用户名: 密码: 验证码:
SPae抑制炎症反应和细胞泡沫化的作用及其机制研究暨支架相关Meta分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     血管的慢性炎症贯穿整个动脉粥样硬化(atherosclerosis, AS)的发生发展过程。特别是在动脉粥样硬化早期阶段,内皮功能障碍发挥了主要的作用。在多种致病因素的作用下,血管内皮细胞活化,粘附分子、致炎细胞因子及化学趋化因子的表达增加,协助炎症细胞浸润,造成内皮功能障碍、氧化应激增加,细胞凋亡、脂质沉积,最终导致动脉硬化的发生。
     转录因子κB (NF-κB)活化与动脉粥样硬化的炎症反应发生和发展密切相关。NF-κB是由P50, P52, P65, Re1B和c-Rel等五种分子组成的同源或异源二聚体并参与调控体内病理生理如免疫、炎症、增殖等过程。在细胞处于正常状态时,NF-κB的组成成分限制在胞浆中,而当细胞受到外界刺激后,NF-κB抑制因子(IκBs)被其上游的IκB激酶(IKK)复合物激活,发生磷酸化,随后被泛素化及蛋白酶体降解,最终导致NF-κB(主要是P65/P50二聚体形式)的释放并由胞浆转位至胞核,参与调控目的基因的转录及表达。
     在动脉粥样硬化形成的过程中,氧化应激发挥着重大作用。氧化应激是过量的活性氧与内源性清除活性氧的抗氧化系统间失去平衡。活性氧影响血管内皮的很多功能,如介导血管内皮细胞和平滑肌细胞生长、凋亡和存活等表型调节,内皮依赖的血管扩张,参与血管壁缺失一氧化氮(NO)生物活性而损伤,增加单核细胞粘附和在血管生成中起作用。
     丹皮酚磺酸钠(Sodium Paeonolsilate, SPae)是从中药牡丹皮中分离提取的丹皮酚经磺化、成盐形成的一种新的化合物,具有抗炎、止痛、抗肿瘤、抗脂质过氧化、免疫调节等多重作用,近年有研究表明其具有抗动脉粥样硬化作用,但具体作用机制仍不清楚。因此,我们观察了丹皮酚磺酸钠对血管炎症影响,并探讨其可能的作用机制。
     目的
     1.研究丹皮酚磺酸钠对肿瘤坏死因子α (TNF-a)诱导的单核细胞粘附分子、致炎因子及化学趋化因子受体表达的影响。
     2.研究丹皮酚磺酸钠对TNF-α诱导内皮细胞的NF-κB活性、氧化应激的影响及可能的机制。
     方法
     1)人动脉内皮细胞1human aortic endothelial cells, HAECs)的培养
     人动脉内皮细胞(himan aortic endothelial cells, HAECs)培养在含有10%FBS的ECM培养基中,置于5%C02,37℃培养箱中培养,每三天换一次液,并根据需要进行传代和铺板。
     2)细胞模型的建立
     HAECs与5,10和20ng/ml的fNF-α共孵育24h, Western Blot检测内皮细胞ICAM-1和VCAM-1的表达。
     3)单核细胞粘附实验
     用终浓度为5μmol/L的钙黄绿素-AM (calcein-AM)标记的THP-1细胞接种在HAECs上。避光条件下,37℃共同孵育2h。用PBS轻轻清洗细胞2-3次,去除未粘附的单核细胞,加入2mlPBS,于激光共聚焦显微镜下观察,激发波长485nm,发射波长530nm。
     4) ROS检测
     按照ROS试剂盒操作说明,运用二氯二氢荧光素-乙酰乙酸酯(DCFH-DA)探针检测丹皮酚磺酸钠处理后,细胞内超氧化物的释放情况。
     5) NO、超氧化物歧化酶(SOD)、乳酸脱氢酶(LDH)检测
     按照NO、SOD、LDH试剂盒操作测定一氧化氮、超氧化物歧化酶、乳酸脱氢酶。
     6) Western blot蛋白检测
     检测丹皮酚磺酸钠处理后,细胞间粘附分子-1(ICAM-1)、血管细胞粘附分子-1(VCAM-1)的表达,磷酸化内皮型一氧化氮合酶(p-eNOS),以及NF-κB.p-IKKβ活性。
     7)小鼠在体炎症模型的建立
     本实验采用30μg/kg TNF-α经腹腔注射(i.p.)48h建立小鼠在体炎症模型。
     8)血清中ICAM-1、VCAM-1、白介素8(IL-8)、单核细胞趋化蛋白1(MCP-1)检测
     取动脉血,按照ELISA试剂盒说明,检测血浆中ICAM-1、VCAM-1、IL-8、MCP-1水平。
     免疫组化
     麻醉小鼠,取出胸主动脉,蔗糖梯度溶液中脱水,石蜡包埋组织,石蜡切片机切片,主动脉按冠状切面切取厚度为4μm的组织切片,-80℃保存。按照操作步骤进行ICAM-1和VCAM-1的组织染色。
     结果
     1.丹皮酚磺酸钠能够抑制TNF-α诱导的ICAM-1和VCAM-1的表达,减少活性氧簇(ROS)释放,增加NO、SOD的生成。
     2.丹皮酚磺酸钠上调TNF-α诱导的内皮细胞eNOS磷酸化水平和降低NF-κB活性及p-IKKβ的表达。
     3.丹皮酚磺酸钠在体模型上抑制TNF-α诱导的血管炎症反应。
     结论
     丹皮酚磺酸钠能够抑制TNF-α诱导的ICAM-1和VCAM-1的表达,减少活性氧簇(ROS)释放,增加NO、SOD的生成,降低血管炎症反应,维持内皮细胞正常功能。
     背景
     巨噬细胞泡沫化和炎症因子在动脉粥样硬化(AS)发生发展中扮演了重要角色。内皮功能障碍被是AS的始动因素,而脂质代谢紊乱是AS发生的关键环节。氧化应激一方面引起内皮损伤,另一方面修饰LDL成氧化低密度脂蛋白(ox-LDL)。 ox-LDL-一方面加剧内皮炎症,另一方面加速巨噬细胞形成泡沫细胞。而泡沫细胞凋亡或坏死后,将细胞内的脂质释放出来,形成条纹状粥样硬化斑块。由此可见,泡沫细胞的形成在动脉粥样硬化的发生、发展中同样扮演着一个十分重要的角色。
     从中药牡丹皮中分离提取的丹皮酚经磺化、成盐形成的丹皮酚磺酸化钠(Spae),具有抗炎、止痛、抗肿瘤、抗脂质过氧化、免疫调节等多重作用,我们上一章节已经发现SPae具有抵抗肿瘤坏死因子α(TNF-a)诱导的氧化应激效应和抗血管炎症。同时,众多研究证明细胞泡沫化形成也伴随着炎症的产生和氧化应激的的继续,我们进一步观察SPae是否抑制ox-LDL诱导的巨噬细胞泡沫化和动脉粥样硬化形成。
     为此,本课题从以下三个方面在细胞模型和在体模型探讨SPae对ox-LDL诱导的巨噬细胞泡沫化和动脉粥样硬化形成的影响。1.建立巨噬细胞泡沫化细胞模型,并观察SPae对巨噬细胞泡沫化吞噬ox-LDL能力的影响,以及对清道夫受体CD36、清道夫受体A (SRA)和ATP结合盒转运蛋白A1(ABCA1)的表达的影响;2.采用apoE-/-小鼠动脉硬化模型,研究SPae对AS的治疗作用;3.从分子水平探讨其潜在的作用机制。
     目的:
     1)研究APse对巨噬细胞泡沫化形成的影响
     2)探讨载体模型中,SPae对AS早期斑块发展的影响。
     方法:
     1)巨噬细胞泡沫化模型建立与鉴定
     THP-1细胞经10Ong/ml丙二醇甲醚醋酸酯(PMA)诱导分化24h后,80μg/mL ox-LDL处理分化后的细胞24h。用预冷PBS洗2次,60%异丙醇固定5min,0.3%油红O染色液染色15min,洗去染色液,倒置显微镜下观察,巨噬泡沫细胞内有大量红色脂肪滴的存在,表明THP-1巨噬细胞已经泡沫化。
     2)药物处理方法
     随机分为6组,分别为正常组、高剂量对照组、模型组、高剂量治疗组、中剂量治疗组、低剂量治疗组。其中模型组为80μg/mL的ox-LDL处理THP-1巨噬细胞24h, SPae治疗组中SPae预孵育2h后,加入80μg/mL的ox-LDL共孵育24h,高、中、低剂量分别是40μM、20μM、10μM SPae。
     3)油红O染色
     按照方法2处理好的细胞,用60%异丙醇固定5min,0.3%油红O染色液染色15min,PBS洗2遍,水性封片剂封片。荧光显微镜下白光观察,随机拍照。
     4)细胞内胆固醇含量的测定及ROS、NO、SOD检测
     按照方法2处理好的细胞,根据细胞内胆固醇测定试剂盒说明书,检测细胞内总胆固醇、胆固醇酯的含量;及按照ROS、NO、SOD各试剂盒操作测定活性氧族、一氧化氮、超氧化物歧化酶。
     5)SPae对THP-1巨噬细胞与Dil-oxLDL结合的影响
     4-C下10μg/mL Dil-oxLDL与按照方法2处理好的细胞孵育2h,PBS洗3次,用激光共聚焦显微镜(400×)随机拍照,激发波波长520nm和发射波波长580nm。
     6)SPae对THP-1巨噬细胞与Dil-oxLDL摄取的影响
     4-C下10μg/mL Dil-oxLDL与按照方法2处理好的细胞孵育4h,PBS洗3次,用激光共聚焦显微镜(400×)随机拍照,激发波波长520nm和发射波波长580nm。
     7)SPae对THP-1巨噬细胞清道夫受体CD36与SR-A表达的影响
     按照方法2处理好的细胞,Western Blot分析SPae对THP-1巨噬细胞清道夫受体CD36与SR-A表达的影响。
     8)SPae对THP-1巨噬细胞ATP结合盒转运蛋白A1(ABCA1)的表达的影响
     按照方法2处理好的细胞,Western Blot分析SPae对THP-1巨噬细胞ABCA1表达的影响。
     9)检测过氧化物酶体增殖物激活受体γ(PPARγ)、 NF-κB、P38、JNK以及氧化应激的影响。
     Western Blot检测ox-LDL对THP-1巨噬细胞的NF-κB抑制因子α(IκBα)、IκB激酶β (IKKβ)、P38、pP38、PPARγ、JNK和P-JNK蛋白表达的影响。按照NO、SOD、LDH试剂盒操作测定一氧化氮、超氧化物歧化酶、活性氧。
     10)apoE-/-小鼠动脉硬化模型的建立
     选用15只雄性apoE基因敲除小鼠,3只野生型雄性C57BL/6J小鼠组,其中apoE基因敲除小鼠随机分成5组,分别是模型组、高剂量对照组、高剂量防治组、中剂量防治组、低剂量防治组,每组3只。实验开始时,所有动物同步给药,每天给药一次,并同时高脂喂食,连续给药喂食12周。
     11)免疫组化与免疫荧光
     麻醉小鼠,取出解剖分离心脏,主动脉,蔗糖梯度溶液中脱水,OCT包埋组织,冰冻切片机切片,主动脉按冠状切面切取厚度为81μm的组织切片,-80℃保存。油红O染色,倒置显微镜下观察主动脉窦部和主动脉红色的动脉粥样硬化斑块的情况;免疫组化的方法检测斑块内1mac-3、VCAM-1的水平;应用免疫荧光的方法,检测PECAM-1,评价主动脉根部血管内皮完整性。
     12)血清ICAM-1、VCAM-1、TNF-α、MCP-1、IL-8和LDL-C水平水平
     小鼠麻醉后,自小鼠摘除眼球,分离血清,并分别检测血清ICAM-1、 VCAM-1、TNF-α、MCP-1和IL-8水平和低密度脂蛋白胆固醇(LDL-C)含量。
     结果:
     1)巨噬细胞泡沫化模型建立成功;
     2)SPae浓度依赖性抑制THP-1巨噬细胞泡沫化的形成;
     3)SPae一方面抑制THP-1巨噬细胞SRA和CD36的表达,降低THP-1巨噬细胞与Dil-ox-LDL的结合和摄取能力,另一方面提高ABCA1的表达,加强胞内游离胆固醇逆转运出细胞;
     4)小鼠在体模型显示,SPae抑制动脉硬化斑块蓄积,同时减轻在体炎症反应。
     结论:
     SPse可调控PPARγ和NF-κB活性和氧化应激反应,调控清道夫受体和ATP结合盒转运蛋白A1的表达,并调节动脉粥样硬化过程中炎症的产生,达到抗动脉粥样硬化的目的。
     背景
     与非糖尿病患者相比,糖尿病能显著增加心血管疾病的发病率和死亡率。迄今为止,冠脉支架已广泛地应用于临床急性冠心病事件;它可以明显地改善患者的临床预后,且具有较高的操作成功率和良好的早期临床效果。虽然传统的金属裸支架已深入应用于各种冠心病患者,并取得了一定的疗效;然而,其长期预后和再狭窄率一直困扰着临床医师。近些年来,西罗莫司洗脱支架被用来治疗裸金属支架术后再狭窄和初次冠脉狭窄,并取得长足的进步。一直来,国内外对冠心病合并糖尿病-------这群特殊患者的治疗探索从未停顿;但其在不同的临床试验中,西罗莫司洗脱支架和裸金属支架治疗该类患者的疗效和安全性,仍具相当的争议性。
     目的
     通过Meta分析方法,在较大样本量的前提下,评价西罗莫司洗脱支架与金属裸支架治疗冠心病合并糖尿病的西方人群和中国人群的临床疗效和安全性。
     方法
     制定了详细的纳入与排除标准后,同时根据拟定的上述标准制定出全面、系统的检索策略;要求所选择的文献设计类型为国内外的临床对照实验。中文检索关键词:雷帕霉素洗脱支架;西罗莫司洗脱支架;金属裸支架;糖尿病;冠心病。英文检索关键词:rapamycin eluting stent; sirolimus eluting stent; bare metal stents; diabetes; coronary arterial disease。按照改良Jadad评分标准,两位独立的研究人员对纳入研究的每篇文献做质量评价,遇到争议之处,通过协商解决;无法达成一致时,向第三位评价者询问,1-3分为低质量,4-7分为高质量。纳入文献的结果测量指标为二分类变量,采用优势比(Odds Ratio, OR)作为疗效分析的统计量,使用95%可信区间(confidence interval, CI)表示。统计结果以森林图表示。分别用漏斗图、Begger's和Egger's检验三种方法评估发表偏倚。
     结果
     最终纳入18篇符合标准的文献。包括西罗莫司洗脱支架组的1764例和金属裸支架组的1912例病例。西方人群的10篇文献得分在2-7之间,其中2篇低质量文献,8篇属于高质量文献;而中国人群的8篇文献得分在1-2之间,均属于低质量文献。在西方人群的研究,SEM组的靶病变血运重建率均显著的低于BMS组,合并效应量为0.26,95%可信区间为(0.16,0.45);在中国人群的研究,SEM组的靶病变血运重建率均显著的低于BMS组,合并效应量为0.30,95%可信区间为(0.14,0.62)。在西方人群的研究,SEM组的心肌梗死发生率低于BMS组,合并效应量为0.94,95%可信区间为(0.66,1.35);在中国人群的研究,SEM组的心肌梗死发生率低于BMS组,合并效应量为0.64,95%可信区间为(0.31,1.31)。西方人群的研究SEM组的平均死亡率高于BMS组,合并效应量为1.11,95%可信区间为(0.72,1.73),而中国人群的研究SEM组的平均死亡率低于BMS组,合并效应量为0.62,95%可信区间为(0.22,1.76)。西方人群的研究,SEM组的主要心血管不良事件发生率显著的低于BMS组,合并效应量为0.40,95%可信区间为(0.28,0.58);中国人群的研究,SEM组的主要心血管不良事件发生率显著的低于BMS组,合并效应量为0.25,95%可信区间为(0.15,0.42)。西方人群的亚组分析显示SEM组的主要心血管不良事件发生率显著的低于BMS组,当样本量≤90,合并效应量为0.30,95%可信区间为(0.19~0.47);随机对照试验的亚组分析,合并效应量为0.30,95%可信区间为(0.22~0.40);欧洲人群的亚组分析,合并效应量为0.42,95%可信区间为(0.32~0.56)。
     结论
     1、在西方人群与中国人群的研究,SEM组的靶病变血运重建率均显著的低于BMS组。
     2、在西方人群与中国人群的研究,SEM组的心肌梗死发生率均低于BMS组,但差异均无统计学意义。
     3、西方人群的研究SEM组的平均死亡率高于BMS组,而中国人群的研究SEM组的平均死亡率低于BMS组,但差异均无统计学意义。
     4、在西方人群与中国人群的研究,SEM组的主要心血管不良事件发生率均显著的低于BMS组。
     SEM较BMS更加适合治疗伴有糖尿病的冠心病患者。
Background
     Chronic inflammation plays a crucial role in the initiation and progression of atherosclerosis (AS) and endothelial disorder plays a major role in the early stage of AS. Under the effects of multiple pathogenic factors, vascular endothelial cells are activated and the expressions of adhesion molecules, pro-inflammatory cytokines and chemokine receptor are increased, which assist the infiltration of inflammatory cells and results in endothelial dysfunction, increase of oxidative stress, apoptosis, lipidosis and finally occurrence of AS.
     The activation of transcription factor NF-κB is closely correlated with the occurrence and development of inflammatory response of AS. NF-κB is homogenous or heterogeneous dimmer composed of P50, P52, P65, RelB and c-Rel, and is involved in the modulation of pathophysiology processes such as immune, inflammation and proliferation. Under the normal condition of cells, the components of NF-κB are constrained in the cytoplasm. Under the exogenous stimulation, IκBs can be activated by the upstream IκB kinase (IKK) complex, phosphorylated, ubiquitinated and degraded by protease, which finally results in the release of NF-κB (predominantly in dimmer of P65/P50) and translocation from cytoplasm to nuclei to modulate the transcription and expression of target genes.
     Oxidative stress plays important role in formation process of AS. Oxidative stress is the imbalance between the generation of excessive active oxygen and the anti-oxygenation system clearing active oxygen. Active oxygen can affect many functions of vascular endothelia, such as the phenotype modulation of growth, apoptosis and survival of vascular endothelial cells and smooth muscle cells, the endothelia-dependent vascular dilation, the damage of vascular wall due to lacking NO bioactivity, the adhesion increase of monocytes and the angiogenesis.
     As a new kind of compound of paeonol extracted from the moutan bark and after sulfonation and salifying, sodium paeonol sulfonate has multiple effects in anti-inflammation, pain-killing, antitumor, anti-lipid peroxidation, and immunity modulation. Recent study indicated that sodium paeonol sulfonate has effect in anti-AS, but the mechanism of which is not clear. Therefore, the present study investigated the effect of sodium paeonol sulfonate on the vascular inflammation and its possible mechanism.
     Objectives
     1. To investigate the effect of sodium paeonol sulfonate on the expressions of adhesion molecules, pro-inflammatory cytokines and chemokine receptor in monocytes induced by TNF-a.
     2. To investigate the effects and possible mechanism of sodium paeonol sulfonate on the NF-κB activation and oxidative stress in endothelial cells induced by TNF-a.
     Methods
     1) Culture of human aortic endothelial cells
     Human aortic endothelial cells (HAECs) were cultured with ECM medium containing20%FBS in5%CO2incubator at37℃and changed with medium every3days. Passaging and plating were completed as required.
     2) Establishment of cell model
     HAECs were incubated with5,10and20ng/ml TNF-a, respectively, for24h. The expressions of ICAM-1and VCAM-1were examined with Western Blot.
     3) Adhesion experiment of monocytes
     THP-1cells labeled with calcein-AM at final concentration of5μmol/L were co-cultured with HAECs in dark at37℃for2h. The cells were rinsed with PBS for2-3times to remove un-adhered cells and added2ml PBS to be observed under confocal microscopy. The excitation wavelength and emission wavelength was485nm and530nm, respectively.
     4) ROS measurement
     According to the manual of ROS kit, DCFH-DA was used to measure the release of intracellular superoxides after treatment with sodium paeonol sulfonate.
     5) NO,SOD and LDH measurements
     NO,SOD and LDH were measured according to the manuals of kits respectively.
     6) Protein measurement with Western blot
     The expressions of ICAM-1and VCAM-1, the phosphorylation of p-eNOS, and the activities of NF-κB and p-IKKβ were measured with Western blot.
     7) Establishment of in vivo inflammation of mice
     The in vivo inflammation of mice was established by intraperitoneal injection of30μg/kg TNF-a.
     8) Measurement of serum ICAM-1, VCAM-1, IL-8and MCP-1
     The levels of serum ICAM-1, VCAM-1, IL-8and MCP-1were measured with artery blood according to the manual of ELISAkit.
     9) Immunohistochemistry
     Under deep anesthesia, the thoracic aorta was removed, dehydrated in gradient sucrose solution, embedded with paraffin, cut for coronary slices with a Fully Motorized Rotary Microtome at4μm and stored at-80℃. The tissue staining was performed according to the procedure of ICAM-1and VCAM-1staining kit.
     Results
     1. Sodium paeonol sulfonate can inhibit the expressions of ICAM-1and VCAM-1, reduce the release of ROS, increase the production of NO and SOD, decrease the vascular inflammatory response, respectively induced by TNF-α.
     2. Sodium paeonol sulfonate increased the phosphorylation of endothelial eNOS and decreased the activities of NF-κB and the expressions of p-IKKβ, respectively induced by TNF-α.
     3. Sodium paeonol sulfonate inhibited the vascular inflammation induced by TNF-a in in vivo model.
     Conclusion
     Sodium paeonol sulfonate can inhibit the expressions of ICAM-1and VCAM-1, reduce the release of ROS, increase the production of NO and SOD, decrease the vascular inflammatory response, induced by TNF-α, and maintain the normal function of endothelial cells.
     Background
     Foamy macrophages and inflammatory factors play important roles in atherosclerosis (AS). Endothelial dysfunction is the initial factor of AS while metabolism disorder of lipid is the key step of AS. Oxidative stress can induce endothelial injury and modify LDL to ox-LDL which can aggravate endothelial inflammation and promote macrophages to form foamy cells. After apoptosis or necrosis, the lipid in foamy cells is released to form stripped atherosclerotic plaque. Therefore, the formation of foamy cells plays same important role in the occurrence and development of AS.
     The extracted paeonol from moutan bark is formed of sodium paeonol sulfonate (Spae) through sulfonation and salifying, and has many effects including anti-inflammation, pain killing, anti-tumor, anti-lipid oxygenation, immune modulation. From previous chapter, we have found that Spae has effects in antagonizing the oxidative stress and vascular inflammation induced by TNF-a. Simultaneously, many studies have confirmed that the formation of foamy cells accompanies the formation of inflammation and the continuity of oxidative stress. In the present section, we further investigated the inhibitory effect of SPae on the foamy macrophages and AS induced by ox-LDL.
     Therefore, the present study investigated the effect of SPae on the foamy macrophages and AS formation induced by ox-LDL from the three features in cell model and in vivo model:(1) establishing the model of foamy macrophages to observe the effects of SPae on the phagocytosis of ox-LDL by foamy macrophages and on the expressions of scavenge receptor A (SRA), CD36and ATP-binding cassette transport protein A1(ABCA1);(2) using apoE-/-mouse AS model to study the therapeutic effect of SPae on AS;(3) to investigate its potential mechanism at molecular level.
     Objectives
     1) To investigate the effect of SPae on the formation of foamy macrophages.
     2) To investigate the effect of SPae on the early plaque of AS in vector model.
     Methods
     1) Establishment and identification of foamy macrophages
     THP-1cells were induced to differentiate for24h by100ng/ml PMA. The differentiated cells were treated with80μg/mL ox-LDL for24h, rinsed with pre-cooled PBS twice, fixed with60%isopropanol for5min, stained with0.3%rathonum red solution for15min. After removal of staining solution, the cells were observed under inverted microscopy. Existence of massive red lipid drops in foamy macrophages demonstrated formation of foamy macrophages from THP-1cells.
     2) Treatment of cells
     The cells were randomly divided into6groups:normal group, high-dosage control group, model group, high-dosage group, middle-dosage group and low-dosage group. For model group, THP-1macrophages were treated with80μg/mL ox-LDL for24h. For SPae treatment groups, the cells were pre-incubated with SPae for2h, followed by co-incubation with SPae and80μg/mL ox-LDL for24h. The high, middle and low dosage of SPae was40μM,20μM and10μM, respectively.
     3) Rathonum red staining
     The cells treated as method2) were fixed with60%isopropanol for5min, stained with0.3%rathonum red solution for15min and rinsed with PBS twice. After mounting with aqueous mounting medium, the cells were observed under fluorescent microscopy and taken photos randomly.
     4) Measurements of intracellular cholesterol, NO,SOD and ROS
     The cells treated as method2) were measured of intracellular total cholesterol and cholesterol ester according to the kit manual. NO,SOD and ROS were measured according to the manuals of kits respectively.
     5) Effect of SPae on the binding of THP-1macrophages with Dil-oxLDL
     Under4℃, the cells treated as method2) were incubated with10μg/mL Dil-oxLDL for2h, rinsed3times and taken photos randomly with confocal microscopy (400x) with the excitation wavelength and emission wavelength of520nm and580nm, respectively.
     6) Effect of SPae on the uptake of Dil-oxLDL in THP-1macrophages
     Under4℃, the cells treated as method2) were incubated with10μg/mL Dil-oxLDL for4h, rinsed3times and taken photos randomly with confocal microscopy (400x) with the excitation wavelength and emission wavelength of520nm and580nm, respectively.
     7) Effect of SPae on the expressions of CD36and SRA in THP-1macrophages
     The cells treated as method2) were analyzed the effect of SPae on the expressions of CD36and SRA in THP-1macrophages, using Western blot.
     8) Effect of SPae on the expression of ABCA1in THP-1macrophages
     The cells treated as method2) were analyzed the effect of SPae on the expression of ABCA1in THP-1macrophages, using Western blot.
     9) Measurement of effects of ox-LDL on PPARγ, NF-κB, pP38, JNK and oxidative stress.
     Western Blot was used to measure the effects of ox-LDL on the expressions of IKKβ, β-IKKβ, p-IKBα, IkBα, P38, pP38, PPARγ, JNK and P-JNK in THP-1macrophages. NO,SOD and ROS were measured according to the manuals of kits respectively.
     10) Establishment of apoE-/-mouse AS model
     Fifteen male apoE knockout (apoE-/-) mice and3wild-type male C57BL/6J mice were used. apoE-/-mice were randomly divided into model group, high-dosage group, middle-dosage group and low-dosage group,3mice for each group. From the beginning, all animal were synchronously administrated with chemical once every day and high-fat food, for consecutively16weeks
     11) Immunohistochemistry and immunofluorescence
     Under deep anesthesia, the hear and thoracic aorta were removed, dehydrated in gradient sucrose solution, embedded with OCT, cut for coronary slices with cryomicrotome at8um and stored at-80℃. The tissues were stained with rathonum red and observed under inverted microscopy for the red AS plaque in the aortic sinus and aorta. Immunohistochemical method was used to measure the levels of mac-3and VCAM-1in plaque. Immunofluorescent method was used to measure the PEC AM-1to evaluate the integrity of vascular endothelia of aortic root.
     12) Serum levels of ICAM-1, VCAM-1, TNF-a, MCP-1, IL-8and LDL-C
     After anesthesia, the eyes of mice were taken out to separate serum. The serum levels of ICAM-1, VCAM-1, TNF-α, MCP-1, IL-8and LDL-C were measured.
     Results
     1) Successful establishment of foamy macrophages;
     2) SPae dose-dependently inhibited THP-1to form foamy macrophages;
     3) SPae inhibited the expressions of SRA and CD36in THP-1macrophages, decreased the binding of Dil-ox-LDL to and the uptake of Dil-ox-LDL by THP-1macrophages, increased the expression of ABCA1, and enhanced the transportation of intracellular free cholesterol to extracellular space;
     4) SPae inhibited the accumulation of AS plaque and reduced the inflammatory response in in vivo mice model.
     Conclusion
     Through modulating the activities of PPARy and NF-κB and the oxidative stress, and modulating the expressions of SRA and ABCA1and the formation of inflammation during AS, SPae achieves the anti-AS effect.
     Background
     Compared with patients without diabetes, patients with diabetes mellitus (DM) had significantly increased cardiovascular morbidity and mortality. So far,coronary stent had been widely used for revascularization in acute cardiac events and proved to improved prognosis, with a high success rate and favorable early outcome. The traditional bare-metal stent (BMS) had been initially widely used for treatment of coronary heart disease and had considerable efficacy and safety. However, the long term outcome and restenosis rate has been very discouraging. Recently, sirolimus-eluting stents (SES) had been increasingly performed for treating restenosis after BMS as well as the native coronary narrowing, and made therapeutic progress. Efforts to explore the treatment of coronary heart disease patients with diabetes mellitus at home and abroad has never been interrupted.For coronary arterial disease (CAD) patients with diabetes, the outcome, the efficacy and safety of SES and BMS remain controversial in different clinical trials.
     Objective
     To compare the efficacy and safety of sirolimus eluting and bare metal stents in CAD patients with diabetes by meta-analysis.
     Methods:
     The clinical trials were searched according to the detailed inclusion and exclusion criteria, The following key words were used in Chinese,"rapamycin eluting stent;,sirolimus eluting stent, bare metal stent, diabetes, coronary heart disease". The following key words were used in English,"rapamycin eluting stent,sirolimus eluting stent, bare metal stent, diabetes, coronary arterial disease". According to modified Jadad score, two independent researchers included in the study evaluated the quality of each article separately. When consensus can not be reached at the controversial point, the third reviewer were asked and resolved the discrepancies. Grade1-3belongs to low quality and4-7to high quality. If the results of the measurement indexes from the included literatures being dichotomous variables, Odds ratio (OR) and95%confidence intervals (CI) were estimated in each study. Statistical results were expressed in the forest plots and publication bias was evaluated with funnel plots, Begger's and Egger's test.
     Results:
     Meta-analysis was then performed in a total of1764patients of SEM group and1912patients of BMS group with diabetes from18studies. Authenticity was evaluated for all literatures included in the study according to modified Jadad quality assessment form.10literatures of Western populations were scored between2-7, including two low-quality documents and eight the high-quality literatures,while the8literatures of Chinese populations scored between1-2,belonged to the low-quality literatures. In the research of Western populations, compared with those in bare-metal stent group, the subjects in sirolimus-eluting stent group had reduced risk for target lesion revascularization (OR0.26,95%confidence interval (CI)0.16-0.45), and for major adverse cardiac events (OR0.40,95%CI0.28-0.58). There was no difference for myocardial infarction event (OR0.94,95%CI0.66-1.35)or mortality event (OR1.11,95%CI0.72-1.73). In the research of Chinese populations, compared with those in bare-metal stent group, the subjects in sirolimus-eluting stent group had reduced risk for target lesion revascularization (OR0.30,95%CI0.14,0.62), and for major adverse cardiac events (OR0.25,95%CI0.15-0.42). There was no difference for myocardial infarction event (OR0.64,95%CI0.31-1.31) or mortality event (OR0.62,95%CI0.22-1.76). Subgroup analysis showed significant difference for overall risk of major cardiac events between SES and BMS, when the sample size was<90(OR0.30,95%CI0.19~0.47), when it was randomized control trial (RCT)(OR0.30,95%CI0.22~0.40), or when it was performed in Europeans (OR0.42,95%CI0.32~0.52).
     Conclusion:
     1、In the research of Chinese and Western populations, target lesion revascularization rate in SEM group was significantly less than that of BMS group.
     2、In the research of Chinese and Western populations, incidence of myocardial infarction in SEM group was less than that of BMS group, but the difference was not statistically significant.
     3、In the research of Western populations, mortality event in SEM group were more than the BMS group, and in the research of Chinese populations, mortality event rate in SEM group were less than that of BMS group., but the difference was not statistically significant.
     4、In the research of Chinese and Western populations, incidence of major cardiac events in SEM group was significantly less than that of BMS group.
     Our study confirmed that SES is more effective and safer than BMS in CAD patients with diabetes.
引文
[1]Westerterp M, Bochem AE, Yvan-Charvet L, et al. ATP-binding cassette transporters, atherosclerosis, and inflammation[J]. Circ Res.2014 Jan 3;114(1):157-70.
    [2]von Hundelshausen P, Weber C. Chronic inflammation and atherosclerosis [J]. Dtsch Med Wochenschr.2013 Sep;138(37):1839-44.
    [3]Estruch M, Sanchez-Quesada JL, Ordonez Llanos J, et al. Electronegative LDL:a circulating modified LDL with a role in inflammation[J]. Mediators Inflamm. 2013;2013:181324.
    [4]Bidault Q, Garcia M, Vantyghem MC, et al. Lipodystrophy-linked LMNA p.R482W mutation induces clinical early atherosclerosis and in vitroendothelial dysfunction[J].Arterioscler Thromb Vasc Biol.2013 Sep;33(9):2162-71.
    [5]Davies PF, Civelek M, Fang Y, et al. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo[J]. Cardiovasc Res.2013 Jul 15;99(2):315-27.
    [6]Matsui T, Higashimoto Y, Taira J, et al. Pigment epithelium-derived factor (PEDF) binds to caveolin-1 and inhibits the pro-inflammatory effects of caveolin-1 in endothelial cells[J].Biochem Biophys Res Commun.2013 Nov 15;441(2):405-10.
    [7]Halaris A. Inflammation, heart disease, and depression[J].Curr Psychiatry Rep. 2013 Oct;15(10):400.
    [8]Hu FY, Wu C, Li Y, et al. AGGF1 is a novel anti-inflammatory factor associated with TNF-a-induced endothelial activation[J]. Cell Signal.2013 Aug;25(8):1645-53.
    [9]van Tits LJ, Stienstra R, van Lent PL, et al. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages:a crucial role for Kruppel-like factor 2[J].Atherosclerosis.2011 Feb;214(2):345-9.
    [10]Schwartz SM. Perspectives series:cell adhesion in vascular biology. Smooth muscle migration inatherosclerosis and restenosis[J]. J Clin Invest.1997 Jun 15;99(12):2814-6. Review.
    [11]Schachter M. Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers[J].Int J Cardiol.1997 Dec 31;62 Suppl 2:S85-90. Review.
    [12]Fernandez-Hernando C, Jozsef L, Jenkins D, et al. Absence of Aktl reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis[J].Arterioscler Thromb Vasc Biol.2009 Dec;29(12):2033-40.
    [13]Sahnoun Z, Jamoussi K, Zeghal KM. Free radicals and antioxidants:physiology, human pathology and therapeutic aspects (part II) [J]. Therapie.1998 Jul-Aug;53(4):315-39. Review.
    [14]Jialal I, Devaraj S, Venugopal SK. Oxidative stress, inflammation, and diabetic vasculopathies:the role of alpha tocopherol therapy[J]. Free Radic Res.2002 Dec;36(12):1331-6. Review.
    [15]Huang SM, Wu CH, Yen GC. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytesinduced by ligation of the receptor for AGEs[J]. Mol Nutr Food Res.2006 Dec;50(12):1129-39.
    [16]Chao CL, Chang NC, Weng CS, et al. Grape seed extract ameliorates tumor necrosis factor-a-induced inflammatory status of human umbilical vein endothelial cells[J]. Eur J Nutr.2011 Sep;50(6):401-9.
    [17]Araujo AA, Souza TO, Moura LM,et al.Effect of telmisartan on levels of IL-1, TNF-a, down-regulated COX-2, MMP-2, MMP-9 and RANKL/RANK in an experimental periodontitis model[J]. J Clin Periodontol.2013 Dec;40(12):1104-11.
    [18]Li J, Zhong W, Wang W, et al. Ginsenoside Metabolite Compound K Promotes Recovery of Dextran Sulfate Sodium-Induced Colitis and Inhibits Inflammatory Responses by Suppressing NF-κB Activation[J]. PLoS One.2014 Feb 4;9(2):e87810.
    [19]Hseu YC, Senthil Kumar KJ, Chen CS, et al. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways:a possible role in atherosclerosis[J]. Toxicol Appl Pharmacol.2014 Jan 15;274(2):249-62.
    [20]Subrata LS, Lowes KN, Olynyk JK, et al. Hepatic expression of the tumor necrosis factor family member lymphotoxin-beta is regulated by interleukin (IL)-6 and IL-1beta:transcriptional control mechanisms in oval cells and hepatoma cell lines [J].Liver Int.2005 Jun;25(3):633-46.
    [21]Bhattacharya A, Chandrasekar B, Rahman MM, et al. Inhibition of inflammatory response in transgenic fat-1 mice on a calorie-restricted diet[J]. Biochem Biophys Res Commun.2006 Oct 27;349(3):925-30.
    [22]Wu SQ, Otero M, Unger FM, et al. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages[J].J Ethnopharmacol.2011 Nov 18;138(2):364-72.
    [23]Yang H, Huang LY, Zeng DY, et al. Decrease of intracellular chloride concentration promotes endothelial cell inflammation by activating nuclear factor-κB pathway[J]. Hypertension.2012 Nov;60(5):1287-93.
    [24]Lee H, Jeon J, Ryu YS, et al. Disruption of microtubules sensitizes the DNA damage-induced apoptosis through inhibiting nuclear factor κB (NF-κB) DNA-binding activity[J]. J Korean Med Sci.2010 Nov;25(11):1574-81.
    [25]Kratzer E, Tian Y, Sarich N, et al. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization[J].Am J Respir Cell Mol Biol. 2012 Nov;47(5):688-97.
    [26]Hamada M, Nakamura M, Tran MT, et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis[J].Nat Commun.2014;5:3147.
    [27]Amezaga N, Sanjurjo L, Julve J, et al. Human scavenger protein AIM increases foam cell formation and CD36-mediated oxLDL uptake[J].J Leukoc Biol.2014 Mar;95(3):509-20.
    [28]Shiomi M, Ishida T, Kobayashi T, et al. Vasospasm of atherosclerotic coronary arteries precipitates acute ischemic myocardial damage inmyocardial infarction-prone strain of the Watanabe heritable hyperlipidemic rabbits[J].Arterioscler Thromb Vasc Biol.2013 Nov;33(11):2518-23.
    [29]Mannava S, Moparthy KC, Wheeler LJ, et al. Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence[J]. Am J Pathol.2013 Jan; 182(1):142-51.
    [30]Ambrosone CB, Ahn J, Singh KK, et al. Polymorphisms in genes related to oxidative stress (MPO, MnSOD, CAT) and survival after treatment for breast cancer[J]. Cancer Res.2005 Feb 1;65(3):1105-11.
    [31]Zucker SN, Fink EE, Bagati A, et al. Nrf2 Amplifies Oxidative Stress via Induction of Klf9[J].Mol Cell.2014 Mar 4. pii:S1097-2765(14)00125-7.
    [32]Maziere C, Salle V, Gomila C, et al. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement ofoxidative stress[J].Biochem Biophys Res Commun.2013 Oct 18;440(2):295-9.
    [33]Larroque-Cardoso P, Swiader A, Ingueneau C, et al. Role of protein kinase C 8 in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells[J].Cell Death Dis.2013 Feb 28;4:e520.
    [34]Yamagata K, Tusruta C, Ohtuski A, et al. Docosahexaenoic acid decreases TNF-a-induced lectin-like oxidized low-density lipoproteinreceptor-1 expression in THP-1 cells[J].Prostaglandins Leukot Essent Fatty Acids.2014 Jan 8. pii: S0952-3278(14)00003-9.
    [35]Shen T, Zhu Y, Patel J, et al.T-box20 suppresses oxidized low-density lipoprotein-induced human vascular endothelial cell injury by upregulation of PPAR-y[J].Cell Physiol Biochem.2013;32(5):1137-50.
    [36]Ho E, Karimi Galougahi K, Liu CC, et al. Biological markers of oxidative stress: Applications to cardiovascular research and practice[J].Redox Biol.2013 Oct 8;1(1):483-491.
    [37]Pontikis CC, Davidson CD, Walkley SU, et al. Cyclodextrin alleviates neuronal storage of cholesterol in Niemann-Pick C disease without evidence of detectable blood-brain barrier permeability[J].J Inherit Metab Dis.2013 May;36(3):491-8.
    [38]Macauley SL, Pekny M, Sands MS.The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis[J].J Neurosci.2011 Oct 26;31(43):15575-85.
    [39]Fan A, Wu X, Wu H, et al.Atheroprotective effect of oleoylethanolamide (OEA) targeting oxidized LDL[J]. PLoS One.2014 Jan 20;9(1):e85337.
    [40]Wang Y, Liu X, Wang W, et al. The expression of inflammatory cytokines on the aorta endothelia are up-regulated in pinealectomized rats[J].Inflammation.2013 Dec;36(6):1363-73.
    [41]Wang XH, Wang F, You SJ,et al. Dysregulation of cystathionine y-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage[J].Cell Signal.2013 Nov;25(11):2255-62.
    [42]Yu X, Xing C, Pan Y, et al. IGF-1 alleviates ox-LDL-induced inflammation via reducing HMGB1 release in HAECs[J]. Acta Biochim Biophys Sin (Shanghai). 2012 Sep;44(9):746-51.
    [43]Wang Y, Parlevliet ET, Geerling JJ, et al. Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration[J].Br J Pharmacol.2014 Feb;171(3):723-34.
    [44]Huang EW, Xue SJ, Zhang Z, et al. Vinpocetine inhibits breast cancer cells growth in vitro and in vivo[J].Apoptosis.2012 Oct;17(10):1120-30.
    [45]Barbour JD, Jalbert EC, Chow DC, et al. Reduced CD 14 expression on classical monocytes and vascular endothelial adhesion markers independently associate with carotid artery intima media thickness in chronically HIV-1 infected adults on virologically suppressive anti-retro viral therapy[J].Atherosclerosis.2014 Jan;232(1):52-8.
    [46]Jeon KI, Xu X, Aizawa T, et al. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism[J]. Proc Natl Acad Sci U S A.2010 May 25;107(21):9795-800.
    [47]Uzarski JS, Scott EW, McFetridge PS. Adaptation of endothelial cells to physiologically-modeled, variable shear stress[J]. PLoS One.2013;8(2):e57004.
    [48]Shuvaev VV, Han J, Tliba S, et al. Anti-inflammatory effect of targeted delivery of SOD to endothelium:mechanism, synergism with NO donors and protective effects in vitro and in vivo[J]. PLoS One.2013 Oct 11;8(10):e77002.
    [49]Kim JH, Auger C, Kurita I, et al. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase[J]. Nitric Oxide.2013 Nov 30;35:54-64.
    [50]Qian LB, Fu JY, Cai X, et al. Betulinic acid inhibits superoxide anion-mediated impairment of endothelium-dependent relaxation in rat aortas[J]. Indian J Pharmacol.2012 Sep-Oct;44(5):588-92.
    [51]Dwight D. Henninger, Juliain Pan,M.Eppihimer, et al. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse[J].J Immunol,1997.158:1825-1832.
    [52]Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress[J]. Arterioscler Thromb Vasc Biol. Jun 2004;24(6):1006-1014.
    [53]Falk E. Pathogenesis of atherosclerosis [J]. Journal of the American College of Cardiology. Apr 182006;47(8 Suppl):C7-12.
    [54]Ross R. Atherosclerosis--an inflammatory disease[J]. The New England journal of medicine. Jan 14 1999;340(2):115-126.
    [55]Lang Y, Chen D, Li D, et al. Luteolin inhibited hydrogen peroxide-induced vascular smooth muscle cells proliferation andmigration by suppressing the Src and Akt signalling pathways[J]. J Pharm Pharmacol.2012 Apr;64(4):597-603.
    [56]Lloyd EE, Crossland RF, Phillips SC, et al. Disruption of K(2P)6.1 produces vascular dysfunction and hypertension in mice[J]. Hypertension.2011 Oct;58(4):672-8.
    [57]Wolfs IM, Stoger JL, Goossens P, et al. Reprogramming macrophages to an anti-inflammatory phenotype by helminth antigens reduces murine atherosclerosis[J]. FASEB J.2014 Jan;28(1):288-99.
    [58]Funk SD, Yurdagul A Jr, Albert P, et al. EphA2 activation promotes the endothelial cell inflammatory response:a potential role in atherosclerosis [J]. Arterioscler Thromb Vasc Biol.2012 Mar;32(3):686-95.
    [59]Bayes-Genis A, Conover CA, Schwartz RS. The insulin-like growth factor axis: A review of atherosclerosis and restenosis[J]. Circ Res.2000 Feb 4;86(2):125-30. Review.
    [60]Fedorov A, Kostareva A, Raud J, et al. Early Changes of Gene Expression Profiles in the Rat Model of Arterial Injury [J]. J Vasc Interv Radiol.2014 Feb 5. pii:S1051-0443(13)01705-3.
    [61]Petecchia L, Sabatini F, Usai C, et al. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway[J]. Lab Invest.2012 Aug;92(8):1140-8.
    [62]Krassas GE, Pontikides N, Doukidis D, et al. Serum levels of tumor necrosis factor-alpha, soluble intercellular adhesion molecule-1, solublevascular cell adhesion molecule-1, and soluble interleukin-1 receptor antagonist in patients with thyroid eye disease undergoing treatment with somatostatin analogues[J]. Thyroid.2001 Dec;11(12):1115-22.
    [63]Chen B, Ning M, Yang G. Effect of paeonol on antioxidant and immune regulatory activity in hepatocellular carcinoma rats[J]. Molecules.2012 Apr 20;17(4):4672-83.
    [1]Westerterp M, Bochem AE, Yvan-Charvet L, et al. ATP-binding cassette transporters, atherosclerosis, and inflammation[J].Circ Res.2014 Jan 3;114(1):157-70.
    [2]von Hundelshausen P, Weber C.Chronic inflammation and atherosclerosis[J].Dtsch Med Wochenschr.2013 Sep;138(37):1839-44.
    [3]Estruch M, Sanchez-Quesada JL, Ordonez Llanos J, et al. Electronegative LDL:a circulating modified LDL with a role in inflammation[J]. Mediators Inflamm. 2013;2013:181324.
    [4]Dai Y, Palade P, Wang X, et al. High Fat Diet Causes Renal Fibrosis in LDLr-null Mice Through MAPK-NF-κB Pathway Mediated by Ox-LDL[J]. J Cardiovasc Pharmacol.2014 Feb;63(2):158-66.
    [5]Ma KL, Liu J, Ni J, et al. Inflammatory stress exacerbates the progression of cardiac fibrosis in high-fat-fed apolipoprotein E knockout mice via endothelial-mesenchymal transition[J]. Int J Med Sci.2013;10(4):420-6.
    [6]Xu Y. Transcriptional regulation of endothelial dysfunction in atherosclerosis:an epigenetic perspective [J]. J Biomed Res.2014 Jan;28(1):47-52.
    [7]Li M, Ma G, Han L, et al. Regulating effect of Tea polyphenols on Endothelin, Intracellular Calcium Concentration and Mitochondrial Membrane Potential in Vascular Endothelial Cells Injured by Angiotensin II[J]. Ann Vase Surg.2013 Dec 12. pii:S0890-5096(13)00665-1.
    [8]Wang Y, Parlevliet ET, Geerling JJ, et al.Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration[J]. Br J Pharmacol.2014 Feb;171(3):723-34.
    [9]McGraw AP, Bagley J, Chen WS, et al. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism[J]. J Am Heart Assoc.2013 Feb 22;2(1):e000018.
    [10]Gan AM, Pirvulescu MM, Stan D, et al.Monocytes and smooth muscle cells cross-talk activates STAT3 and induces resistin and reactive oxygen species and production[J]. J Cell Biochem.2013 Oct;114(10):2273-83.
    [11]Albiero M, Menegazzo L, Fadini GP. Circulating smooth muscle progenitors and atherosclerosis[J]. Trends Cardiovasc Med.2010 May;20(4):133-40.
    [12]Du RH, Qin SY, Shi LS, et al. Fumigaclavine C activates PPARy pathway and attenuates atherogenesis in ApoE-deficient mice[J]. Atherosclerosis.2014 Mar 5;234(1):120-128.
    [13]Xue X, Chen T, Wei W, et al. Effects of Alisma Decoction on lipid metabolism and inflammatory response are mediated through the activation of the LXRa pathway in macrophage-derived foam cells[J]. Int J Mol Med.2014 Apr;33(4):971-7.
    [14]Corban MT, Eshtehardi P, Suo J, et al. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability [J]. Atherosclerosis.2014 Feb;232(2):271-6.
    [15]Biasiolli L, Lindsay AC, Chai JT, et al.In-vivo quantitative T2 mapping of carotid arteries in atherosclerotic patients:segmentation and T2 measurement of plaque components[J].J Cardiovasc Magn Reson.2013 Aug 16;15(1):69.
    [16]Niesten JM, van der Schaaf IC, van Dam L, et al.Histopathologic composition of cerebral thrombi of acute stroke patients is correlated with stroke subtype and thrombus attenuation[J].PLoS One.2014 Feb 11;9(2):e88882.
    [17]Conti F, Spinelli FR, Alessandri C, et al.Subclinical Atherosclerosis in Systemic Lupus Erythematosus and Antiphospholipid Syndrome:Focus on P2GPI-Specific T Cell Response[J]. Arterioscler Thromb Vasc Biol.2014 Mar;34(3):661-8.
    [18]Schachter M. Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers[J].Int J Cardiol.1997 Dec 31;62 Suppl 2:S85-90. Review.
    [19]Jialal I, Devaraj S, Venugopal SK. Oxidative stress, inflammation, and diabetic vasculopathies:the role of alpha tocopherol therapy [J].Free Radic Res.2002 Dec;36(12):1331-6. Review.
    [20]Huang SM, Wu CH, Yen GC. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytesinduced by ligation of the receptor for AGEs[J].Mol Nutr Food Res.2006 Dec;50(12):1129-39.
    [21]van Tits LJ, Stienstra R, van Lent PL, et al. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages:a crucial role for Kruppel-like factor 2[J].Atherosclerosis.2011 Feb;214(2):345-9.
    [22]Schwartz SM.Perspectives series:cell adhesion in vascular biology. Smooth muscle migration inatherosclerosis and restenosis[J].J Clin Invest.1997 Jun 15;99(12):2814-6.Review.
    [23]Schachter M. Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers[J].Int J Cardiol.1997 Dec 31;62 Suppl 2:S85-90. Review.
    [24]Fernandez-Hernando C, Jozsef L, Jenkins D, et al. Absence of Aktl reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis[J].Arterioscler Thromb Vasc Biol.2009 Dec;29(12):2033-40.
    [25]Larroque-Cardoso P, Swiader A, Ingueneau C, et al. Role of protein kinase C δ in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells[J].Cell Death Dis.2013 Feb 28;4:e520.
    [26]Yamagata K, Tusruta C, Ohtuski A, et al. Docosahexaenoic acid decreases TNF-a-induced lectin-like oxidized low-density lipoproteinreceptor-1 expression in THP-1 cells[J].Prostaglandins Leukot Essent Fatty Acids.2014 Jan 8. pii: S0952-3278(14)00003-9.
    [27]Shen T, Zhu Y, Patel J, et al. T-box20 suppresses oxidized low-density lipoprotein-induced human vascular endothelial cell injury by upregulation of PPAR-γ[J].Cell Physiol Biochem.2013;32(5):1137-50.
    [28]Ho E, Karimi Galougahi K, Liu CC, et al. Biological markers of oxidative stress: Applications to cardiovascular research and practice[J].Redox Biol.2013 Oct 8;1(1):483-491.
    [29]Barthwal MK, Anzinger JJ, Xu Q, et al. Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation[J]. PLoS One.2013;8(3):e58054.
    [30]Chavez-Sanchez L, Garza-Reyes MG, Espinosa-Luna JE, et al. The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans[J]. Hum Immunol.2014 Apr;75(4):322-9.
    [31]Zhang M, Wu JF, Chen WJ, et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages[J]. Atherosclerosis.2014 Feb 21;234(1):54-64.
    [32]Liu Z, Wang J, Huang E, et al. Tanshinone IIA suppresses cholesterol accumulation in human macrophages:role of heme oxygenase-1[J]. J Lipid Res. 2014 Feb;55(2):201-13.
    [33]Yeh KW, Lee CM, Chang CJ, et al. Lipid Profiles Alter from Pro-Atherogenic into Less Atherogenic and Proinflammatory in Juvenile Idiopathic Arthritis Patients Responding to Anti TNF-a Treatment[J]. PLoS One.2014 Mar 6;9(3):e90757.
    [34]Shioji K, Izuhara M, Mitsuoka H, et al. Achievement rates of Japan Atherosclerosis Society Guidelines 2007 LDL-cholesterol goals with rosuvastatin or atorvastatin in patients who had not achieved their goal with atorvastatin[J]. Cardiovasc Ther.2014 Jan 23. doi:10.1111/1755-5922.12066.
    [35]van Stijn CM, Kim J, Barish GD, et al. Adiponectin Expression Protects against Angiotensin II-Mediated Inflammation and AcceleratedAtherosclerosis[J]. PLoS One.2014 Jan 22;9(1):e86404.
    [36]Wang S, Miller B, Matthan NR,et al. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice[J]. Nutr Res.2013 Dec;33(12):1072-82.
    [37]Panayiotou AG, Griffin MB, Tyllis T, et al. Association of genotypes at the matrix metalloproteinase (MMP) loci with carotid IMT and presence of carotid and femoral atherosclerotic plaques[J]. Vasc Med.2013 Oct;18(5):298-306.
    [38]Kim YH, Lee SJ, Seo KW, et al. PAF enhances MMP-2 production in rat aortic VSMCs via a β-arrestin2-dependent ERK signaling pathway[J]. J Lipid Res. 2013 Oct;54(10):2678-86.
    [39]Hamada M, Nakamura M, Tran MT, et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis[J].Nat Commun.2014;5:3147.
    [40]Amezaga N, Sanjurjo L, Julve J,et al. Human scavenger protein AIM increases foam cell formation and CD36-mediated oxLDL uptake[J].J Leukoc Biol.2014 Mar;95(3):509-20.
    [41]Shiomi M, Ishida T, Kobayashi T, et al. Vasospasm of atherosclerotic coronary arteries precipitates acute ischemic myocardial damage inmyocardial infarction-prone strain of the Watanabe heritable hyperlipidemic rabbits[J].Arterioscler Thromb Vasc Biol.2013 Nov;33(11):2518-23.
    [42]Chen B, Wang W, Shen T, et al. Thioredoxinl downregulates oxidized low-density lipoprotein-induced adhesion molecule expression via Smad3 protein[J]. PLoS One.2013 Sep 23;8(9):e76226.
    [43]Wang L, Qiu XM, Hao Q, et al. Anti-inflammatory effects of a Chinese herbal medicine in atherosclerosis via estrogen receptor β mediating nitric oxide production and NF-κB suppression in endothelial cells[J]. Cell Death Dis.2013 Mar 21;4:e551.
    [44]Zhang HP, Zheng FL, Zhao JH, et al. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1[J]. Arch Med Res.2013 Jan;44(1):13-20.
    [45]Yi L, Chen CY, Jin X, et al. Differential suppression of intracellular reactive oxygen species-mediated signaling pathway invascular endothelial cells by several subclasses of flavonoids[J]. Biochimie.2012 Sep;94(9):2035-44.
    [46]Karper JC, de Jager SC, Ewing MM, et al. An unexpected intriguing effect of Toll-like receptor regulator RP105 (CD 180) on atherosclerosis formation with alterations on B-cell activation[J]. Arterioscler Thromb Vasc Biol.2013 Dec;33(12):2810-7.
    [47]Meng Z, Yan C, Deng Q, et al. Oxidized low-density lipoprotein induces inflammatory responses in cultured human mast cells via Toll-like receptor 4[J]. Cell Physiol Biochem.2013;31(6):842-53.
    [48]Kim M, Choi SH, Jin YB, et al. The effect of oxidized low-density lipoprotein (ox-LDL) on radiation-induced endothelial-to-mesenchymal transition[J]. Int J Radiat Biol.2013 May;89(5):356-63.
    [49]Violi F, Pignatelli P. Clinical Application of NOX Activity and Other Oxidative Biomarkers in Cardiovascular Disease:A Critical Review[J]. Antioxid Redox Signal.2014 Feb 24.
    [50]Raman KG, Gandley RE, Rohland J, et al. Early hypercholesterolemia contributes to vasomotor dysfunction and injury associated atherogenesis that can be inhibited by nitric oxide[J]. J Vasc Surg.2011 Mar;53(3):754-63.
    [51]Redgrave T G, Roberts D C, West C E. Separation of plasma lipoproteins by density-gradient ultracentrifugation[J]. Anal Biochem,1975,65(1-2):42-49.
    [52]Tribble DL, Krauss RM, Lansberg MG, Thiel PM, van den Berg JJ. Greater oxidative susceptibility of the surface monolayer in small dense LDL may contribute to differences in copper-induced oxidation among LDL density subfractions. J Lipid Res.1995;36:662-671.
    [53]Gamble W, Vaughan M, Kruth HS, Avigan J. Procedure for determination of free and total cholesterol in micro-or nanogram amounts suitable for studies with cultured cells. J Lipid Res.1978;19:1068-1070.
    [54]Oram J F. HDL apolipoproteins and ABCA1:partners in the removal of excess cellular cholesterol [J]. Arterioscler Thromb Vasc Biol,2003,23(5):720-727.
    [55]Pitas R E, Innerarity T L, Weinstein J N, et al. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy [J]. Arteriosclerosis,1981,1 (3):177-185.
    [56]Yu W, Ying H, Tong F, et al. Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged byoxidized low density lipoprotein (Ox-LDL)[J]. PLoS One.2013 Jun 28;8(6):e68746.
    [57]Min KJ, Um HJ, Cho KH, et al. Curcumin inhibits oxLDL-induced CD36 expression and foam cell formation through the inhibition ofp38 MAPK phosphorylation[J]. Food Chem Toxicol.2013 Aug;58:77-85.
    [58]Wang GF, Shi CG, Sun MZ, et al.Tetramethylpyrazine attenuates atherosclerosis development and protects endothelial cells from ox-LDL[J]. Cardiovasc Drugs Ther.2013 Jun;27(3):199-210.
    [59]Lou Y, Liu S, Zhang C, et al. Enhanced atherosclerosis in TIPE2-deficient mice is associated with increased macrophage responses to oxidized low-density lipoprotein[J]. J Immunol.2013 Nov 1;191(9):4849-57.
    [60]Yu W, Ying H, Tong F, et al. Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged byoxidized low density lipoprotein (Ox-LDL)[J]. PLoS One.2013 Jun 28;8(6):e68746.
    [61]Meng G, Liu Y, Lou C, et al.Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells[J]. Br J Pharmacol.2010 Dec;161 (7):1628-44.
    [62]Magnone M, Bruzzone S, Guida L, et al. Abscisic acid released by human monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis[J]. J Biol Chem.2009 Jun 26;284(26):17808-18.
    [63]Barlic J, Zhang Y, Murphy PM. Atherogenic lipids induce adhesion of human coronary artery smooth muscle cells to macrophages by up-regulating chemokine CX3CL1 on smooth muscle cells in a TNFalpha-NFkappaB-dependent manner[J]. J Biol Chem.2007 Jun 29;282(26):19167-76.
    [64]Chen H, Ma F, Hu X, et al.Elevated COX2 expression and PGE2 production by downregulation of RXRa in senescent macrophages[J]. Biochem Biophys Res Commun.2013 Oct 11;440(1):157-62.
    [65]Ferreira V, van Dijk KW, Groen AK, et al.Macrophage-specific inhibition of NF-kappaB activation reduces foam-cell formation[J]. Atherosclerosis.2007 Jun;192(2):283-90.
    [66]Ferreira V, van Dijk KW, Groen AK, et al. Macrophage-specific inhibition of NF-kappaB activation reduces foam-cell formation[J]. Atherosclerosis.2007 Jun;192(2):283-90.
    [67]Wang N, Verna L, Chen NG, et al.Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells [J].
    [68]Spigoni V, Picconi A, Cito M, et al.Pioglitazone improves in vitro viability and function of endothelial progenitor cells from individuals with impaired glucose tolerance[J]. PLoS One.2012;7(11):e48283.
    [69]Rival Y, Beneteau N, Chapuis V, et al.Cardiovascular drugs inhibit MMP-9 activity from human THP-1 macrophages[J]. DNA Cell Biol.2004 May;23(5):283-92.
    [70]Jha HC, Srivastava P, Vardhan H, et al. Chlamydia pneumoniae heat shock protein 60 is associated with apoptotic signaling pathway in human atheromatous plaques of coronary artery disease patients [J].
    [71]Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARy and LXRa pathways[J]. Circ Res. 2011 Apr 15;108(8):985-95.
    [72]Lambert G, Petrides F, Chatelais M, et al. Elevated plasma PCSK9 is equally detrimental for non-familial hypercholesterolemic (non-FH) and heterozygous FH patients, irrespective of their LDL receptor defects[J]. J Am Coll Cardiol. 2014 Feb 28. pii:S0735-1097(14)01289-3.
    [73]Ricci R, Sumara G, Sumara I, et al. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis[J]. Science.2004 Nov 26:306(5701):1558-61.
    [74]Nagelin MH, Srinivasan S, Nadler JL, et al.Murine 12/15-lipoxygenase regulates ATP-binding cassette transporter G1 protein degradation through p38-and JNK2-dependent pathways[J]. J Biol Chem.2009 Nov 6;284(45):31303-14.
    [75]Mietus-Snyder M, Glass CK, Pitas RE. Transcriptional activation of scavenger receptor expression in human smooth muscle cells requires AP-1/c-Jun and C/EBPbeta:both AP-1 binding and JNK activation are induced by phorbol esters and oxidative stress[J]. Arterioscler Thromb Vasc Biol.1998 Sep; 18(9):1440-9.
    [76]Karimi P, Rashtchizadeh N. Oxidative Versus Thrombotic Stimulation of Platelets Differentially activates Signalling Pathways[J]. J Cardiovasc Thorac Res.2013;5(2):61-5.
    [77]Lou Y, Liu S, Zhang C, et al.Enhanced atherosclerosis in TIPE2-deficient mice is associated with increased macrophage responses to oxidized low-density lipoprotein[J]. J Immunol.2013 Nov 1;191(9):4849-57.
    [78]Yu W, Ying H, Tong F, et al.Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged byoxidized low density lipoprotein (Ox-LDL)[J]. PLoS One.2013 Jun 28;8(6):e68746.
    [79]Zou J, Li Y, Fan HQ, et al.Effects of dihydropyridine calcium channel blockers on oxidized low-density lipoprotein induced proliferation and oxidative stress of vascular smooth muscle cells[J]. BMC Res Notes.2012 Jul 6;5:168.
    [80]Cheng F, Torzewski M, Degreif A, et al.Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation:implications for atherogenesis[J]. PLoS One.2013 Aug 22;8(8):e72063.
    [81]Oh J, Riek AE, Weng S, et al.Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation[J]. J Biol Chem.2012 Apr 6;287(15):11629-41.
    [82]Bujold K, Rhainds D, Jossart C, et al.CD36-mediated cholesterol efflux is associated with PPARgamma activation via a MAPK-dependent COX-2 pathway in macrophages[J]. Cardiovasc Res.2009 Aug 1;83(3):457-64.
    [83]Wang M, Ihida-Stansbury K, Kothapalli D, et al.Microsomal prostaglandin e2 synthase-1 modulates the response to vascular injury [J]. Circulation.2011 Feb 15;123(6):631-9.
    [84]Orimo H, Ouchi Y. The role of calcium and magnesium in the development of atherosclerosis. Experimental and clinical evidence[J]. Ann N Y Acad Sci. 1990;598:444-57.
    [85]Razavi SM, Gholamin S, Eskandari A, et al.Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia[J]. J Med Food.2013 Mar;16(3):255-8.
    [86]Xu X, Hou X, Liang Y, et al. The Gene Polymorphism of LOX1 Predicts the Incidence of LVH in Patients with Essential Hypertension[J]. Cell Physiol Biochem.2014;33(1):88-96.
    [87]Lee HY, Kim SD, Baek SH, et al.Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation[J]. Biochem Biophys Res Commun.2013 Mar 29;433(1):18-23.
    [1]Ford ES,Giles WH.Prevalence of the metabolic syndrome among US adults.Findings from the third National Health and Nutrition Examination Survery [J] JAMA2002,287(3):356-359.
    [2]Nodari S, Manerba A, Vaccari A, Milesi G, Carubelli V, Lazzarini V, Lombardi C, Ettori F, Metra M, Dei Cas A. Six-year prognosis of diabetic patients with coronary artery disease. Eur J Clin Invest 2012,42(4):376-383.
    [3]Stamler J,Vaccaro O,Neaton JD,Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial[J].Diabetes Care 1993,16(2):434-444.
    [4]Haase J, Jung T, Storger H, Hofmann M, Reinemer H, Schwarz CE, Schopf J, Schwarz F. Long-term outcome after implantation of bare metal stents for the treatment of coronary artery disease:rationale for the clinical use of antiproliferative stent coatings. J Interv Cardiol 2003,16(6):469-473.
    [5]Lemos PA, Bienert I.The Supralimus sirolimus-eluting stent. Expert Rev Med Devices 2013,10(3):295-300.
    [6]Hsieh IC, Hsieh MJ, Chang SH, Wang CY, Lee CH, Lin FC, Chen CC.Acute and long-term outcomes of ostial stentings among bare-metal stents, sirolimus-eluting stents, and paclitaxel-eluting stents. Coron Artery Dis 2013, 24(3):224-230.
    [7]Obata JE, Nakamura T, Kitta Y, Saito Y, Sano K, Fujioka D, Kawabata K, Kugiyama K. In-stent restenosis is inhibited in a bare metal stent implanted distal to a sirolimus-eluting stent to treat a long de novo coronary lesion with small distal vessel diameter. Catheter Cardiovasc Interv 2013,82(6):E777-787.
    [8]Jimenez-Quevedo P, Sabate M, Angiolillo DJ, Costa MA, Alfonso F, Gomez-Hospital JA, Hernandez-Antolin R, Banuelos C, Goicolea J, Fernandez-Aviles F et al. Vascular effects of sirolimus-eluting versus bare-metal stents in diabetic patients:three-dimensional ultrasound results of the Diabetes and Sirolimus-Eluting Stent (DIABETES) Trial. J Am Coll Cardiol 2006, 47(11):2172-2179.
    [9]De Luca G, Dirksen MT, Spaulding C, Kelbaek H, Schalij M, Thuesen L, van der Hoeven B, Vink MA, Kaiser C, Musto C et al. Meta-analysis comparing efficacy and safety of first generation drug-eluting stents to bare-metal stents in patients with diabetes mellitus undergoing primary percutaneous coronary intervention. Am J Cardiol 2013, 111(9):1295-1304.
    [10]Bangalore S, Kumar S, Fusaro M, Amoroso N, Kirtane AJ, Byrne RA, Williams DO, Slater J, Cutlip DE, Feit F. Outcomes with various drug eluting or bare metal stents in patients with diabetes mellitus:mixed treatment comparison analysis of 22,844 patient years of follow-up from randomised trials. BMJ 2012, 345:e5170.
    [11]Sinning JM, Baumgart D, Werner N, Klauss V, Baer FM, Hartmann F, Drexler H, Motz W, Klues H, Voelker W et al. Five-year results of the Multicenter Randomized Controlled Open-Label Study of the CYPHER Sirolimus-Eluting Stent in the Treatment of Diabetic Patients with De Novo Native Coronary Artery Lesions (SCORPIUS) study:a German multicenter investigation on the effectiveness of sirolimus-eluting stents in diabetic patients. Am Heart J 2012, 163(3):446-453,453 e441.
    [12]Aoki J, Ong A, Rodriguez-Granillo G, VanMieghem C, Daemen J, Sonnenschein K, McFadden E, Sianos G, van der Giessen W, de Feyter P et al. The efficacy of sirolimus-eluting stents versus bare metal stents for diabetic patients undergoing elective percutaneous coronary intervention. J Invasive Cardiol 2005, 17(7):344-348.
    [13]Maresta A, Varani E, Balducelli M, Varbella F, Lettieri C, Uguccioni L, Sangiorgio P, Zoccai GB. Comparison of effectiveness and safety of sirolimus-eluting stents versus bare-metal stents in patients with diabetes mellitus (from the Italian Multicenter Randomized DESSERT Study). Am J Cardiol 2008,101(11):1560-1566.
    [14]Chan C, Zambahari R, Kaul U, Lau CP, Whitworth H, Cohen S, Buchbinder M. A randomized comparison of sirolimus-eluting versus bare metal stents in the treatment of diabetic patients with native coronary artery lesions:the DECODE study. Catheter Cardiovasc Interv 2008,72(5):591-600.
    [15]Baumgart D, Klauss V, Baer F, Hartmann F, Drexler H, Motz W, Klues H, Hofmann S, Volker W, Pfannebecker T et al. One-year results of the SCORPIUS study, a German multicenter investigation on the effectiveness of sirolimus-eluting stents in diabetic patients. J Am Coll Cardiol 2007, 50(17):1627-1634.
    [16]Daemen J, Garcia-Garcia HM, Kukreja N, Imani F, de Jaegere PP, Sianos Q van Domburg RT, Serruys PW. The long-term value of sirolimus-and paclitaxel-eluting stents over bare metal stents in patients with diabetes mellitus. Eur Heart J 2007,28(1):26-32.
    [17]Kelly PM, Bliss E, Morton JA, Burns J, McGee JO:Monoclonal antibody EBM/11:high cellular specificity for human macrophages. J Clin Pathol 1988, 41(5):510-515.
    [18]Archie JP, Jr.:Nondimensional normalized femoral Doppler wave-form indices to predict the hemodynamic significance of iliac artery stenosis. Surg Forum 1979,30:191-192.
    [19]Berger VW:Is the Jadad score the proper evaluation of trials? J Rheumatol 2006, 33(8):1710-1711; author reply 1711-1712.
    [20]Munro I, Fox R, Sharp D:Reporting on methods in clinical trials. N Engl J Med 1983,308(10):596-597.
    [21]DerSimonian R, Charette LJ, McPeek B, Mosteller F. Reporting on methods in clinical trials. N Engl J Med 1982,306(22):1332-1337.
    [22]Mantel H, Forbes WF, Thompson ME, Gibberd RW. Quantitative models of lung cancer mortality. II. Predicting lung cancer mortalities for a population depending on the level of smoking. Can J Public Health 1986,77(3):208-215.
    [23]Williams DH, Davis CE. Reporting of assignment methods in clinical trials. Control Clin Trials 1994,15(4):294-298.
    [24]Kaiser C,Brunner-La Rocca HP,Buser PT,Bonetti PO,Osswald S,Linka A, Bernheim A, Zutter A, Zellweger M, Grize L et al. Incremental cost-effectiveness of drug-eluting stents compared with a third-generation bare-metal stent in a real-world setting:randomised Basel Stent Kosten Effektivitats Trial(BASKET).Lancet 2005,366(9489):921-929.
    [25]Schofer J,Schluter M,Gershlick AH,Wijns W, Garcia E,Schampaert E, Breithardt G. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries:double-blind,randomised controlled trial(E-SIRIUS).Lancet 2003,362(9390):1093-1099.
    [26]Moussa I,Leon MB,Baim DS,O'Neill WW:Popma JJ,Buchbinder M,Midwall J,Simonton CA,Keim E,Wang P et al.Impact of sirolimus-eluting stents on outcome in diabetic patients:a SIRIUS (SIRolImUS-coated Bx Velocity balloon-expandable stent in the treatment of patients with de novo coronary artery lesions)substudy.Circulation 2004,109(19):2273-2278.
    [27]Ortolani P,Ardissino D,Cavallini C,Bramucci E,Indolfi C,Aquilina M, Marzocchi A.Effect of sirolimus-eluting stent in diabetic patients with small coronary arteries (a SES-SMART substudy). Am J Cardiol 2005, 96(10):1393-1398.
    [28]卢剑华,胡允兆,黎文生.CypherTM药物涂层支架治疗糖尿病冠心病的疗 效观察.实用医学杂志 2011,27(15):2809-2811.
    [29]李新明,王圣,李斌,王天松,陈关良,王卫,马建林,王青,苏哲坦.钻合金支架点状置入与雷帕霉素洗脱支架治疗糖尿病小血管长病变的对照研究.中华心血管病杂志 2006,34(11):997-999.
    [30]武志东,杨震坤,沈卫峰,王曼虹.冠心病并糖尿病患者使用药物支架与普通支架初步随访结果比较.临床心血管病杂志2004,20(12):718-719.
    [31]赵红丽,李潞,王帅,李纯.国产可降解雷帕霉素药物洗脱支架置入的疗效评价:与金属裸支架比较.中国组织工程研究与临床康复2011,15(3):487-490.
    [32]姜玉凤,张春来,许丹,卢峰,纪征,孙淑贤,杨立明,姜玉如,尚小明.进口雷帕霉素洗脱支架治疗冠心病合并糖尿病患者的疗效观察.现代预防医学2007,34(15):2966-2967.
    [33]方跃华,沈卫峰,张瑞岩,张建盛,张宪.雷帕霉素洗脱支架在冠心病合并2型糖尿病患者中的应用.上海第二医科大学学报2005,25(8):792-794.
    [34]张焕轶,李金龙,吴云,孙卫东,尹鲁骅,王伯松:雷帕霉素洗脱支架在合并糖尿病的冠心病患者介入治疗中的临床应用.泰山医学院学报2006,27(3):236-238.
    [35]刘海伟,韩雅玲,荆全民,王守力,王祖禄,王冬梅,马颖艳,栾波,王耿.药物洗脱支架治疗2型糖尿病合并冠心病多支血管病变的中期疗效.解放军医学杂志2006,31(6):518-520.
    [36]Bartnik M, Ryden L, Ferrari R, Malmberg K, Pyorala K, Simoons M, Standl E, Soler-Soler J, Ohrvik J. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. Eur Heart J 2004,25(21):1880-1890.
    [37]Hu DY, Pan CY, Yu JM. The relationship between coronary artery disease and abnormal glucose regulation in China:the China Heart Survey. Eur Heart J 2006, 27(21):2573-2579.
    [38]Chih S, McQuillan BM, Kaye J, Beilby JP, Hung J. Abnormal glucose regulation in an Australian acute coronary syndrome population:a prospective study. Diabetes Res Clin Pract 2008,81(3):303-309.
    [39]Abizaid A, Costa MA, Centemero M, Abizaid AS, Legrand VM, Limet RV, Schuler G, Mohr FW, Lindeboom W, Sousa AG et al. Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients:insights from the Arterial Revascularization Therapy Study (ARTS) trial. Circulation 2001,104(5):533-538.
    [40]Jimenez-Quevedo P, H.L., Gomez-Hospital JA, Iniguez A, Sanroman A, Alfonso F, Hernandez-Antolin R, Angiolillo DJ, Banuelos C, Escaned J, Gonzalo N, Fernandez C, Macaya C, Sabate M. Sirolimus-eluting stent versus bare metal stent in diabetic patients:the final five-year follow-up of the DIABETES trial. EuroIntervention.,2013. Mar 22. pii:20120620-01. [Epub ahead of print]
    [41]Patti G, Nusca A, Di Sciascio G Meta-analysis comparison (nine trials) of outcomes with drug-eluting stents versus bare metal stents in patients with diabetes mellitus. Am J Cardiol 2008,102(10):1328-1334.
    [42]Galassi AR, T.S., Costanzo L, Campisano MB, Barrano G, Tamburino C. Long-term clinical and angiographic results of Sirolimus-Eluting Stent in Complex Coronary Chronic Total Occlusion Revascularization:the SECTOR registry. J Interv Cardiol.,2011.24(5):p.426-436.
    [43]De Waha A, D.A. Kufner S, Baumgart D, Sabate M, Maresta A, Schomig A, Kastrati A., Long-term outcome after sirolimus-eluting stents versus bare metal stents in patients with diabetes mellitus:a patient-level meta-analysis of randomized trials. Clin Res Cardiol.,2011.100(7):p.561-570.
    [44]Kandzari DE, R.S., Moses JW, Dzavik V, Strauss BH, Kutryk MJ, Simonton CA, Garg J, Lokhnygina Y, Mancini GB, Yeoh E, Buller CE; ACROSS/TOSCA-4 Investigators. Clinical and angiographic outcomes with sirolimus-eluting stents in total coronary occlusions:the ACROSS/TOSCA-4 (Approaches to Chronic Occlusions With Sirolimus-Eluting Stents/Total Occlusion Study of Coronary Arteries-4) trial. JACC Cardiovasc Interv.,2009.2(2):p.97-106.
    [45]Byrne RA, K.A., Is there a preferable DES in diabetic patients? A critical appraisal of the evidence. Catheter Cardiovasc Interv.,2008.72(7):p.944-949.
    [46]Thompson SG, H.J. How should meta-regression analyses be undertaken and interpreted? Stat Med.,2002.21(11):p.1559-1573.
    [47]R., D. Meta-analysis in the design and monitoring of clinical trials. Stat Med., 1996.15(12):p.1237-1248.
    [48]Geller N, F.L., Lee YJ, DerSimonian R. Conference on meta-analysis in the design and monitoring of clinical trials. Stat Med.,1999.18(6):p.753-754.
    [49]Moreno SG, S.A., Thompson JR, Ades AE, Abrams KR, Cooper NJ. A generalized weighting regression-derived meta-analysis estimator robust to small-study effects and heterogeneity. Stat Med.,2012.31(14):p.1407-1417.
    [50]DerSimonian R, L.R. Resolving discrepancies between a meta-analysis and a subsequent large controlled trial. JAMA.,1999.282(7):p.664-670.
    [51]DerSimonian R, K.R., Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials.2007.28(2):p.105-114.
    [52]Egger M, D.S.G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ.,1997.315(7109):p.629-634.
    [53]Sterne JA, E.M. Funnel plots for detecting bias in meta-analysis:guidelines on choice of axis. J Clin Epidemiol.,2001.54(10):p.1046-1055.
    [54]Zwahlen M, R.A., Egger M. Meta-analysis in medical research:potentials and limitations. Urol Oncol.,2008.26(3):p.320-329.
    [55]Sterne JA, S.A., Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rucker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JP. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ.,2011.343:p. D4002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700