-22 crystals,Micropourous and Mesoporous Materials, 1998,23:109-117
    [12] Gopalakrishnan G. Juttu, Raul F. Lobo, Characterization and catalytic properties of MCM-56 and MCM-22 zeolites, Microporous and Mesoporous Materials, 2000,40:9-23
    [13] Lawton S L, Fung A S, Kennedy G J, Alemany L B et al., Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization, J. Phys. Chem. (Article),1996,100(9): 3788-3798
    [14] Mochida I,Eguchi S,and Hironaka M, et al., The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine,Zeolites, Volume 1997,18(2-3): 142-151
    [15] Anthony S. Fung,Stephen L. Lawton,Wieslaw J. Roth,Synthetic layered MCM-56, its synthesis and use,US 5362697,1994.11
    [16] Nakagawa Y, Lee G S, et al., Guest/host relationships in zeolite synthesis: ring-substituted piperidines and the remarkable adamantane mimicry by 1-azonio spiro [5.5] undecanes , Microporous and Mesoporous Materials, 1998, 22(1-3): 69-85
    [17] Roth W J, Kresge C T, et al., Catalysis by microporous materials, Elsevier, Amsterdam, Stud Surf Sci Catal,1995,94:301
    [18] Charles T. Kresge,Wieslaw J. Roth,Method for preparing a pillared layered oxide material,US5278116,2001.1
    [19] A. Corma, V. Fornés, J.M. Guil et al., Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite, Microporous and Mesoporous Materials, 2000,38(2-3):301-309
    [20] Avelino Corma, Vicente Forne′s, María Sales Galletero, Hermenegildo García, Carlos J. Gómez-García, Prevalence of the external surface over the internal pores in the spontaneous generation of tetrathiafulvalene radical cation incorporated in the novel delaminated ITQ-2 zeolite; Physical Chemistry Chemical Physics, 2001, 3(7): 1218-1222
    [21] Avelino Corma, Hermenegildo García and Javier Miralles, High activity of layered zeolite ITQ-2 as catalyst for the hydroxyalkylation of 2-methoxynaphthalene and naphthalene with paraformaldehyde. Comparison of its performance with that of conventional zeolites or mesoporous Al/MCM-41, Microporous and Mesoporous Materials, 2001,43(2):161-169
    [22] Cynthia T-W. Chu, Charles T. Kresge, Wieslaw J. Roth, Kenneth G. Simmons, James C. Vartuli, Catalyst comprising MCM-36, US Patent 5,292,698,1994
    [23] Y. J. He, G.S. Nivarthy, F. Eder et al., Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36, Microporous and Mesoporous Materials, 1998,25(1):207-224
    [24] J.Barth, J.Kornatowski, J.A.Lercher, Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina,J. Mat. Chem.. 2002,12:369
    [25] J. Barth, A. Jentys, J. Kornatowski, J. A. Lercher, Control of Acid-Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring, Chem. Mater. (Article), 2004,16(4):724-730
    [26] 许宁,吴通好,王东阳,et al. , 层状分子筛 MCM-5 的合成及表征,高等学校化学学报[J],2001, 22(11):1898-1900
    [27] 袁忠勇,张怀彬,含双杂原子(Ti,V)新型中孔分子筛的合成与表征, 石油学报(石油加工),1998,14:28
    [28] 刘宗健,袁忠勇,MCM-22 和MCM-49 沸石的合成及性能和结构考察,浙江工业大学学报,1998,26:267
    [29] Kennedy G J, Lawton S L, Rubin M K, 29Si MAS NMR Studies of a High Silica Form of the Novel Molecular Sieve: MCM-22,J Am Chem Soc, 1994,116:11000-11003
    [30] Unverricht S, Hunger M and Ernst S, et al., Zeolite MCM-22:Synthesis, de- alumination and structural characterization, Stud Surf Sci Catal, 1994,84: 37-44
    [31] Wu P, Lin H and Komatsu T, et al. Synthesis of ferrisilicate with the MCM-22 structure, Chem Commun,1997:663
    [32] Meriaudeau P, Tuan V A and Nghiem V T, et al., Characterization and Catalytic Properties of Hydrothermally Dealuminated MCM-22, J Catal, 1998,185:378-385
    [33] 王红霞,谭大力,徐奕德,包信和,硅烷化处理对Mo/HZSM-5 催化剂上甲烷脱氢芳构化活性的影响, 催化学报, 2004,25:445
    [34] 李工,阚秋斌,佟惠娟等,纳米级MCM-49分子筛催化苯与1-十二烯烷基化反应的性能,催化学报,2004.10,25(10):809-813
    [35] Absil Robert P. L., Angevine Philip J., Bundens Robert G., Herbst Joseph A., Octane improvement in catalytic cracking and cracking catalyst composition therefore, US 4983276, 1991
    [36] Corma A, Trguero J M, The Use of MCM-22 as a Cracking Zeolitic Additive for FCC, J Catal,1997,165(1):102-120
    [37] Degnan Thomas F., Helton Terry E., Lissy Daria N. , Catalytic cracking with MCM-49, US 5486284,1996
    [38] Degnan; Thomas F., Fung; Anthony S., Hatzikos; George H., Kennedy; Gordon J., Kowalski; Jocelyn A. ,Catalyst and method of manufacture, US 5470810,1995
    [39] Cheng J C, Degnan T F, Beck J S, Huang Y Y, et al., A comparison of zeolites MCM-22,Beta, and USY for liquid phase alkylation of benzene with ethylene, Stud Surf Sci Catal,1998,121:53-60
    [40]许宁,阚秋斌,李雪梅等,低钠条件下MCM-22分子筛的动态合成及其在甲烷无氧芳构化中的催化性能,高等学校化学学报[J],2000,21(6):949-951
    [41] 许宁,阚秋斌,张吉等,新型甲烷无氧芳构化催化剂MoO3/MCM-49,高等学校化学学报[J],2000,21(7):1113-1114
    [42] Satoshi Inagaki, Kohei Kamino, Eiichi Kikuchi, et al.Shape selectivity of MWW-type aluminosilicate zeolites in the alkylation of toluene with methanol,Applied Catalysis A: General, 2007,318:22-27
    [43] 何农跃,李大塘,沈俭一等,MCM-41介孔分子筛材料的氨微量吸附量热法酸性研究,催化学报,1999.7,20(4):476-478
    [44] 吴鹏,阚秋斌,许宁等, HMI 体系下系列沸石分子筛的动态合成与表征,化学学报[J],2003,61(8):1202-1207
    [45] Peng Wu, Qiubin Kan, Dongyang Wang et al. The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization, Catalysis Communications[J], 2005,6:449-454
    [46] B.Wichterlová, Z.Tvar??ková, Z.Sobalik, P.Sarv, Determination and properties of acid sites in H-ferrierite: A comparison of ferrierite and MFI structures,Microporous and Mesoporous Materials, 1998, 24(4-6): 223-233
    [47] J.?ejka, A.Krej?ī, N.?ilková, J.Kotrla, S.Ernst, A.Weber, Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene with propylene, Microporous and Mesoporous Materials, 2002, 53(1-3): 121-133
    [48] A.G.Pelmenschikov, R.A.van Santen, J.J?nchen, E.Meijer, Acetonitrile-d3 as a probe of Lewis and Broensted acidity of zeolites, J. Phys. Chem., 1993, 97:11071-11074
    [49] Parry E P., An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity , J Catal,1963, 2:371-379
    [50] 辛勤主编,固体催化剂研究方法(上册),北京:科学出版社,2004.4:362-368
    [51] 朱玉霞,林伟,田辉平等,固体酸催化剂酸性分析方法的研究进展,石油化工,2006,35(7):607-614
    [52] Emeis C. A., Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts, Journal of Catalysis[J] , 1993.6,141(2):347-354
    [1] 陈兆文,徐文国,管迎梅等,潜艇舱室固态胺CO2清除技术的基础理论分析,舰船科学技术,2006.8,28(4):86-90
    [2] 周抗寒,韩永强,吴宝治等,固态胺CO2控制系统试验结果与分析,航天医学与医学工程,2004.8,17(4):287-291
    [3] 赵燕山,固态胺清除CO2技术研究,舰船科学技术,2001,23(3),23-28
    [4] Arthur K. Colling and Mark M. Hultman, Breadboard solid amine water desorbed CO2 control system, NASA-CR-160917,1980
    [5] 徐向华,梁新刚,任建勋,固态胺吸附和解析CO2的数值模拟,航天医学与医学工程,2004.8,17(4):292-296
    [6] 陈兆文,徐文国,管迎梅,张强,潜艇舱室固态胺CO2清除技术的化学热力学分析,舰船科学技术,2006.12,28(6),48-52,89
    [7] 周抗寒,陆熙瑜,艾尚坤等,固态胺二氧化碳控制系统中的CO2浓缩技术研究,航天医学与医学工程,2006.6,13(3):179-182
    [8] 郭强,一种用于CO2吸收的固体吸收剂,舰船防化,2004,3:21-24
    [9] 周抗寒,陆熙瑜,刘向阳,艾尚坤,刘成良,固态胺二氧化碳去除系统中反应罐的设计,航天医学与医学工程,2000.8,13(4):272-276
    [10] 周抗寒, 刘向阳, 陆熙瑜等, 固态胺CO2净化系统中的蒸汽发生器研制,航天医学与医学工程[J], 2001, 14(2):132-136
    [11] 刘志强, 大孔高交联聚苯乙烯的合成及其功能化研究, 博士学位论文,长春,吉林大学,1996
    [12] 刘志强,吴通好等, 大孔高交联苯乙烯-双烯-A 共聚物的合成及孔结构的研究,高等学校化学学报 [J],1995,16(12):1968-1971
    [13] 吴通好,杨洪茂, 刘志强等,固态二氧化碳吸附剂及其制备方法,ZL 95 19387.2[P],1999
    [14] Liu Zhi-qiang, Wu Tong-hao et al., Synthesis and characterization of the macroporous and high crosslinking styrene—2,2-bismethacryloyloxyphenyl propane(bisvinyl-A) copolymers, Materials chemistry and physics[J], 1996, 45(2):288
    [15] Shen Jian-yi(沈俭一), 吸附量热技术和金属氧化物催化剂的表面酸碱性, Chinese journal of catalysis(催化学报)[J], 2000,21(2):186-194
    [16] 屠迈,李大塘, 沈俭一等, 微量吸附量热法研究氧化物催化剂的酸碱性质,高等学校化学学报[J],1998,19(6):946-949
    [17] M.J.Meziani, J.Zajac, D.J.Jones et al., Number and Strength of Surface Acidic Sites on Porous Aluminosilicates of the MCM-41 Type Inferred from a Combined Microcalorimetric and Adsorption Study, Langmuir, 2000,16(5):2262-2268
    [18] V. Quaschning, A. Auroux, J. Deutsch et al, Microcalorimetric and Catalytic Studies on Sulfated Zirconia Catalysts of Different Preparations, Journal of Catalysis, 2001,203:426-433
    [19] 甄开吉,毕颖丽,王国甲等,催化作用基础,第三版,北京:科学出版社,2005.2:28-29
    [20] Tetsuo T.,Tuyoshi F.,Takeo S. et al., Amino Silica Gels Acting as a Carbon Dioxide Absorbent, Chemistry letters, 1992:2161-2164
    [21] Alex C. C. Chang, Steven S. C. Chuang, McMahan Gray, and Yee Soong,In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilane,Energy & Fuels, 2003, 17:468-473
    [1] Rubin, Mae K. Chu, Pochen et al., Composition of synthetic porous crystalline material, its synthesis and use, US 4,954,325,1990
    [2] Chu, Cynthia T-W. et al., Catalyst comprising MCM-36,US 5292698, 1994
    [3] J. Michael Bennett, Clarence D. Chang, Stephen L. Lawton et al., Synthetic porous crystalline MCM-49, its synthesis and use, US 5236575, 1993
    [4] Sena C. Emerson, Shiu Lun Anthony Fung, Setphen Latham Lawton, Process for preparing the synthetic porous crystalline material MCM-56, US 5827491,1998
    [5] Miguel A. Camblor, Avelino Corma, Diaz-Cabanas Maria-Jose,et al., Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25,J. Phys. Chem. B. (Article),1998,102(1):44-51
    [6] A. Corma, V. Formes, S. B. Pergher., Delaminated zeolite precursors as selective acidic catalysts ,Nature, Nature, 1998, 396:353-356
    [7] Gopalakrishnan G. Juttu, Raul F. Lobo, Characterization and catalytic properties of MCM-56 and MCM-22 zeolites, Microporous and Mesoporous Materials 2000,40:9-23
    [8] Lenowicz M. E., Lawton J. A., Lawton S. L., et al., MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems, Science. [J], 1994, 264:1910-1913
    [9] Lawton S. L., Lenowicz M. E., Partrideg R. D. et al., Twelve-ring pockets on the external surface of MCM-22 crystals,Microporous and Mesoporous Materials, 1998, 23(1-2): 109-117
    [10] Lawton S. L., Fung A. S., Kennedy et al., Zeolite MCM-49: A Three- Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization, J. Phys. Chem., 1996,100:3788-3798
    [11] Eller Karsten, DE., Kummer Rudolf., Preparation of amines from olefins on zeolites of the MCM-49 or MCM-56 type, US 5840988 [P], 1998
    [12] Cheng Jane C., Huang Tracy J., Process for the alkylation of benzene-rich reformate using MCM-49, US 5545788 [P], 1996
    [13] Brown Stephen H., Crane Robert A., De Caul Lorenzo., Ethyl acetate synthesis from ethylene and acetic acid using solid acid catalysts, US 5973193 [P], 1999
    [14] 王红霞,谭大力,徐奕德,包信和,硅烷化处理对Mo/HZSM-5 催化剂上甲烷脱氢芳构化活性的影响, 催化学报, 2004,25:445
    [15] D.Y. Wang, Q.B. Kan., N. Xu, P.Wu, T.H.Wu, Study on methane aromatization over MoO3/HMCM-49 catalyst, Catalysis Today, 2004,93-95 :75-80
    [16] 李工,阚秋斌,佟惠娟等,纳米级MCM-49分子筛催化苯与1-十二烯烷基化反应的性能,催化学报,2004.10,25(10):809-813
    [17] Wu Peng, Takayuki Komatsu and Tatsuaki Yashima, Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts ,Microporous and Mesoporous Materials [J], 1998, 22: 343-356
    [18] Meriaudeau P., Tuan Vu A., Nghiem Vu T. et al., Characterization and Catalytic Properties of Hydrothermally Dealuminated MCM-22, Journal of Catalysis [J], 1999, 185(2): 378-385
    [19] Zhang Yu, Xing Hai-Jun, Wu Peng et al., Alkylation of benzene with propylene over MCM-36: a comparative study with MCM-22 zeolite synthesized from the same precursors, Reaction Kinetics and Catalysis letters [J], 2007, 90(1):45-52
    [20] Zhang Yu, Xing Hai-Jun, Wu Peng et al., MCM-36 分子筛的合成及其苯与丙烯催化性能研究, Chem. J. Chinese University (高等学校化学学报) [J], 2007,28:1-7
    [21] Xu Ning (许宁), MCM-22 族分子筛的合成、表征及其催化性能研究,吉林大学博士学位论文,,长春,2003.6
    [22] Se-Ho Park, Hyun-Ku Rhee, Shape selective properties of MCM-22 catalysts for the disproportionation of ethylbenzene,Applied Catalysis A: General [J]. 2001, 219:99-105
    [23] Meriaudeau P., Tuel A., Vu T.T.H , On the localization of tetrahedral aluminum in MCM‐22 zeolite, Catal Lett. [J], 1999, 61: 89-92
    [24] Dumitriu. E, Secundo F., Patarin J. et al., Preparation and properties of lipase immobilized on MCM-36 support, Journal of Molecular Catalysis B: Enzymatic, 2003, 22(3-4): 119-133
    [25] Corma A., Martinez-Soria V., Schnoeveld E., Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism,Journal of Catalysis, 2000, 192(1): 163-173
    [26] XIN Qin(辛勤),Research in solid catalyst(固体催化剂的研究方法)[M],Beijing: Science Press, 2004: 362-368
    [27] 张钰, 吴淑杰, 杨胥微,脱铝 MCM-49 分子筛的结构、酸性及苯与丙烯液相烷基化催化性能研究,高等学校化学学报,2007,in Press
    [1] Kresge C T, Leonowicz M E, Roth W J, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992,359: 710-712
    [2] Corma A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev. 1997, 97:2373-2420
    [3] Feng P., Xia Y., Feng J., Bu X., Stucky, G. D., Synthesis and characterization of mesostructured aluminophosphates using the fluoride route, Chem. Commun., 1997:949
    [4] Chakraborty B., Pulikottil A. C., Das S., Viswanathan B., Synthesis and characterization of mesoporous SAPO,Chem. Commun.,1997:911
    [5] Zhao D., Luan Z., Kevan L., Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves, Chem. Commun., 1997,11:1009-1010
    [6] Kimura T., Sugahara Y., Kuroda K., Synthesis and Characterization of Lamellar and Hexagonal Mesostructured Aluminophosphates Using Alkyltrimethylammonium Cations as Structure-Directing Agents, Chem. Mater., 1999, 11:508-518
    [7] P. D. Yang, D. Y. Zhao, D. I. Margolese et al., Generalized syntheses of large-poremesoporous metal oxides with semi-crystalline frameworks, Nature,1998,396:152-155
    [8] MacLachlan M. J., Coombs N., Ozin G. A., Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from(Ge4S10)4- clusters, Nature 1999, 397:681-684
    [9] Attard G. S., Bartlett P. N., Coleman N. R. B., Elliott J. M., Owen J. R., Wang J. H., Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases, Science, 1997, 278:838-840
    [10] Joo S. H., Chl S., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature,2001, 412:169
    [11] Q. Huo, D. I. Margolese, U. Ciesla et al., Organization of Organic-Molecules with Inorganic Molecular-Species into Nanocomposite Biphase Arrays, Chem. Mater., 1994,6:1176-1191
    [12] P. D. Yang, D. Y. Zhao, D. I. Margolese et al., Block Copolymer TemplatingSyntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework, Chem. Mater., 1999,11:2813-2826
    [13] Oliver S., Coombs N., Ozin G. A., Synthetic hollow aluminophosphate microspheres, Adv. Mater., 1995, 7(11):931-935
    [14] Ozin G. A., Oliver S., Skeletons in the beaker: Synthetic hierarchical inorganic materials, Adv. Mater. 1995, 7(11):943-947
    [15] Oliver S., Kuperman A., Coombs N., Lough A., Ozin G. A., Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons, Nature 1995, 378:47-50
    [16] Sayari A., Moudrakovski I., Reddy J. S., Ratcliffe C. I., Ripmeester J. A., Preston, K. F., Synthesis of mesostructured Lamellar Aluminophosphates using supramolecular templates, Chem. Mater., 1996, 8:2080-2088
    [17] Kimura T., Surfactant-templated mesoporous aluminophosphate-based materials and the recent progress, Microporous and Mesoporous Materials, 2005, 77(2-3): 97-107
    [18] Feng P., Bu X., Stucky G. D., Control of Structural Ordering in Crystalline Lamellar Aluminophosphates with Periodicity from 51 to 62 ?, Inorg. Chem., 2000, 39:2-3
    [19] Cabrera S., Haskouri J. E., Guillem C., Beltran-Porter A., Beltran-Porter D., Mendioroz S., Marcos M. D., Amoros P., Tuning the pore size from micro- to meso-porous in thermally stable , aluminophosphates, Chem. Commun.,1999:333.
    [20] Tian B., Liu X., Tu B., Yu C., Jie F., Wang L., Xie S., Stucky G. D., Zhao D., Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs, Nat. Mater., 2003, 2(3):159-163
    [21] Zhou Z., Liu G., Zhang W., Liao X., Hou Y., Jia M., Thermally stable mesoporous aluminophosphates assembled from preformed precursors of microporous aluminophosphate, Mater.Lett., 2005, 59(27):3503-3506
    [22] Luan Z., Zhao D., He H., Klinowski J., Kevan L., Characterization of Aluminophosphate-Based Tubular Mesoporous Molecular Sieves, J. Phys. Chem. B., (Article), 1998, 102(7):1250-1259
    [23] Lin K., Wang L., Sun Z., Yang Q., Di Y., Zhang D., Jiang D., Xiao F.,A Stable Hexagonal Mesoporous Aluminophosphate Assembled from Preformed Aluminophosphate Precursors, Chem. Lett., 2005, 34(4):516-517
    [24] Campelo J. M., Jaraba M., Luna D., Luque R., Marinas J. M.,Romero A. A., Effect of Phosphate Precursor and Organic Additives on the Structural and Catalytic Properties of Amorphous Mesoporous AlPO4 Materials, Chem. Mater., (Article), 2003, 15(17):3352-3364
    [25] Zhu X., Jia M., Li X., Liu G., Zhang W., Jiang D., Vapour-phase selective O-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts,Appl Catal A, 2005, 282:155-161
    [26] Zhu X., Li X., Liu G., Zou X., Wang Y., Jia M., Zhang W., Vapour-phase O-methylation of Catechol with Methanol on Ti-containing Phosphate Catalysts,Chem. Res. Chinese U., 2006, 22:533-536
    [27] Li X., Zhang W., Liu G., Jiang L., Zhu X., Pan C., Jiang D., Tang A., Effect of the P/Al ratio of Al-P-O on the catalytic activity of o-methylation of catechol with methanol, React. Kinet. Catal. Lett., 2003, 79:365
    [28] 刘钢,李雪梅,朱小梅等,AlPxO 催化剂的制备、表征及其在邻苯二酚O-单醚化反应中的催化性能,高等学校化学学报, 2005.8,26(8):1492-1496
    [29] Vishwanathan V., Ndou S., Sikhwivhilu L., Plint N., Raghavan K. V., Coville N.J., Evidence for weak base site participation in the vapour phase,methylation of catechol over solid base catalysts, Chem. Commun., 2001:893
    [30] Bautista F. M., Campelo J. M., Garcia A., Luan D., Marinas J. M., Romero A. A., Colon G., Navio J. A., Macias M., Structure, Texture, Surface Acidity, and Catalytic Activity of AlPO –ZrO (5–50 wt% ZrO ) Catalysts Prepared by a Sol–Gel Procedure4 2 2,Journal of Catalysis, 1998, 179(2): 483-494
    [31] Zhu X., Jia M., Li X., Liu G., Zhang W., Jiang D., Vapour-phase selective O-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts,Appl Catal A, 2005, 282:155-161
    [32] Gang Liu, Zhenlu Wang, Mingjun Jia, et al., Thermally Stable Amorphous Mesoporous Aluminophosphates with Controllable P/Al Ratio: Synthesis, Characterization, and Catalytic Performance for Selective O-Methylation of Catechol, J. Phys. Chem. B, 2006, 110:16953-16960

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700