用户名: 密码: 验证码:
聚丙烯改性及其发泡行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯发泡材料具有优异的机械性能、突出的耐高温稳定性及耐环境应力开裂性、良好的降解性能,因此其正逐渐取代其他发泡材料而被广泛应用。但是由于聚丙烯自身结构特点,使其发泡过程很难控制,从而影响了工业化的进程。本文诣在确定可行的聚丙烯发泡材料制备工艺并对聚丙烯进行共混改性以提高其发泡性能,为工业化生产聚丙烯发泡材料作理论上和实验上的研究探索,全文分为三部分。
     首先,对市售产品EPP珠粒进行表征分析。采用反光显微镜、扫描电子显微镜(SEM)、浸渍法、红外光谱仪(FT-IR)以及二甲苯抽提等方法对其泡孔形貌、密度、成分以及交联度等进行测定。结果表明,EPP珠粒为非交联闭孔泡沫材料,密度0.01~0.04g/cm3,发泡剂为惰性气体CO2。
     其次,探索发泡工艺。三种发泡方法:直接挤出化学发泡法、两步化学发泡法、scCO2釜压法。利用扫描电子显微镜(SEM)、浸渍法对产品泡孔形貌、泡孔尺寸、泡孔密度以及材料密度、发泡倍率进行测定。结果表明,只有scCO2釜压法实现了普通PP的发泡,不添加任何添加剂,且材料外观规整,力学性能优异,泡孔密度高,发泡后材料最低密度达到0.1g/cm3以下,可控发泡倍率稳定在1~10倍,最高发泡倍率12~16倍,使用该方法对HMSPP进行发泡,最高发泡倍率可达31倍。并探讨了处理时间、温度、压力、卸压速度、冷却方式等因素对发泡倍率和泡孔结构的影响。确定了最佳发泡温度及其对应的压力为187~195℃、18.3~19.0MPa。
     最后,对聚丙烯进行共混改性并探讨其改性后的发泡性能。采用单螺杆挤出机、开炼机、造粒机使用LDPE、HDPE对PP进行共混改性,改性后粒料通过RLS型熔体流动速率测定仪、DSC测试其熔体流动速率(MFR)、熔点;采用scCO2釜压法进行发泡实验,通过扫描电子显微镜(SEM)、浸渍法对产品泡孔形貌、泡孔尺寸、泡孔密度以及材料密度、发泡倍率进行测定。结果表明,随着LDPE、HDPE的加入,PP的MFR先降低后升高,熔点先升高后降低,在含量为30%时,MFR出现极小值、熔点出现极大值;泡孔密度更高,未出现泡孔合并、坍塌现象,说明加入PE树脂对PP进行共混改性可实现其发泡能力的优化。
Foamed polypropylene will be used widely in many fields such as packing and heat insulation material and so on, because of its outstanding mechanical properties, excellent thermal stability, well enduring environmental stress crack and good degradation performance. But the structural characteristic of polypropylene makes its foaming course hard to be controlled and this has affected the process of its large-scale industrialisation. This research is a preparative for the project of "Preparation of Expandable Polypropylene Particles " of XIN DA Co. Lit. of Heilongjiang province. The paper is divided into three parts.
     (1) Characterization of EPP purchased from some foreign-funded enterprises. Reflective microscope, scanning electron microscopy (SEM), dipping method, FT-IR and extraction by dimethylbenzene were used for characterizing the cell morphologies、density、component and crosslinking degree. The results showed that the bubbles was closed, the density was between 0.01g/cm3 to 0.04g/cm3, and the particles were non-crosslinked which may be expanded by CO2. Basesed on the information we summed up the preparative methods of EPP: extrusion foaming processes and batch foaming process.
     (2) The preparation technology of foamed polypropylene. Three methods were used for foaming: direct extrusion foaming processes with chemical foaming agent, two steps foaming processes with chemical foaming agent and batch foaming process with super critical carbon dioxide (scCO2). The cell morphologies were scanned by SEM, and densities were measured by dipping method. As a result, the batch foaming process with scCO2 was the only technology for foaming common PP successfully. And in this way foaming PP product was obtained with active surface, high bubble density, outstanding mechanical properties and low density of under 0.1g/cm3. Then the effect of saturation time, foaming temperature, saturation pressure and depressurization rate on the foam structure and volume expansion ratio were investigated. The likely best condition of saturation time, foaming temperature and saturation pressure was determined.
     (3) Blending modification of PP and its foamability. The foamabilities of common PP and HMSPP were investigated firstly. The result showed that the likely foaming zone of HMSPP was wider than that of common PP. And the expansion ratio of HMSPP was also higher than that of common PP. So LDPE, HDPE were used to modified the property of PP. Then LDPE/PP, HDPE/PP blends were foamed and their MFR and melting point were investigated. Experimental results showed that the LDPE/PP,HDPE/PP blends had similar variation patterns in respect of MFR and melting point and cellular structure. For all blends, the MFR initially lowered and then heightened, the PP melting point initially heightened and then lowered. And all had better cellular structure then pure PP. At the PE content of 30%, the bubble density was the highest.
引文
1熊丽君,吴璧耀.发泡聚丙烯材料的研究生产现状.化工新型材料. 2004, 32(2):8~11
    2陈佰全,戴文利,汤红霞.聚丙烯发泡材料的研究进展.塑料制造. 2006, 12:55~58
    3刘本刚,张玉霞,王向东等.聚丙烯发泡材料的应用及研究进展.塑料制造. 2006, 8:82~86
    4何继敏.交联挤出发泡聚丙烯的开发.塑料科技. 1999, 5:11~13
    5李春艳,何继敏.提高发泡聚丙烯熔体强度的研究进展.工程塑料应用. 2008, 36(2):76~78
    6张京珍.泡沫塑料成型加工.化学工业出版社. 2005.6:5~252
    7王向东.不同聚丙烯发泡体系的挤出发泡行为研究.北京化工大学博士研究生论文. 2008:1~2
    8 P. Nello. Polypropylene Handbook. 2nd Edition.胡友良等译.化学工业出版社. 2008.4:398~436
    9何继敏.聚丙烯发泡材料的应用现状.工程塑料应用. 2002, 30(6):54~58
    10 X. Zhe, G. Z. Wu and S. R. Huang. Preparation of Microcellular Cross-linked Polyethylene Foams by A Radiation and Supercritical Carbon Dioxide Approach. J. of Supercritical Fluids. 2008, 47(2):281~289
    11 A. B. Lugaoa, H. Otaguroa and D. F. Parra. Review on the Production Process and Uses of Controlled Rheology Polypropylene—Gamma Radiation Versus Electron Beam Processing. Radiation Physics and Chemistry. 2007, 76(11-12):1688~1690
    12 D. Graebling. Synthesis of Branched Polypropylene by A Reactive Extrusion Process. Macromolecules. 2002, 35(12):602~610
    13 D. Auhl, J Stange and H. Munstedt. Long-chain-branched Polypropylenes by Electron Beam Irradiation and Their Rheological Properties. Macromolecules, 2004, 37(25):94652~9472
    14 D. Saeed, B. Chul and P. M. Kortschot. Processing and Characterization of Microcellular Foamed High-Density Polyethylene/lsotactic Polypropylene Blends. Polymer Engineering and Science. 1998, 38(7):1205~1214
    15 P. Rachtanapun, S. E. Selke and L. M. Matuana. Microcellular Foam of Polymer Blends of HDPE/PP and Their Composites with Wood Fiber. Journalof Applied Polymer Science. 2003, 88(12):2842~2850
    16 P. Rachtanapun, S. E. Selke, L. M. Matuana. Effect of the High-Density Polyethylene Melt Index on the Microcellular Foaming of High-Density Polyethylene/Polypropylene Blends. Journal of Applied Polymer Science. 2004, 93(1):364~371
    17张平,周南桥,黄目张等.不同聚丙烯材料共混的微孔发泡成型研究.塑料. 2007, 36(5):1~7
    18 M. S. Susane, M. M. Laurent. Relationship Between Cell Morphology and Impact Strength of Microcellular Foamed High-density Polyethylene/Polypropylene Blends. Polymer Engineering and Science. 2004, 44(8):1551~1559
    19 O. Rikuo, F. Takenori, T. Ryoichi, et al. A New Method for Producing High Melt Strength Poly(propylene) with a Reactive Extrusion. Macromol Mater Eng. 2005, 290(12):1227~1234
    20崔小明.国外聚丙烯新产品的研究和开发.广东塑料. 2004, 8(121):1~4
    21高熔体强度聚丙烯的研究与应用现状.中国化工信息网. 2008年9月12日
    22 E. David. Handbook of Polymer Foams.周南桥,彭响方等译.化学工业出版社. 2006.7: 169~197
    23 J. R. Cousins, F. Domas. Proceedings of Cellular Polymers Conference. London, UK. 1991:34
    24贾秀峰,马兹,孙颜文等.国内外聚丙烯发泡材料的发展概况.化工新型材料. 2001, 8(8):1~4
    25亿曼纽尔·米歇尔·德雷特,赫维·约瑟夫·吉斯兰.发泡聚丙烯颗粒组合物.中国专利: 02812369.7
    26桥本圭一,平晃畅,佐佐木秀浩.发泡聚丙烯树脂颗粒及其制备方法.中国专利: 200410063190.8
    27陈乐怡.发泡聚烯烃技术进展.中国塑料. 1990, 4(4):9
    28刘涛,张薇,张师军.高发泡倍率聚丙烯泡沫材料的研制.合成树脂及塑料. 2005, 22(6):24~27
    29张薇,张师军,刘涛.一种聚丙烯发泡预混料及其制备方法.中国专利: 200410086290.2
    30乔金梁,魏根栓,张晓红.一种辐照交联发泡聚丙烯材料及其制备方法.中国专利: 00129762.7
    31高建明,张晓红,黄帆等.一种高熔体强度聚丙烯的制备方法.中国专利: 200610113313.3
    32 X. L. Jiang, T. Liu, Z. M. Xu. Effects of Crystal Structure on the Foaming of Isotactic Polypropylene using Supercritical Carbon Dioxide as a Foaming Agent. J. of Supercritical Fluids. 2009, 48(2):167~175
    33万君,樊高明,王加存等.聚丙烯发泡材料及其制造方法.中国专利: 200710057856.2
    34钱敏伟,信春玲,郭奕崇等.超临界CO2发泡聚丙烯挤出工艺研究.工程塑料应用. 2007, 35(3):23~26
    35杨淑静,宋国君,赵云国等.引发剂对于PP/LDPE反应挤出共混改性效果的影响.现代化工. 2007, 6(S1):224~227
    36杨淑静,宋国君,赵云国等.一步法硅烷接枝交联改性均聚型聚丙烯的研究.塑料. 2007, 36(1):91~95
    37鞠伟,王雪梅.聚烯烃树脂结构对其熔体强度的影响.齐鲁石油化工. 2008, 36(1):4~7
    38许治国,石耀刚.发泡剂AC分解动力学研究.橡胶工业. 2007, 54(2):80~84
    39陈浩,赵景左,刘娟等.泡沫塑料发泡剂的现状及展望.塑料科技. 2009, 37(2):68~72
    40赵良知,李兵.泡沫塑料发泡剂的研究进展.塑料科技. 2009, 37(3):94~96
    41佐佐木秀浩,平晃畅等.发泡聚丙烯树脂珠粒及其生产工艺.中国专利: 01819174.6
    42 K. C. Khemani. Polymeric Foams. American Chemical Society, Washington D.C.1997
    43 A. Surat, F. Eita, H. Yusuke, et al. Measurement and Prediction of Diffusion Coefficients of Supercritical CO2 in Molten Polymers. Polymer Engineering and Science. 2004, 44(10):1915~1924
    44 Z. M. Xu, X. L. Jiang, T. Liu, et al. Foaming of Polypropylene with Supercritical Carbon Dioxide. Journal of Supercritical Fluids. 2007, 41(2): 299~310
    45 S. Doroudiani, C. B. Park, M. T. Kortschot. Effect of the Crystallinity and Morphology on the Microcellular Foam Structure of Semicrystalline Polymers. Polym. Eng. Sci. 1996, 36(21):2645~2662
    46 K. Taki. Experimental and Numerical Studies on the Effects of Pressure Release Rate on Number density of Bubbles and Bubble Growth in a Polymeric Foaming Process. Chemical Engineering Science. 2008, 63(14):3643~3653
    47信春玲,何亚东,李庆春.影响聚丙烯发泡倍率和泡孔结构的主要工艺参数研究.塑料. 2008, 37(2):1~7
    48傅志红,彭玉成.泡沫塑料熔体粘度的研究.中国塑料. 2000, 14(4):29~33
    49 B. Li, X. Y. Zhu, G. H. Hu, et al. Supercritical Carbon Dioxide-Induced Melting Temperature Depression and Crystallization of Syndiotactic Polypropylene. Polymer Engineering and Science. 2008, 48(8):1609~1614
    50 Z. G. Lei, H. Ohyabu, Y. Sato, et al. Solubility, Swelling Degree and Crystallinity of Carbon Dioxide–polypropylene System. J. of Supercritical Fluids. 2007, 40(3):452~461
    51 F. C. Chiu, S. M. Lai, C. M. Wong, et al. Properties of Calcium Carbonate Filled and Unfilled Polystyrene Foams Prepared Using Supercritical Carbon Dioxide. Journal of Applied Polymer Science. 2006, 102(3):2276~2284
    52 B. Li, G. H. Hu, G. P. Cao, et al. Effect of Supercritical Carbon Dioxide-assisted Nano-scale Dispersion of Nucleating Agents on the Crystallization Behavior and Properties of Polypropylene. J. of Supercritical Fluids. 2008, 44(3):446~456
    53 W. T. Zhai, H. Y. Wang, J. Yu. Foaming Behavior of Isotactic Polypropylene in Supercritical CO2 Influenced by Phase Morphology via Chain Grafting. Polymer. 2008, 49(13-14):3146~3156
    54 R. G. Liao, W. Yu and C. X. Zhou. The Formation ofγ-Crystal in Long-Chain Branched Polypropylene Under Supercritical Carbon Dioxide. Journal of Polymer Science: Polymer Physics. 2008, 46(5):441~451
    55 P. Zhang, N. Q. Zhou, Q. F. Wu, et al. Microcellular Foaming of PE/PP Blends. Journal of Applied Polymer Science. 2007, 104(6):4149~4159
    56 G. Kotzev, S. Djoumaliisky and M. Krasteva. Effect of Sample Configuration on the Morphology of Foamed LDPE/PP Blends Injection Molded by a Gas Counterpressure Process. Macromolecular Materials and Engineering. 2007, 292(6):769~779
    57高建明,张晓红,刘轶群等.高熔体强度PP的制备研究.合成树脂及塑料. 2002, 19(5):30~34
    58 S. Jose, A. S. Aprem, B. Francist, et al. Phase Morphology, Crystallisation Behavior and Mechanical Properties of Isotactic Polypropylene/High Density Polyethylene Blends. European Polymer Journa. 2004, 40(9):2105~2115
    59 X. L. Jiang, T. Liu, Z. M. Xu, et al. Effects of Crystal Structure on the Foaming of Isotactic Polypropylene Using Supercritical Carbon Dioxide as a Foaming Agent. Journal of Supercritical Fluids. 2009, 48(2):167~175
    60 W. M. Ma, J. Yu and J. S. He. Stability of Form II of Syndiotactic Polypropylene Confirmed by Cold and Melt Crystallization in Supercritical Carbon Dioxide. Polymer. 2007, 48(6):1741~1748
    61 W. Kaewmesri, P. Rachtanapun and J. Pumchusak. Effect of Solvent Plasticization on Polypropylene Microcellular Foaming Process and Foam Characteristics. Journal of Applied Polymer Science. 2008, 107(1):63~70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700