用户名: 密码: 验证码:
卟啉J聚集体高压拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉分子具有独特的物理化学性质,它在光合作用中心模拟、信息存储、气体传感器、显色剂、抗癌药物、非线性光学材料、液晶材料、催化剂材料及功能分子器件等方面有广泛的应用前景。近年来,通过非共价键相互作用形成的卟啉聚集体在功能卟啉材料设计中表现出更为广阔的应用发展前途。我们利用分子光谱方法来研究形成环境对卟啉聚集体形成结构的影响、高压下卟啉聚集体的结构变化规律以及不同取代基团对卟啉聚集体结构随压强响应的影响,得出结论如下:
     (1)通过挥发10-5M质子化的四苯基卟啉(Tpp)二氯甲烷溶液的方法形成TppJ聚集体,根据在不同酸、溶剂和取代基团条件下形成卟啉聚集体的电子吸收光谱和拉曼光谱,建立了卟啉聚集体分子不同取向模型,该模型很好地解释了实验中的光谱现象,为此类聚集体形成结构的判断提供了一定光谱依据。
     (2)结合金刚石对顶砧(DAC)和显微共聚焦拉曼光谱技术,测量了四苯基卟啉J聚集体在13GPa内的高压拉曼光谱,得出了规律性的结论:1、卟啉聚集体结构的变化在加压和卸压过程是可逆的;2、在加压过程中,各个拉曼谱带都近线性地向高波数方向移动,没有新峰的出现、谱线劈裂和频移-压强曲线斜率的陡然变化,说明四苯基卟啉J聚集体在13GPa内没有明显的相变发生;3、随压强的增加苯环ψ3 C-C面内伸缩振动的强度增强,表明卟啉分子中苯环与卟吩环的二面角随压强的增加而减小,因而卟啉分子在分子弹簧垫圈方面有潜在的应用前景。本实验也为研究同类卟啉体系中卟吩环与取代芳香环之间的二面角提供了新的方法。
     (3)测得了四种中位芳香基取代卟啉Tpyp、Tnpp、Tmpp和Tspp J聚集体常压下的紫外-可见吸收光谱、拉曼光谱以及高压下的拉曼光谱。得出了以下规律性结论:1、此类卟啉聚集体在13Gpa内无相变发生。2、高压拉曼光谱的高波数(1010-1600cm-1)和低波数(200-350cm-1)区的斜率远大于中等波数(350-1000cm-1)区。3、芳香环ψ3 C-C面内伸缩振动强度的增强是芳香环与卟吩环之间二面角减小和基态π电子云离域效应共同作用的结果。根据芳香环ψ3 C-C面内伸缩振动强度随压强变化的斜率,得出分子弹簧垫圈的劲度系数可以通过调节取代基团来实现,为将来分子器件方面的应用奠定基础。
This thesis described the effects of solvents, substitution and counterion onporphyrin Jaggregations by electronic absorptionand Raman scattering spectroscopy,and a model of orientation change of porphyrin in aggregate was proposed. Usingdiamond anvil cell (DAC) microscopic Raman technique, we reported the in situRaman measurements of Tpp J aggregates under high pressure up to 13 GPa. Andaccording to the spectral phenomena, Tpp J aggregates can be treated as a candidatefor the potential application of pressure-driven molecular spring washers in parallelcombinations. Additionally, the stiffness of molecular washers can be tunable byproperly choice of meso-substitution.
     This dissertation can be divided into three following parts:
     (1) UV-Visible absorption spectra of four Tpp aggregates which were formedfromdichloromethane solution were obtained, all the spectra show red-shifted B band,which are the characterof Jaggregates. But the red shift in the absorption spectra ofTpp (H2SO4)-agg is two times larger than that of the other three Tpp aggregates. Atthe same time, Raman spectra of fourporphyrin aggregates were obtained. Comparedto the single band at around 1080cm-1 in otherthree aggregates, double bands can beseen in the Raman spectrum of Tpp (H2SO4)-agg, and then two parallel experimentsincluding the effects of solvent and substitution on the Raman spectra of Tpp (H2SO4)-agg were given. The results showed that the structure of porphyrinaggregates can be affected by nature of titrating acid and solvent and peripheralsubstitution. At last, a stack card model was built and shown in figure 1. Vibronicspectroscopic technique has potential applications in elucidating the orientation ofporphyrins inorganized molecularassemblies.
     (2) As aprimary parameterof thermodynamic, pressure has relationship with thetotal energy of the compressed substance, and the phase structure and reaction waymay be controlled by changing pressure because the interatomic distance can be reduced during compression. Porphyrin is the pigment of life, and then high pressureinvestigations on porphyrin aggregates can provide more information about themechanismof structure andphase changes.
     Figure 2 shows the Raman spectra of Tpp J aggregates at ambient and selectedhigh pressures carried outup to 13GPa.
     From the frequency-pressure relationship, there is a monotonic increase in thefrequency of all Raman modes throughout the compression process, and we have notobserved changes in the spectra including splitting of modes, appearance of newmodes, or sudden changes in the slope of frequency-pressure curve, so no obviousevidence of phase transition can be concluded during the entire compressionprocesses, on the whole, the slopes (dω/dP) at high-(1010-1060 cm-1) and low-frequency (230-330 cm-1) are greater than that in the middle-frequency (380-1000cm-1) region, suggesting that the chemical bond of greater compressibility, which isassociated with the high and low frequency bands, is more sensitive to compression and makes a majorcontribution to the reduction of the volume.
     It is considered that the coplanarity of the phenyl groups and the mean porphyrinplane could enhance the coupling between porphyrin and phenylπ-systems,whichthen induce some of the phenyl Raman modes of porphyrin systems get stronger. Inour high pressure Raman experiments, as shown in Figure 2, another interestingobservation is the continuing intensity enhancement of phenylψ3 C-C stretchingmode. Unlike other molecular spring driven by chemical interactions, Tpp Jaggregates can be treated as a candidate for the potential application ofpressure-driven molecularwashers inparallel combinations (Figure 3). And due to thestructure of Tpp, each spring washer has four waves equal to the number of phenylsubstitutes. The dihedral angle between porphyrin plane and phenyl groups decreasedwith increasing pressure, and this transformation is completely reversible duringdecompression. Additionally, this method could be used as a suitable tool forinvestigating the continual variation of dihedral angle between the porphyrin ring andmeso-aryl substituents inporphyrin systems.
     (3) The physicochemical properties of porphyrin compounds can be affect by βand meso-substitution, in this reports, high pressure Raman investigations on fourmeso-substitution porphyrin Jaggregates have been measured and shown in figure 4.Figure 4 High pressure Raman spectra of porphyrin aggregates, A:Tspp, B: Tnpp, C: Tmpp, and D:Tpyp.According to the high pressure spectral phenomena of porphyrin aggregates, wegot the following conclusion:
     3.1 There is a monotonic increase in the frequency of all Raman modesthroughout the compression process, and we have not observed changes in the spectraincluding splitting of modes, appearance of new modes, or sudden changes in theslope of frequency-pressure curve, so no obvious evidence of phase transition forallthe porphyrin aggregates canbe concluded during the entire compressionprocesses.
     3.2 Forall the porphyrin aggregates, the slopes (dω/dP) athigh-(1010-1060 cm-1)and low- frequency (230-330 cm-1) are greater than that in the middle-frequency (380-1000 cm-1) region, suggesting that the chemical bond of greatercompressibility,which is associated with the high and low frequency bands, is more sensitive tocompression and makes a majorcontribution to the reduction of the volume.
     3.3 The intensity ratio of phenylψ3 C-C in-plane stretching andυ2 Cb-Cbstretching mode (which is located at 1575 and 1540 cm-1 under ambient pressurerespectively) exhibitanearlinearly increase during the pressure rise up below 13GPa.And the over all pressure range 0-13GPa can be divided into two domains (0-6 and6-13Gpa) in which linear relationship have been assumed. At different pressureregions, the slope is different, providing more information about the mechanic of theintensity enhancement. Pressure has a strong impact both on the dihedral anglebetween the porphyrin ring and meso-aryl substitute and on theπelectiondelocalization, and both of them can induce the intensity enhancement of aromaticψ3C-C stretching vibration. Theπelectron delocalization is normally occurred underhigh pressure, so under the pressure range from ambient to 6GPa, below 6Gpa,decrease of dihedral angle between the porphyrin ring and meso-aryl substitute playan important role in the intensity enhancement, while above 6GPa,πelectrondelocalization domains. As we have investigated before, the phenomena of thisdihedral angle decrease make Tpp J aggregates a good candidate for the potentialapplication in molecular spring washer, within the first pressure range, the slope ofthe intensity ratio of aromatcψ3 C-C in-plane stretching toυ2 Cb-Cb stretching modeforTspp, Tnpp, Tpp, Tmpp, and Tpypp self-assembles are 0.151, 0.128, 0.081, 0.053and 0.042 respectively, indicating that the stiffness of molecular spring washers canbe tunable by properly choice of meso-substitution.
引文
[1] MCHALEJL. MolecularSpectroscopy [M]. Beijing:Science Press, 2003.
    [2]吴国桢.分子振动光谱学[M].清华大学出版社,2001.
    [3]程昱川.几类层状超薄膜结构的分子光谱研究[D].长春:吉林大学,2006.
    [4] LEVIS R. Handbook of Raman Spectroscopy: From the Research Laboratoryto the Process Line [M]. New York:Marcel Dekker, 2001.
    [5] SMITH E, DENT G. Morden Raman Spectroscopy: A Practical Approach[M]. Chichester:John Wiley & Sons, 2005.
    [6] RAGHAVACHARI R. Near-Infrared Applications in Biotechnology [M].New York:Marcel Dekker, 2001.
    [7] AROCA R. Surface-enhanced Vibrational Spectroscopy [M]. Chichester:John Wiley &Sons, 2006.
    [8] JENSEN P, BUNKER P R. Computational Molecular Spectroscopy [M].Chichester:John Wiley & Sons, 2000.
    [9] HAMMES G G. Spectroscopy for the Biological Sciences [M]. New Jersey:John Wiley &Sons, 2005.
    [10] FAYER M D. Ultrafast Infrared and Raman Spectroscopy [M]. New York:Marcel Dekker, 2001.
    [11] DOLPHIN D. The Porphyrins [M]. New York:Academic Press, 1979.
    [12] ALESSIO E. Non-covalent Multi-porphyrin Assembles Synthesis andProperties [M]. Berlin:Springer, 2006.
    [13] WURTHNER F. Supermolecular Dye Chemistry [M]. Berlin: Springer,2005.
    [14] RAYMOND J E, BHASKAR A, GOODSONIII T,et al. Synthesis andtwo-photon absorption enhancement of porphyrin macrocycles[J]. Journal of theAmerican Chemical Society, 2008, 130:17212-17213.
    [15] WANG H, SONG Y, WANG Z, et al. Silica-metal core-shells and metalshells synthesized by porphyrin-assisted photocatalysis [J]. Chemistry of Materials.2008, 20:7434-7439.
    [16] KHDAIR A, GERARD B, HANDA H, et al. Surfactant-polymernanoparticles enhance the effectiveness of anticancer photodynamic therapy [J].MolecularPharmacevtics. 2008, 5:795-807.
    [17] HUANG X, ZHU C, ZHANG S, et al. Porphyrin-dithienothiopheneπ-conjugated copolymers: synthesis and their applications in field-effect transistorsand solarcells [J]. Macromolecules, 2008, 41:6895-6902.
    [18] KOKAZI M, UETOMO , SUZUKI S, et al. A light-harvesting arraycomposed of porphyrins and rigid backbones [J]. 2008, 10:4477-4480.
    [19] SAKURAI T, SHI K, SATO H, et al. Prominent electron transport propertyobserved fortriply fused metalloporphyrin dimer:directed columnarliquid crystallineassembly by amphiphilic molecular design [J]. Journal of the American ChemicalSociety, 2008, 130, 13812–13813.
    [20] STICH M I J, NAGL S, WOLFBEIS O S, et al. A dual luminescent sensormaterial for simultaneous imaging of pressure and temperature on surfaces [J].Advanced Functional Materials. 2008, 18:1399-1406.
    [21] PAOLESSE R, LVOVA L, NARDIS S, et al. Chemical images byporphyrinarrays of sensors [J]. Microchimica Acta. 2008, 163:103–112.
    [22] NOLAN E M, LIPPARD S J. Tools and tactics for the optical detection ofmercuric ion [J]. Chemical Reviews, 2008 108:3443-3480.
    [23] SWIDERSKI R M. Bouvet and Leibniz: a scholarly correspondence [J].Eighteenth-Century Studies. 1980, 14:135-150.
    [24] ZHAO L, MA R, LI J, et al. J- and H-aggregates of5,10,15,20-Tetrakis-(4-sulfonatophenyl)-porphyrin and interconversion inPEG-b-P4VP micelles [J]. Biomacromolecules. 2008, 9:2601–2608.
    [25]张寒奇、王芬蒂、金钦汉等。光谱化学分析[M]。长春:吉林大学出版社,1996.
    [26]朱自莹,顾仁敖,陆天虹。拉曼光谱在化学中的应用[M]。沈阳:东北大学出版社,1998.
    [27] WATANABEA, MORITA S, OZAKIY. Temperature-dependentstructuralchanges in hydrogen bonds in microcrystalline cellulose studied by infrared andnear-infrared spectroscopy with perturbation-correlation moving-windowtwo-dimensional correlationanalysis [J]. Applied Spectroscopy. 2006, 60:611-624.
    [28] KAUPPINEN J, PARTANEN J. Fourier Transforms in Spectroscopy [M].Berlin:Wiley-Vch,2001.
    [29] GRIFFITHS P R, HASETH J A. Fourier Transform Infrared Spectrometry[M]. 2th ed. New Jersey:JohnWiley &Sons, 2007.
    [30] JAMIESON J C, LAWSON A W, NACHTRIEB N. D. New device forobtaining x-ray diffraction patterns from substances exposed to high Pressure[J].Review of Scientific Instrument. 1959, 30:1016-1020.
    [31] LAWSON A W, TANG T. Y. A diamond bomb for obtaining powderpictures athighpressures [J]. Review of Scientific Instrument.1950, 21:815-820.
    [32] POPOV M. Pressure measurements from Raman spectra of stresseddiamondanvils [J]. Journal of Appliedphysics.2004, 95:5509-5514.
    [33] HANFLAND M, SYASSEN K. A Raman study of diamond anvils understress +[J]. Journal of Applied physics.1985, 57:2752-2756.
    [34] VOHRA Y K, VAGARALI S S. lsotopically pure diamond anvil forultrahigh pressure research [J]. Appliedphysics letter, 1992, 61:2860-2862.
    [35] RAGAN D D, GUSTAVSEN F, SCHIFERL D. Calibration of the ruby R1,and R2 fluorescence shifts as a function of temperature from0 to 600 K [J]. Journal ofAppliedphysics.1992, 72:5539-5544.
    [36] WANG X, SHEN Z, TANG S, et al. Near infrared excited micro-Ramanspectra of 4:1 methanol–ethanol mixture and ruby fluorescence at high pressure [J].Journal of Applied physics.1999, 85:8011-8017.
    [1]张寒奇、王芬蒂、金钦汉等。光谱化学分析[M]。长春:吉林大学出版社,1996.
    [2] PARSON W W. Modern Optical Spectroscopy: With Example FromBiophysics andBiochemistry [M]. Berlin:Springer, 2006, P109-182.
    [3] DOLPHIN D. The Porphyrins [M]. New York:Academic Press, 1979.Vol 3.
    [4] GOUTERMAN M, HOLTEN D , LIEBERMAN E.Porphyrins XXXV .Exciton coupling inμ-oxo Scandumdimers [J]. Chemical Physics. 1977, 25:139-153
    [5] GOUTERMAN M. Spectra of porphyrins [J]. Journal of MolecularSpectroscopy. 1961, 6:138-163.
    [6] GOUTERMAN M, WAGNIEREGH. SNYDERLC. Spectra of porphyrins :Part II. Fourorbital model [J].Journal of MolecularSpectroscopy. 1963:108-127.
    [7] FULTON R L, GOUTERMAN M. Vibronic coupling. I. mathematicaltreatment for two electronic states [J]. The Journal of Chemical Physics. 1961, 35:1059-1071.
    [8] FULTON R L, GOUTERMAN M. Vibronic coupling. II.spectra of dimmers[J]. The Journal of Chemical Physics. 1964, 41:2280-2286.
    [9] FULTON R L, GOUTERMAN M, PERRIN C L. Vibronic coupling.VI.vibronic borrowing in cyclic polyenes and porphyrin [J]. The Journal of ChemicalPhysics. 1969, 50:4137-1050.
    [10] KNPP E W. Lineshapes of molecular aggregates. Exchange narrowing andintersite correlation [J]. Chemical Physics. 1984, 85:73-82.
    [11] TOYOZAWA Y. Interband effect of lattice vibrations in the excitonabsorption spectra[J]. Phys. Chem. Solids. 1964, 25:59-71.
    [12] KNAPP E W, SCHERER P O J, FISHCHER S F. On the lineshapes ofvibronically resolved molecular aggregate spectra. Application topseudoisocyanin(PIC) [J]. Chemical Physics Letters. 1984, 111:481-486.
    [13] ZIMMERMANN J, SIGGEL U, FUHRHOP J-H, RODER B. Excitoniccoupling between B and Q transitions in a porphyrin aggregate [J]. The Journal ofPhysical Chemistry B. 2003, 107:6019-6021.
    [14] SCJERZ A, PARSON W W. Exciton interactions in dimmers ofbacterichlorophyll and related molecules [J]. Biochimica et Biophysica Acta, 1984,766:666-678.
    [15] SCJERZ A, PARSON W W. Oligomers of bacteriochlorophyll andbacteriopheophytin with spectroscopic properties resembling those found inphotosynthetic bacteria[J]. BiochimicaetBiophysica Acta, 1984, 766:663-665.
    [16]柯以侃,董慧茹。分析化学分册:第三册光谱分析[M]。北京:化学工业出版社,1998.
    [17] MEISTER A G, CLEVELAND F F. Interpretation of the spectra ofpolyatomic molecules by use of group theory [J]. American Journal of Physics. 1943,11:239-247.
    [18] LONG D A. The Raman Effect: A Unified Treatment of the Theory ofRaman Scattering by Molecules [M]. Chichester:John Wiley & Sons , 2002.
    [19]吴国桢。分子振动光谱学——原理与研究[M]。北京:清华大学出版社,2001
    [20]郑顺旋。激光拉曼光谱学[M]。上海:上海科学技术出版社,1985
    [21] MCHALEJL. MolecularSpectroscopy [M]. Beijing:Science Press, 2003.
    [22] AKINS D L, ZHU H, GUO C. Aggregation of tetraaryl-substitutedporphyrins in homogeneous solution [J]. The Journal of Physical Chemistry. 1996,100:5420-5425.
    [23] SAINI G S S, SHARAMA A, SINGH S, et al. Resonance Raman andelectronic absorption study of free-base tetraphenylporphine diacid dispersed inpolymethylcyanoacrylate [J]. Journal of Raman Spectroscopy, 2007, 48:225-234.
    [24] SAINIG S S. Resonance Raman study of free-base tetraphenylporphine andits dication [J]. Spectrochemica Acta PartA. 2006, 64:981-986.
    [25] GUO H, JIANG J, SHI Y, et al. Uv-Vis spectrophotometric titrations andvibrational spectroscopic characterization of meso-(p-Hydroxyphenyl)porphyrins [J].The Journal of Physical Chemistry B. 2004, 108:10185-10191.
    [26] GUO H, JIANG J, SHI Y, et al. Sequential deprotonation ofmeso-(p-Hydroxyphenyl)porphyrins in DMF: from hyperporphyrins to sodiumporphyrin complexes [J]. The Journal of Physical Chemistry B. 2006, 110:587-594.
    [27] GUO H, JIANG J, SHI Y, et al. Solvent effects on spectrophotometrictitrations and vibrational spectroscopy of5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin in aqueous DMF [J].Spectrochemica ActaPartA. 2007, 67:166-171.
    [28] LI Z, WANG H, LU T, et al. Density functional theory studies on theelectronic and vibrational spectra of octaethylporphyrin diacid [J]. SpectrochemicaActa PartA. 2007, 67:1382-1397.
    [29] XU L, LI Z, TIAN W, et al. Density functional theory studies on the Ramanand IR spectra of meso-tetraphenylporphyrin diacid [J]. Spectrochemica Acta Part A.2005, 62:850-862.
    [30] LI X, CZERNUSZEWICZ R S, KINCAID J R, et al. Consistent porphyrinforce field. 1. normal-mode analysis for nickel porphine and nickeltetraphenylporphine from resonance Raman and infrared spectra and isotope shifts [J].The Journal of Physical Chemistry. 1990, 94:31-47.
    [31] LI X, CZERNUSZEWICZ R S, KINCAID J R, et al. Consistent porphyrinforce field. 2. nickel octaethylporphyrin skeletal and substituent mode assignmentsfrom 15N, meso-d4, and methylene-d16 Raman and infrared isotope shifts [J]. TheJournal of Physical Chemistry. 1990, 94:48-61.
    [32] LI X, ZGUERSKI M Z. Porphine force field: in-plane normal modes offree-base porphine. Comparisonwith metalloporphines and structural impllcations [J].The Journal of Physical Chemistry. 1991, 95:4268-4287.
    [33] AKINS D L. Theory of Raman scattering by aggregated molecules [J]. TheJournal of Physical Chemistry. 1986, 90:1530-1534.
    [34] AKINS D L, LOMBARDI J R. Excitation wavelength dependence ofenhanced Raman bands of aggregated molecules [J]. Chemical Physics Letters. 1987,135:495-500.
    [35] AKINS D L, AKPABLI C K, LI X. Surface potential dependence ofenhanced Raman bands of aggregated cyanine dyes [J]. The Journal of PhysicalChemistry. 1989, 93:1977-1984.
    [36] AKINS D L, MACKLIN J W, PARKER L A, ZHU H. Raman excitationspectra of aggregate modes of 2,2-cyanine [J]. Chemical Physics Letters. 1990, 169:564-568.
    [37] AKINS D L, MACKLIN J W, ZHU H. Fourier transform Raman spectraand the structure of adsorbed 2,2cyanine [J]. The Journal of Physical Chemistry. 1991,95:793-798.
    [38] AKINS D L, ZHU H, GUO C. Absorption and Raman scattering byaggregated meso-tetrakis(p-sulfonatophenyl)porphine [J]. The Journal of PhysicalChemistry. 1994, 98:3612-3618.
    [39] REN B, TIAN Z, GUO C. Confocal microprobe Raman spectroscopy forinvestigating the aggregation process at the liquid/air interface [J]. Chemical PhysicsLetters. 2000, 328:17-22.
    [40] SAINI G S S, SHARMA S, KAUR S, et al. Infrared spectroscopic studiesof free-base tetraphenylporphine and its dication [J]. Spectrochemica Acta Part A.2004, 61:3070-3076.
    [1] ALLEN C M, SHARMAN W M, VANLIER J E. Current status ofphthalocyanines in the photodynamic therapy of cancer[J]. Journal of Porphyrins andphthalocyanines, 2001, 5:161-169.
    [2] RAY P C, LESZCYNSKI J. Nonlinear optical properties of highlyconjugated push–pull porphyrin aggregates: Role of intermolecular interaction [J].Chemical Physics Letters. 2006, 419:578-583.
    [3] STICH M I J, NAGL S, WOLFBEIS O S, et al. A dual luminescent sensormaterial for simultaneous imaging of pressure and temperature on surfaces [J].Advanced Functional Materials [J]. 2008, 18:1399-1406.
    [4] HUANG X, ZHU C, ZHANG S, et al. Porphyrin-dithienothiopheneπ-conjugated copolymers: synthesis and their applications in field-effect transistorsand solarcells [J]. Macromolecules, 2008, 41:6895-6902.
    [5] SENGEMO, FAKEZAS M, NOTARAS EG A. NonlinearOptical ropertiesof Porphyrins [J]. Advanced Materials. DOI:10.1002/adma.200601850
    [6] WANG Z., Li Z, MEDFORTH C J, SHELNUTT J A. Self-Assembly andSelf-Metallization of Porphyrin Nanosheets [J] .Journal of the American ChemistrySociety. 2007, 129:2440-1441.
    [7] LIU Z ,ZHU Y, CHEN S , et al. Nonlinear Absorption and NonlinearRefraction of Self-Assembled Porphyrins [J]. The Journal of Physical Chemistry B,2006, 110:15140-15145.
    [8] YOON Z, KWON J, YOON W, et al. Nonlinear Optical Properties andExcited-State Dynamics of Highly Symmetric Expanded Porphyrins [J]. Journal ofthe American Chemistry Society. 2006, 128:14128-14134.
    [9] VANDERBOOM T, HAYES R T, ZHAO Y,et al. Charge Transport inPhotofunctional Nanoparticles Self-Assembled from Zinc5,10,15,20-Tetrakis(perylenediimide)porphyrin Building Blocks [J]. Journal of theAmerican Chemistry Society. 2002, 124:9582-9590.
    [10] LAGOUDAKIS P G, DESOUZA M M, SCHIINDLER F, et al.Experimental Evidence for Exciton Scaling Effects in Self-Assembled MolecularWires [J].Physical Review Letter. 2004, 93:257401-257404.
    [11] LI L ,YANG C ,CHEN W , LIN K. Towards the Development of ElectricalConduction and Lithium-Ion Transport in a Tetragonal Porphyrin Wire [J].Angewandte Chemie International Edition. 2003, 42:1505-1508.
    [12] AKINS D L, ZHU H, GUO C.Aggregation of tetraaryl-substitutedporphyrins in homogeneous solution [J]. The Journal of Physical Chemistry. 1996,100:5420-5425.
    [13] AKINS D L, ZHU H,OZCELIK S, GUO C. Fluorescence decay kineticsand structure of aggregated tetrakis(p-sulfonatophenyl)porphyrin [J]. The Journal ofPhysical Chemistry. 1996, 100:14390-14396.
    [14] REN B, TIAN Z, GUO C. Confocal microprobe Raman spectroscopy forinvestigating the aggregation process at the liquid/air interface [J]. Chemical PhysicsLetters. 2000, 328:17-22.
    [15] AKINS D L. Theory of Raman scattering by aggregated molecules [J]. TheJournal of Physical Chemistry. 1986, 90:1530-1534.
    [16] DELUCA G, ROMEO A, SCOLARO L M. Role of counteranions inacid-induced aggregation of isomeric tetrapyridylporphyrins in organic solvents [J],The Journal of Physical Chemistry B.2005, 109:7149-7158.
    [17] DELUCA G, ROMEO A, SCOLARO L M. Counteranion dependentprotonation and aggregation of tetrakis(4-sulfonatophenyl)porphyrin in organicsolvent [J]. The Journal of Physical Chemistry B.2006, 110:7309-7315.
    [18] DELUCA G, ROMEO A, SCOLARO L M. Aggregation properties ofhyperporphyrins with hydroxyohenyl substituted [J]. The Journal of PhysicalChemistry B.2006, 110:14135-14141.
    [19] SAINIG S S. Resonance Raman study of free-base tetraphenylporphine andits dication [J]. Spectrochemica Acta PartA. 2006, 64:981-986.
    [20] SAINI G S S, SHARAMA A, SINGH S, et al. Resonance Raman andelectronic absorption study of free-base tetraphenylporphine diacid dispersed inpolymethylcyanoacrylate [J]. Journal of Raman Spectroscopy, 2007, 48:225-234.
    [21] LI X, CZERNUSZEWICZ R S, KINCAID J R, et al. Consistent porphyrinforce field. 1. normal-mode analysis for nickel porphine and nickeltetraphenylporphine from resonance Raman and infrared spectra and isotope shifts [J].The Journal of Physical Chemistry. 1990, 94:31-47.
    [22] LI X, CZERNUSZEWICZ R S, KINCAID J R, et al. Consistent porphyrinforce field. 2. nickel octaethylporphyrin skeletal and substituent mode assignmentsfrom 15N, meso-d4, and methylene-d16 Raman and infrared isotope shifts [J]. TheJournal of Physical Chemistry. 1990, 94:48-61.
    [23] LI X, ZGUERSKI M Z. Porphine force field: in-plane normal modes offree-base porphine. Comparisonwith metalloporphines and structural impllcations [J].The Journal of Physical Chemistry. 1991, 95:4268-4287.
    [24] XU L, LI Z, TIAN W, et al. Density functional theory studies on the Ramanand IR spectra of meso-tetraphenylporphyrin diacid [J]. Spectrochemica Acta Part A.2005, 62:850-862.
    [25].陈东明,李晓原,尤乃亭等。四-(对-磺酸基)卟啉二酸(H42+TSPP)分子聚集体的共振喇曼光谱研究[J]。高等学校化学学报。1999, 20(7):1097-1101.
    [26] LI Z, WANG H, LU T, et al. Density functional theory studies on theelectronic and vibrational spectra of octaethylporphyrin diacid [J]. SpectrochemicaActa PartA. 2007, 67:1382-1397.
    [27] OZCELIK S, AKINS D L. Superradiance of aggregated thiacarbocyaninemolecules [J]. The Journal of Physical Chemistry B. 1999, 103:8926-8929.
    [28] MAITI N C, MAZUMMDAR S, PERIASAMY N. J- and H-aggregates ofporphyrin-surfactant complexes: time-resolved fluorescence and other spectroscopicstudies [J]. The Journal of Physical Chemistry B.1998, 102:1528-1538.
    [29] ZHAO L, MA R, LI J, et al. J- and H-aggregates of5,10,15,20-Tetrakis-(4-sulfonatophenyl)-porphyrin and interconversion inPEG-b-P4VP micelles [J]. Biomacromolecules. 2008, 9:2601–2608.
    [30].GASYNA Z, BROWETT W R, STILLMAN M J. pi.-Cation-radicalformation following visible light photolysis of porphyrins in frozen solution usingalkyl chlorides or quinones as electron acceptors [J] Inorganic Chemistry, 1985,24:2440-2447.
    [31] GOUTERMAN M. Spectra of porphyrins [J]. Journal of MolecularSpectroscopy. 1961, 6:138-163.
    [32].OHNO O, KAIZU Y, KOBAYASHI H. J-aggregate formation of awater-soluble porphyrin in acidic aqueous media [J]. The Journal of Chemical Physics.1993, 99:4128-4139.
    [33].CHOI M Y, POLLARD J A, WEBB M A,MCHALE J L.Counterion-Dependent Excitonic Spectra of Tetra(p-carboxyphenyl)porphyrinAggregates in Acidic Aqueous Solution [J]. Journal of the American ChemistrySociety .2003, 125:810-820.
    [34].OKADA S, SEGAWA H. Substituent-Control Exciton in J-Aggregates ofProtonated Water-Insoluble Porphyrins [J]. Journal of the American ChemistrySociety .2003, 125:2792-2796.
    [35].ARAMAKI S., HAMAGUCHI H, TASUMI M. Resonance Ramanscattering with a forbidden but vibronically allowed electronic transition: Excitationprofiles of combinations and overtones of coppertetraphenylporphyrin in the Q-bandresonance [J]. Chemical Physics Letter. 1983, 96:555-559.
    [36].KOZLOWKI P M, JARZECKI A A, PULAY P, LI X, ZGIECKI M Z.Vibrational Assignment and Definite Harmonic Force Field for Porphine. 2.Comparison with Nonresonance Raman Data [J]. The Journal of Physical Chemistry.1996, 100:13985-13992.
    [37] CHEN D, HE T, ZHU H, GUO C. Resonance Raman Spectra andExcited-State Structure of Aggregated Tetrakis(4-sulfonatophenyl)porphyrin Diacid[J]. The Journal of Physical Chemistry A. 2001,105:3981-3988.
    [38] WINSLOW S, CAUGHEYB R M, CHARLES W, GOUTERMANM.Electronic spectra of substituted metal deuteroporphyrins [J].Journal of MolecularSpectroscopy. 1965, 16:451-463.
    [1] LIU W, ZHENG Z, ZHU R, et al. Effect of Pressure and Solvent on RamanSpectra of All-trans-β-Carotene [J]. The Journal of Physical Chemistry A. 2007, 111:10044-10049.
    [2] LIPINSKA-KALITA K E, PRAVICA M G, NICOL M. Raman ScatteringStudies of the High-Pressure Stability of Pentaerythritol Tetranitrate, C(CH2ONO2)4[J]. The Journal of Physical Chemistry B. 2005, 109:19223-19227.
    [3] KAVITHA G, NARAYAYANA C. Raman Scattering Studies on n-HeptaneunderHigh Pressure [J]. The Journal of Physical Chemistry B. 2006, 110:8777-8781.
    [4] KAVITHA G, NARAYAYANA C. Pressure-Induced Structural Transition inn-Pentane: A Raman Study [J]. The Journal of Physical Chemistry B. 2007, 111:8003-8008.
    [5] KAVITHA G, NARAYAYANA C.Raman Spectroscopic Investigations ofPressure-Induced Phase Transitions in n-Hexane [J]. The Journal of PhysicalChemistry B. 2007, 111:14130-14135.
    [6] BANER A, DEB S K. Raman Scattering Study of High-Pressure PhaseTransition in Thiourea [J]. The Journal of Physical Chemistry B. 2007, 111:10915-10919.
    [7] HO Z Z, HANSON R C, LIN S. Studies of resonance Raman scattering:highpressure effects inβ-Carotene [J]. The Journal of Physical Chemistry. 1985, 89:1014-1019.
    [8] LONG Y, ZHANG W, YANG L, YU Y, et al. Pressure-induced structuralphase transition in CaCrO4: Evidence from Raman scattering studies [J]. AppliedPhysics Letters. 2005, 87:181901.
    [9] BARSAN M M, GILSON D F R, REBER C, et al. High-pressuremicro-Raman spectroscopic study of methyltrioxorhenium(VII) [J]. Journal of RamanSpectroscopy. 2006, 37:1321–1326.
    [10] MILGROM L R. The Colours of Life-An Introduction of the Chemistry ofPorphyrins and Related Componds [M]. New York:Oxford University Press, 1997.
    [11] ANZENBACHER P, HUDECEK J. Differences in flexibility of active sitesof cytochromes P450 probed by resonance Raman and UV–Vis absorptionspectroscopy [J].Journal of Inorganic Biochemistry. 2001, 87:209-213.
    [12] PRENONT-SCHWARZ M, BOHLE D S, GILSON D F R. High-pressureinfrared spectroscopic study of the nitric oxide complex of iron(II)-meso-tetraphenylporphyrinate [J]. Inorganica Chimica Acta. 2006, 359:3089-3091.
    [13] POPOV M. Pressure measurements from Raman spectra of stresseddiamondanvils [J]. Journal of Applied Physics. 2004, 95:5509-5513.
    [14] LI X, CZERNUSZEWICZ R S, KINCAID J R, et al. Consistent porphyrinforce field. 1. normal-mode analysis for nickel porphine and nickeltetraphenylporphine from resonance Raman and infrared spectra and isotope shifts [J].The Journal of Physical Chemistry. 1990, 94:31-47.
    [15] LI X, CZERNUSZEWICZ R S, KINCAID J R, et al. Consistent porphyrinforce field. 2. nickel octaethylporphyrin skeletal and substituent mode assignmentsfrom 15N, meso-d4, and methylene-d16 Raman and infrared isotope shifts [J]. TheJournal of Physical Chemistry. 1990, 94:48-61.
    [16] LI X, ZGUERSKI M Z. Porphine force field: in-plane normal modes offree-base porphine. Comparisonwith metalloporphines and structural impllcations [J].The Journal of Physical Chemistry. 1991, 95:4268-4287.
    [17] THIERY M M, BESSON J M. High pressure solid phases of benzene. II.Calculations of the vibration frequencies and evolution of the bonds in C6H6and C6D6up to 20 GPa [J]. The Journal of Chemical Physics. 1992, 96:2633-2654.
    [18] ELLENSON W D, NICOL M. Raman spectra of solid benzene underhighpressure [J]. The Journal of Chemical Physics. 1974, 61:1380-1389.
    [19] MA S, LI Z, LIU R. Studies on the structure of N-protonated porphyrin.Part II. The effects of the substituting groups m-(p-carboxylatophenyl) andm-(p-nitrophenyl) [J]. Journal of Molecular Structure (Theochem). 2000, 528:121-131.
    [20] CHEN D, LIU X, HE T, LIU F. Density functional theory investigation ofporphyrin diacid: electronic absorption spectrum and conformational inversion [J].Chemical Physics. 2003, 289:397-407.
    [21] DELUCA G, ROMEO A, SCOLARO L M, et al. Evidence forTetraphenylporphyrin Monoacids [J]. Inorganic Chemistry. 2007, 46:5979-5988.
    [22] STONE A, FLEISCHER E B. The molecular and crystal structure ofporphyrin diacids [J]. Journal of the American Chemistry Society. 1968, 90:2735-2748.
    [23] KATSONIS N, VICARIO J, KUDERNAC T, VISSER J, et al.Self-Organized Monolayer of meso-Tetradodecylporphyrin Coordinated to Au(111)[J]. Journal of the American Chemical Society. 2006, 128:15537-15541.
    [24] AUWARTER W, WEBER-BARGIONI A, RIEMANN A, SCHIFFRIN A.Self-assembly and conformation of tetrapyridyl-porphyrin molecules on Ag(111) [J].The Journal of Chemical Physics. 2006, 124:194708.
    [25] ECIJA D, TRELKA M, URBAN C, et al. Molecular conformation,organizational chirality, and iron metalation of meso-tetramesitylporphyrins oncopper(100) [J]. The Journal of Physical Chemistry C. 2008, 112:8988-8994.
    [26] XU L, LI Z, TAN W, et al. Density functional theory studies on the Ramanand IR spectra of meso-tetraphenylporphyrin diacid [J]. Spectrochimica Acta Part A.2005, 62:850-862.
    [27] SCARSO A, ONAGI H, REBEK J. Mechanically regulated rotation of aguest in a nanoscale host [J]. Journal of the American Chemistry Society. 2004, 126:12728-12729.
    [28] KELLY TR, HARSHANID S, SILCA RA [J]. Nature 1999, 401:150-152.
    [29] LEIGH D A, WONG J K Y, OISDEHEZ F, ZERBETTO F [J]. Nature2003,424:174-179.
    [30] JIMENEZ M C, DIETRICH-BUCHECKER C, SAUVAGE J P. ArtificialMolecular Machines [J]. Angewandte Chemie International Edition. 2000, 39:3388-3392.
    [31] KIM H, LEE E, PARK H, LEE, M. Dynamic Extension?contraction motionin supramolecularsprings [J]. Journal of the American Chemistry Society. 2007, 129:10994-10995.
    [32] HODGKISS JM., CHANG C J, PISTORIO B J, NOCERA D G. Transientabsorption studies of the pacman effect in spring-loaded diiron(III)μ-oxobisporphyrins [J]. Inorganic Chemistry. 2003, 42:8270-8277.
    [1] DOLPHIN D. The Porphyrins [M]. New York:Academic Press, 1979.
    [2] TOMAS D W, MARTELL A E. Absorption spectra of para-substitutedtetraphenylporphines [J]. Contribution of the Department of Chemistry of ClarkUniversity. 1955, 1338-1343.
    [3] MIYAKE K, HORI Y, IKEDA T, et al. Alkyl chain length dependence of theself-organized structure of alkyl-substituted phthalocyanines [J]. Langmuir2008, 24:4708-4714.
    [4] BRITTLE S, RICHARDSON T H, DUNBAR A D F, et al. AlkylamineSensing using langmuir-blodgett films of n-alkyl-N-phenylamide-substituted zincporphyrins [J]. The Journal of Physical Chemistry B. 2008, 112:11278–11283.
    [5] DUBAR A D F, RICHARDSON T H, MCNAUGHTON A J, et al.Investigation of free base, Mg, Sn, and Zn substituted porphyrin LB films as gassensors for organic analytes [J]. The Journal of Physical Chemistry B. 2006, 110:16646-16651.
    [6] LEMKE C, DREYBRODT W, SHELNUTT J A, et al. Polarized ramandispersion spectroscopy probes planarand non-planardistortions of Ni(II) porphyrinswith different peripheral substituents [J]. Journal of Raman Spectroscopy. 1998, 29:945-953.
    [7] WALSH P J, GORDON K C, WAGNER P, OFFICER D L. ResonanceRaman studies of b-substituted porphyrin systems with unusual electronic absorptionproperties [J]. ChemPhysChem. 2006, 7:2358-2365.
    [8] HOSOMIZU K, OODOI M, UMEYAMA T, et al. Substituent effects ofporphyrins on structures and photophysical properties of amphiphilic porphyrinaggregates [J]. The Journal of Physical Chemistry B 2008, 112:16517–16524.
    [9] SHELNUTT JA, ORTIZ V. Substituent effects on the electronic structure ofmetaiioporphyrins: a quantitative analysis in terms of four-orbital-model parameters[J]. The Journal of Physical Chemistry. 1985, 89:4133-4139.
    [10] HU S, LIN C, BLACKWOOD M E, et al. Resonance Raman structuralcharacterization ofβ-Substituted metalloporphyrinπ-anion radicals: nature of theJahn-TellerEffect[J]. The Journal of Physical Chemistry. 1995,99:9694-9701.
    [11] ADLER A D, LONGO F R, FINARELLI J D, et al. A simplified synthesisfor meso-tetraphenylporphine [J]. The Journal of Organic Chemistry. 1967, 32:476-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700