用户名: 密码: 验证码:
超临界流体对PBO纤维表面改性处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过液晶纺丝得到的聚对苯撑苯并二噁唑(PBO)纤维具有高比强度、高比模量、低密度、耐烧蚀、耐高温等优异性能,因而是一种理想的复合材料增强体。但是由于其表面光滑,活性官能团含量少,PBO纤维与树脂之间的界面粘接性能较差,因此对其进行表面改性是非常有必要的。
     鉴于超临界流体临界区的特性,选用其作为介质对PBO纤维进行处理改性实验。本文主要通过两个方面进行研究:一是通过超临界二氧化碳(scCO2)临界区的处理使PBO纤维的本体强度得到增强;二是通过超临界苯胺+环己烷体系处理使PBO纤维界面粘接性能增加。
     实验首先通过热力学的方法确定混合介质的临界操作参数,并通过控制临界区域内波动频率和波动幅度来控制实验的可重复性。经过scCO_2对纤维在临界区进行处理后,发现处理后的PBO纤维的单丝拉伸强度比未处理提高9.71%,拉伸模量提高6.54%;热失重(TG)的分析表明处理后PBO纤维的热分解温度由650℃提高到700℃,等温TG反映出处理后的PBO纤维热分解速率降低一半并且最终残留率提高2.2倍,由此可见处理后的PBO纤维的耐热性能得到了提高;XRD表明纤维的结晶度提高3.18%,处理样的晶粒比未处理样的晶粒平均增大9.69%,由此可见scCO2的处理可以提高了纤维的结晶度,使晶粒长大,从而使纤维的力学性能和耐热性能提高。为了验证scCO2处理方法的普适性,实验对碳纤维T700进行了处理,发现处理样的拉伸强度比未处理的提高13.39%,拉伸强度与拉伸模量的分散性减小,从而证明了scCO2临界区处理是一种对纤维本体强度增强的低温后处理方法,该方法具有很大的实际应用价值。通过微观分析发现拉伸强度的增加主要是由于平均再取向次数增加所致,并通过模型建立了通过结晶度计算模量的经验公式。
     实验还研究了表面涂层对纤维表面粘接性能的影响,在此基础上又研究了scCO2处理对PBO纤维表面粘接性能的影响,发现总体上均为降低,但在scCO2中引入氨水后发现纤维的粘接性能与抽提处理相比有所提高。此后实验研究了碱性介质体系超临界苯胺+环己烷处理对PBO纤维表面粘接强度的影响。经超临界苯胺+环己烷处理的PBO纤维制备的复合材料再经scCO_2后处理之后ILSS值由原来的42.52MPa最高提高到58.84MPa,提高38.38%,通过单丝拔出仪测试得到的IFSS值由未处理样的38.95MPa提高到63.73MPa,平均提高63.62%。通过处理前后纤维与环氧树脂的接触角降低6.3°,表明环氧树脂在纤维上的浸润性提高,铺展性变好。结合第一方面的研究结果,把scCO2处理作为一种缓释界面应力的后处理方法来应用到复合材料中,最终确定了一条PBO纤维表面处理的可行方案:未处理样→乙醇抽提处理→超临界苯胺+环己烷体系处理→复合材料制备→scCO2后处理。
Poly(p-phenylenebenzobisoxazole)(PBO) fiber obtained by liquid crystal spinning shows superior tensile strength, tensile modulus, excellent thermal stability, and flame resistance with low density, which make PBO an ideal reinforcing materials for fabricating advanced composites. However, the interfacial adhesion between PBO fiber and resin matrix is not satisfied for the practical usage. The composites containing PBO fiber demonstrate the poor adhesion attributing to the chemically inert surface and/or smooth surface of PBO fiber. Therefore, it is necessary to modify the surface of PBO fiber to increase the chemical activity for better properties of composites.
     The supercritical fluid is applied as reaction medium for its special properties in the critical region. This study focuses on two aspects: one is to enhance the strength of PBO fiber by supercritical carbon dioxide (scCO2) treatment; another is to improve the interfacial strength between PBO fiber and resin matrix by treatment in the hybrid system of supercritical aniline and cyclohexane.
     Initially, the critical parameters of supercritical treatment are determined by a thermodynamic method; and the experimental stability is controlled by the vibrate frequency and amplitude. The scCO2 treatment of PBO fiber can improve the tensile strength and the tensile modulus by 9.71% and 6.54% respectively. Furthermore, the thermal stability of PBO fiber after scCO2 treatment has been enhanced base on the results of thermal gravity (TG) analysis, and the decomposing temperature of PBO fiber increases from 650℃to 700℃. The results of XRD illustrate that the crystallinity of PBO fiber increases about 3.18% and the crystalline grain grows about 9.69%, which improve the mechanical properties and thermal resistance of PBO fibers. For verifying the universal applications of this novel method, carbon fiber (T700) has been treated by the same approach in scCO2. The 13.39% increment of tensile strength of T700 has been verified and the statistical data of tensile strength and modulus become much stable. The above results indicate that the scCO2 treatment of fibers is an effective method to enhance the fiber strength. It is also found that, to a large extent, the tensile strength of PBO fiber is affected by the chain reorientation. The relationship between modulus and crystallinity is established.
     The affect of coating on the surface adhesion properties of fiber has been studied and the surface modification of PBO fiber in scCO2 has been investigated. The performance of PBO fiber by scCO2 treatment is negative except using the ammonia and scCO2 hybrid system. By the way, the surface properties of PBO fiber treated in supercritical aniline and cyclohexane have been significantly modified which can reflected by the ILSS and IFSS of PBO composite. The ILSS of PBO/epoxy composites has been improved by 38.38% and the IFSS 63.62% after supercritical aniline and cyclohexane treatment. It is shown more soakage between epoxy and fiber after treated that the contact angle between PBO fiber and epoxy decreased about 6.3°. Combined with the effectiveness in scCO2 treatment for enhancing the fiber strength, a feasible route for surface modification of PBO fiber has been verified which is as following: raw fiber→ethanol clear→surface modification in supercritical aniline and cyclohexane→PBO composite preparation→treatment in scCO2.
引文
1 S,Will. Investigations by Mehler on the PBO-Fiber Zylon from Toyobo. 2002.7.
    2 TOYOBO CO. LTD. PBO fiber Zylon. Technical Information. 2001, 9:3~17
    3 NAVTEC PBO FIBER RIGGING:1~7(www.americanriggingsupply.com. 2009.6.16)
    4 (a)Y. Yamashita, S. Kawabata, S. Okada and A. Tanaka, Mechanical Characteristics of PBO Single Fiber:1~7. (b) Y. Yamashita, S. Kawabata, H. Minami et. al.. Fatigue Property of PBO Fiber
    5 Philippe Colomban, Achraf Aidi-Mounsi and Marie-Hélène Limage, Micro-Raman and IR study of the compressive behaviour of poly(paraphenylene benzobisoxazole) (PBO) fibres in a diamond-anvil cell. Journal of Raman Spectroscopy. 2007, 38: 100~109
    6 S. Bourbigot and X. Flambard. Heat Resistance and Flammability of High Performance Fibres: A Review. Fire Mater. 2002, 26: 155~168
    7黄玉东. PBO超级纤维研究进展及其表面处理.高科技纤维与应用. 2001, 26(1):11~16
    8邢声远. 21世纪超级纤维PBO.北京纺织. 2000, 21(2):60~61
    9王百亚,任鹏刚,杨建奎. PBO纤维复合材料探索研究.固体火箭技术. 2001, 24(4):66~68
    10范大鹏.超临界二氧化碳对碳纤维的表面处理.哈尔滨工业大学理学硕士学位论文. 2006, 6:17~21
    11哈盛章.碳纤维的超临界氨水处理与表征.哈尔滨工业大学理学硕士学位论文. 2006. 6:5~23
    12刘魁.超临界二氧化碳改性碳纤维表面的研究.哈尔滨工业大学理学硕士学位论文. 2007, 7:6~15
    13宋兴来.高温高压氨水改性碳纤维的研究.哈尔滨工业大学理学硕士学位论文. 2007. 7:7~18
    14朱自强.超临界流体技术—原理与应用.化学工业出版社. 2001:1~58
    15彭英利,马承愚.超临界流体技术应用手册.化学工业出版社. 2005:1,11~14,16
    16韩布兴.超临界流体科学与技术.中国石化出版社. 2006:1~15
    17李霞,黄玉东,矫灵艳. PBO纤维的合成及其微观结构.高分子通报. 2004, 4:102~106
    18 S. F. Ran, C. Burger, D. F. Fang et. al. A Synchrotron WAXD Study on the EarlyStages of Coagulation During PBO Fiber Spinning, National Synchrotron Light Source.( http://nslsweb.nsls.bnl.gov/nsls. 2008.6.12)
    19金宁人,黄银华,王学杰.超级纤维PBO的性能应用及研究进展.浙江工业大学学报. 2003, 31(1): 85~86
    20 X. D. Hu, M. B. Polk, S. Kumar et al.. Rigid-Rod Polymers: Synthesis, Processing, Simulation, Structure, and Properties. Macromol. Mater. Eng. 2003, 288(11):823~843
    21 Y. Takahashi. Neutron Structure Analysis and Structural Disorder of Poly(p-phenylene benzobisoxazole). Macromolecules. 1999, 32:4012.
    22 Yachin Cohen, W. Wade Adams. Crystal-solvate phases of poly(p-phenylene benzobisoxazole). Polymer. 1996, 37 (13):2771
    23 T. Kitagawa, H. Murase, K. Yabuki. Morphological study on poly-p-phenylenebenzobisoxazole (PBO) fiber. J. Polym. Sci. Part B. 1998, 36:39~43
    24陈平,张承双,王静等. PBO纤维及其表面改性技术的研究进展.纤维复合材料. 2006, 12(4):51
    25唐久英.高性能PBO纤维及其应用.中国个体防护装备. 2007, 1:22~25
    26李瑞华,曹海琳,黄玉东等. PBO纤维表面等离子体接枝改性研究.材料科学与工艺. 2003, 11(4):396~398
    27乔咏梅,陈立新,吴大云,王斌. PBO纤维表面改性方法的研究.玻璃钢/复合材料. 2006, 6:20~24
    28 S. Yalvac, J. J. Jakubowski, Y. H. So. Improved interfacial adhesion via chemical coupling of cis-polybenzobisoxazole fibre-polymer systems. Polymer. 1996, 20:4657~4659
    29 Xia Li, Yudong Huang, Hailin Cao, Li Liu. Investigation of MWNTs/PBO Nanocomposite Polymerization Mechanism with Model Compound. Journal of Applied Polymer Science. 2007, 105:893~898
    30 Chengjun Zhou, Qixin Zhuang, Zhewen Han. In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes. Polymer. 2008, 49:2520~2530
    31 Kaiqing Luo, Junhong Jin, Guang Li. Improvement of surface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups. Materials Science and Engineering B. 2006, 132:59~63
    32 Richard J. Davies, Manfred Burghammer, and Christian Riekel. Modeling Structural Disorder within Single Poly(p-phenylenebenzobisoxazole) Fibers Using aSubmicrometer Synchrotron Beam. Macromolecules. 2005, 38(8): 3364~3370
    33 C.L. So, R.J. Young. Interfacial failure in poly( p-phenylene benzobisoxazole) (PBO)/epoxy single fibre pull-out specimens. Composites: Part A. 2001, 32:445~455
    34周雪松,王丹丹,王宜等.氩气低温等离子体处理对PBO纤维的表面改性.高分子材料科学与工程. 2005, 21 (2):185
    35 (a) G.M. Wu, Oxygen plasma treatment of high performance fibers for composites, Materials Chemistry and Physics 2004 (85), 81~87 (b) G.M. Wu, C.H. Chang. Modifications of rigid rod poly(1,4-phenylene-cis- benzobisoxazole) fibers by gas plasma treatments. 2007, 81:1159~1163
    36 Joung-Man Park, Dae-Sik Kim, and Sung-Ryong Kim. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability. Journal of Colloid and Interface Science. 2003, 264:431~445
    37 Chengshuang Zhang a, Ping Chen. Surface analysis of oxygen plasma treated poly(p-phenylene benzobisoxazole)fibers. Applied Surface Science. 2008, 254:5776~5780
    38李瑞华,黄玉东,龙军等. PBO纤维表面空气冷等离子体改性.复合材料学报. 2003, 20(3):10
    39李瑞华,曹海琳,黄玉东等. PBO纤维表面等离子体接枝改性研究.材料科学与工艺. 2003, 11(4):396
    40 Dandan Liu, Jian Hu, Yaoming Zhao. Surface Modification of PBO Fibers by Argon Plasma and Argon Plasma Combined with Coupling Agents. Journal of Applied Polymer Science. 2006, 102:1428~1435
    41 (a) C.H. Zhang , Y.D. Huanga, Y.D. Zhao. Surface analysis ofγ-ray irradiation modified PBO fiber. Materials Chemistry and Physics. 2005, 92:245~250; (b)马恒怡,黄玉东,张志谦.γ-射线辐照对PBO纤维结构的影响.高技术通讯. 2001, 12(3):101~106
    42 L. M. Robert, J. M. Steve, F. B. Charles et al. Molecular composite films from polybenzoxazole and crosslinked polymer matrixes. Journal of Polymer Science Part A: Polymer Chemistry. 1997, 35(11):2157~2165
    43 G.M. Wu, Y.T. Shyng, Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment, Composites: Part A. 2004, 35 :1291~1300
    44 G. M. Wu and Y. T. Shyng. Effects of Basic Chemical Surface Treatment on PBO and PBO Fiber Reinforced Epoxy Composites. Journal of Polymer Research. 2005, 12: 93~102
    45王斌,金志浩,丘哲明等.偶联剂对PBO纤维/树脂界面粘接性能的影响.西安交通大学学报. 2002, 36(9):976
    46 J. L. Wang, G. Z. Liang. Enzymatic surface modification of PBO fibres. Surface & Coatings Technology. 2007, 201:4800~4804
    47于渌,郝柏林,陈晓松.边缘奇迹:相变和临界现象.科学出版社. 2005:75~86
    48赫尔曼?哈肯著,凌复华译.协同学—大自然构成的奥秘.上海世纪出版集团, 2005:53
    49徐志康,朱灵燕,封麟先.超临界CO2中的高分子合成研究进展.化学进展. 1998, 10(2):26~29
    50许群,闫海科,韩布兴.超临界流体的性质及其在化学反应中的应用.中国科学院化学研究所博士学位论文. 1999.9: 6~10
    51 S. C. Tueker, M. W. Maddox. The Effect of Solvent Density Inhomogeneities on Solute Dynamics in Supercritical Fluids: A Theoretical Perspective. J. Phys. Chem. B. 1998, 102:2437.
    52 Hirobumi Adachi, Kentaro Taki, Shinsuke Nagamine et al.. Supercritical carbon dioxide assisted electroless plating on thermoplastic polymers. The Journal of Supercritical Fluids. 2009, 49(2): 265~270
    53 J. M. DeSimone, E. E. Maury, Y. Z. Menceloglu et al.. Dispersion Polymerizations in Supercritical Carbon Dioxide. Science. 1994, 265(6):357
    54 D. Beysens, A. Bourgou, P. Calmettes, Experimental determinations of universal amplitude combinations for binary fluids. I. Statics. Physical Review A. 1982, 26(6):3604
    55陈坚,黄志明,翁志学等.二氧化碳/氯乙烯二元体系的泡点、露点和临界点的测定.浙江大学学报(工学版). 2007, 41(4):693~695
    56王乐,吴玉龙,杨明德等.超临界体系相行为实验测定方法研究进展.化学世界. 2008(2):117~120
    57谭飞,沈忠耀,汪家鼎等.超临界流体P-V-T方程的研究.化工学报. 1986, 6:691
    58 Tooru Kitagawa, Kohji Tashiro, Kazuyuki Yabuki. Stress Distribution in Poly-p-phenylenebenzobisoxazole(PBO) Fiber Estimated from Vibrational Spectroscopic Measurement under Tension. I. Stress-Induced Frequency Shifts of Raman Bands and Molecular Deformation Mechanism. Journal of Polymer Science: Part B: Polymer Physics. 2002, 40:1271
    59 G. A. Holmes, K. Rice, C. R. Snyder. A review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure. Journal of Material Science. 2006, 41:4114
    60 S Bourbigot, X Flambard and S Duquesne. Thermal degradation of poly(p-phenylenebenzobisoxazole) and poly(p-phenylenediamine terephthalamide) fibres. Polymer International. 2001, 50:157~164
    61 S. Bourbigot, X. Flambard, F. Poutch. Study of the thermal degradation of high performance fibres—application to polybenzazole and p-aramid fibres. Polymer Degradation and Stability. 2001, 74:283~290
    62 K. Tamargo-Martínez, S. Villar-Rodi, J.I. Paredes, Thermal decomposition of poly( p-phenylene benzobisoxazole) fibres: monitoring the chemical and nanostructural changes by Raman spectroscopy and scanning probe microscopy. Polymer Degradation and Stability. 2004, 86:266
    63 R.J. Davies, S.J. Eichhorn, R.J. Young et al.. Crystallographic texturing in single poly(p-phenylene benzobisoxazole) fibres investigated using synchrotron radiation. Polymer. 2005, 46:1935~1942
    64 R.J. Davies, S.J. Eichhorna, R.J. Young et al.. Crystal lattice deformation in single poly(p-phenylene benzobisoxazole) fibres. Polymer. 2004, 45: 7693~7704
    65 S. F. Ran, B. S. Hsiao, P. M. Cunniff et al., In-Situ Synchrotron WAXD/SAXS Studies of Structural Development during PBO/PPA Solution Spinning. Macromolecules. 2002, 35: 433~439
    66 Y. Takahashi. Neutron Structure Analysis and Structural Disorder of Poly(p-phenylene benzobisoxazole). Macromolecules. 1999, 32:4010~4014
    67 K. Tashiro, J. Yoshino, T. Kitagawa. Crystal Structure and Packing Disorder of Poly(p-phenylenebenzobisoxazole): Structural Analysis by an Organized Combination of X-ray Imaging Plate System and Computer Simulation Technique. Macromolecules. 1998, 31(16):5430~5440
    68 K. Tashiro, H. Hama, J. Yoshino et al.. Confirmation of the Crystal Structure of Poly(p-phenylene benzobisoxazole) by the X-Ray Structure Analysis of Model Compounds and the Energy Calculation. Journal of Polymer Science: Part B: Polymer Physics. 2001, 39:1297
    69 R.J. Daviesa, S.J. Eichhorna, C. Riekelb, R.J. Young. Crystal lattice deformation in single poly(p-phenylene benzobisoxazole) fibres. Polymer. 2004, 45:7693~7704
    70 Zhou Changcheng , Zhang Changrui, Hu Haifeng et al.. Preparation of 3D-Cf/SiC composites at low temperatures, Materials Science and Engineering A. 2008, 488:569~572
    71 K.C. Ho Kingsley, Graham Beamson, Alexander Bismarck. Surface and bulk properties of severely fluorinated carbon fibres. Journal of Fluorine Chemistry.2007, 128:1359~1368
    72 P. D. Condo, D. R. Paul, K. P. Johnston. Glass transitions of polymers withcompressed fluid diluents: type II and III behavior. Macromolecules. 1994, (27):365~371
    73 J. Q. Pham, S. M. Sirard, K. P. Johnston et al.. Pressure, Temperature, and Thickness Dependence of CO2-Induced Devitrification of Polymer Films. Phys. Rev. Lett. 2003, 91(17):175503-1~175503-4
    74 J. M. DeSimone, E. E. Maury, Y. Z. Menceloglu. Dispersion Polymerizations in Supercritical Carbon Dioxide. Science. 1994, 265(7):356~358
    75 K. P. Johnston and P. S. Shah. Making Nanoscale Materials with Supercritical Fluids. Science. 2004, 303(7):482~483
    76马春杰,宁荣昌,李琳,卢忠远.用Weibull方法评价化学介质对PBO纤维统计强度的影响.复合材料学报. 2005, 22(3):16~20
    77 T. Kitagawa, K. Tashiro, K. Yabuki. Stress Distribution in Poly-p-phenylenebenzobisoxazole (PBO) Fiber Estimated from Vibrational Spectroscopic Measurement under Tension. II. Analysis of Inhomogeneous Stress Distribution in PBO Fiber. Journal of Polymer Science: Part B: Polymer Physics. 2002, 40:1284
    78 C. H. Zhang, H. L. Lai, T. Fang et al.. Generation of DC Corona Discharge in Supercritical CO2. Transactions of China Electrotechnical Society. 2007, 22(7):37~40
    79 K. Tamargo-Martínez, S. Villar-Rodil, M. A. Montes-Morán, Surface Characterization of PBO Fibers. Macromolecules. 2003, 36:8670

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700