用户名: 密码: 验证码:
NF-κB和PPAR-γ交叉对话调控LDL穿胞及其在动脉粥样硬化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:高脂血症是动脉粥样硬化(atherosclerosis,AS)发生发展的主要危险因素之一,其中低密度脂蛋白(LDL)在内皮细胞下的滞留被认为是AS的始发因素,而LDL在血管内皮细胞下的滞留主要通过在血管内皮细胞中穿胞(transcytosis)实现。TNF-α是已知能促AS形成与发展的重要炎症介质,但其促AS发生发展的具体机制尚未阐明。在本论文中,我们首先建立体外穿胞模型,观察TNF-α对LDL在人脐静脉内皮细胞(HUVECs)中穿胞的影响及对AS发生发展的影响,并进一步探讨与TNF-α密切相关的两个转录因子核转录因子(NF-κB)和过氧化物酶体增殖物激活受体-γ(PPAR-γ)在该过程中的作用。
     方法:通过transwell嵌套培养技术,用FITC标记LDL,将含有6倍浓度未标记的LDL作为竞争组,通过荧光酶标仪检测transwell小室下层液体的荧光密度,并计算其差值来建立HUVECs体外LDL穿胞模型。用建立的体外穿胞模型检测穿胞抑制剂,NF-κB抑制剂以及PPAR-γ抑制剂对TNF-α所引起穿胞的影响;激光共聚焦方法检测LDL在人脐静脉内皮细胞中的摄取量以及在人脐静脉血管壁的滞留量;在ApoE-/-小鼠,用油红O染色检测主动脉根部斑块的形成,用免疫组化方法检测斑块处CD154信号的表达情况。用基于ELISA转录因子活性测定方法检测总蛋白中NF-κB和PPAR-γ的活性;WesternBlot方法检测LDL穿胞相关蛋白LDLR,caveolin-1和caveolin-2的表达。
     结果:本文在HUVECs中成功建立了LDL体外穿胞的模型,且发现其具有浓度依赖性。当LDL的浓度从50μg/ml增加到100μg/ml时,LDL穿胞量显著增加,表明LDL的穿胞具有明显的浓度依赖性。在建立的体外穿胞模型中发现,TNF-α能够增加LDL在内皮细胞中的穿胞,而且该作用不仅能被穿胞抑制剂NEM和M-β-CD(MCD)所阻断,而且也能被NF-κB抑制剂Bay-11-7082(Bay)和(PDTC)以及PPAR-γ的抑制剂GW9662,T0070907(T007)所降低。同样,在激光共聚焦实验中发现,穿胞抑制剂NEM和MCD,NF-κB和PPAR-γ的抑制剂也能减少TNF-α引起的LDL颗粒在内皮细胞中的摄取以及血管壁的滞留。在ApoE-/-小鼠,我们发现注射TNF-α能加速血管壁AS斑块的形成,且TNF-α促进早期AS斑块形成的作用不仅能被NEM和MCD这两个穿胞抑制剂所抑制,而且也能被NF-κB抑制剂PDTC,PPAR-γ抑制剂GW9662所抑制。我们进一步研究了CD40配体CD154的表达,其参加早期AS的形成,结果表明NF-κB和PPAR-γ抑制剂能阻止斑块处CD154的表达。用基于ELISA的转录因子活性测定方法发现,TNF-α不仅能够增加NF-κB活性,也能够增加PPAR-γ的活性;NF-κB抑制剂Bay和PDTC不仅抑制NF-κB活性,也能抑制PPAR-γ的活性。同样,PPAR-γ的抑制剂GW9662,T007不仅能逆转TNF-α引起的PPAR-γ活性的增加,也能在一定程度上抑制TNF-α引起的NF-κB活性的增加。采用交叉结合试验进一步探讨NF-κB和PPAR-γ两者之间的相互作用,给予TNF-α刺激后形成的活性转录因子复合物既包含NF-κBP65亚基,也包括PPAR-γ,且该复合体不仅结合NF-κB反应元件(KBRE),也结合PPAR-γ反应元件(PPRE)。在用WesternBlot方法检测LDL穿胞相关蛋白中,TNF-α能够增加低密度脂蛋白受体LDLR,小凹蛋白caveolin-1,caveolin-2的表达,且该作用既能被NF-κB抑制剂所阻断,也能被PPAR-γ抑制剂所拮抗。
     结论:LDL穿胞具有浓度依赖性,给临床上高脂血症促发AS提供了重要的实验依据。TNF-α可通过直接刺激LDL在血管内皮细胞穿胞、增加LDL在血管壁滞留进而促进AS的形成。在该过程中,NF-κB和PPAR-γ两个转录因子均被激活并且交叉对话,相互结合形成活性复合物,从而促进LDL穿胞相关蛋白包括LDLR,Caveolin-1,-2的转录和表达,进而促进LDL穿胞和AS的形成。抑制二者中的任一转录因子的激活,均能起到预防和治疗AS的作用。
Objective: Hyperlipidemia is one of the most important causes of atherosclerosis (AS). Numerous reviews have suggested that subendothelial retention of low density lipoprotein (LDL) is the initial steps of AS and the retention of LDL is achieved by the transcytosis of LDL across the vascular endothelial cells. Tumor necrosis factor-a (TNF-a) is an established pro-atherosclerotic factor, but the mechanism is not completely understood. Here we first established the model of the transcytosis in vitro and explored whether or not TNF-a could promote atherosclerosis by directly increasing the transcytosis of LDL particles across human umbilical vein endothelial cells (HUVECs), and further explore the roles of NF-κB and PPAR-γ related with TNF-a in this process.
     Methods:In the present study, we developed an in vitro model to investigate the transcytosis of LDL across a tight monolayer of HUVEC cultured in transwell-inserts by using LDL labeled with Fluorescein isothiocyanate (FITC) in the absence or presence of6-fold excess of unlabeled LDL. The effects of TNF-α and inhibitor on the transcytosis of LDL across vascular endothelial cells were also investigated by established the model of the transcytosis; FITC-LDL fluorescence intensity in HUVECs and human umbilical vein was measured by confocal microscope. Aortic roots were stained for lipids with Oil-red O for evaluation of aortic lesions in ApoE-/-mice. CD154signal were used by immunohistochemical analyses. By an ELISA-based transcription activity assay, the TNF-α-stimulated NF-κB and PPAR-y activities in HUVECs were determined. TNF-α-stimulated and inhibitor changes in protein expression of LDLR, Caveolin-land Caveolin-2in HUVECs were measured by Western blot.
     Results:With this model the concentration dependent transcytosis of LDL across endothelial cells were characterized in experiments for the first time. When the concentration of LDL increased from50μg/ml to100μg/ml, the amount of LDL transcytosis also increased significantly, exhibiting an apparent concentration dependent manner. By establishing an in-vitro model to assay the transcytosis of LDL across vascular endothelial cells, we first demonstrated that TNF-α could significantly stimulate the transcytosis of LDL across endothelial cells and this effect can blocked not only by the inhibitors of transcytosis, NEM and M-β-CD (MCD), but also by NF-κB inhibitors Bay-11-7082(Bay) and PDTC and PPAR-γ inhibitors GW9662and T0070907(T007). Similarly, in the confocal laser experiments we found that the uptake and retention of TNF-a-stimulated LDL particles were inhibited by transcytosis inhibitors NEM and MCD and the inhibitor of NF-κB and PPAR-γ. In ApoE-/-mice, we found TNF-a injection indeed accelerates the formation of atherosclerotic plaque in the arteries, further supporting the long standing view of TNF-a as a pro-atherogenesis factor. Blockade of the transcytosis of LDL by NEM and MCD substantially prevents the early atherosclerosis changes in artery walls, suggesting a critical role of LDL transcytosis in the initiation or development of AS. Meanwhile, consistent with above in-vitro findings, the TNF-α-promoted early atherosclerotic changes in artery walls were not only reversed by NF-κB inhibitors, PDTC, but also attenuated by PPAR-γ inhibitors, GW9662. In addition, we studied the expression of the CD40ligand, CD154, which is involved in the early atherogenesis and contributes to the initial recruitment of inflammatory cells to damaged endothelium. Our results showed both NF-κB and PPAR-γ inhibitors lowered the CD154expression in plaque which was substantially elevated by TNF-α in ApoE-/-mice. By using an ELISA-based transcriptional factor-DNA binding activity assay, we found TNF-α could significantly activate NF-κB, howeve, the activity of PPAR-γ was also up-regulated by TNF-α. NF-κB inhibitors, Bay and PDTC primarily prevented the TNF-a-stimulated NF-κB activation, but also reversed the TNF-a-stimulated PPAR-γ activity to some extent. Likewise, PPAR-γ inhibitors, GW9662and T007almost completely abolished the TNF-α-stimulated PPAR-γ activation, but also blocked the TNF-a-stimulated NF-κB activity. To further illustrate the relationship of NF-κB and PPAR-γ transcription factor, we found that NF-κB and PPAR-γ could form an active transcriptional compound which include NF-κB P65subunit and PPAR-γ and bind with NF-κB response elements (KBRE) and PPAR-γ response elements (PPRE) respectively, and promote each other's activation after TNF-a stimulation by cross-binding tests. We found TNF-α could significantly up-regulate the expression of low density lipoprotein protein receptor (LDLR) and caveolae protein caveolin-1, caveolin-2, and this effect was reduced by both NF-κB and PPAR-γ inhibitors. Inhibition of one of the activation of two transcription factors, can play the role of prevention and treatment of the development of AS.
     Conclusion:The transcytosis of LDL exhibits a concentration dependent manner and is the theoretical basis of the increased risk of hyperlipidemia in AS. TNF-α promotes AS by directly increasing the LDL transcytosis across endothelial cells and LDL retention in the vascular wall. In this process, NF-κB and PPAR-γ are activated, enhancing each other's activation and form the active complexes to up-regulate the expression of proteins associated with LDL transcytosis, including LDLR, Caveolin-1and-2, thereby promoting the transcytosis of LDL and progression of AS in vascular walls.
引文
1Lloyd-Jones DM:Cardiovascular risk prediction:basic concepts, current status, and future directions. Circulation2010,121(15):1768-1777.
    2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS et al. Heart disease and stroke statistics--2013update:a report from the American Heart Association Circulation2013,127(1):e6-e245.
    3. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J:Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature2002,417(6890):750-754.
    4Tabas I, Williams KJ, Boren J:Subendothelial lipoprotein retention as the initiating process in atherosclerosis:update and therapeutic implications. Circulation2007,116(16):1832-1844.
    5. Hansson GK, Hermansson A: The immune system in atherosclerosis. Nat Immunol2011,12(3):204-212.
    6. Tuma P, Hubbard AL:Transcytosis:crossing cellular barriers. Physiol Rev2003,83(3):871-932.
    7. Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R: A new function for the LDL receptor:transcytosis of LDL across the blood-brain barrier. J Cell Biol1991,138(4):877-889.
    8Ross R:Atherosclerosis--an inflammatory disease. N Engl J Med1999,340(2):115-126.
    9. Klinghammer L, Urschel K, Cicha I, Lewczuk P, Raaz-Schrauder D, Achenbach S, Garlichs CD:Impact of telmisartan on the inflammatory state in patients with coronary atherosclerosis-Influence on IP-10, TNF-alpha and MCP-1. Cytokine2013,62(2):290-296.
    10. Puz P, Lasek-Bal A, Ziaja D, Kazibutowska Z, Ziaja K:Inflammatory markers in patients with internal carotid artery stenosis. Arch Med Sci2013,9(2):254-260.
    11TUMA PL, HUBBARD AL:Transcytosis: crossing cellular barriers. Physiological Reviews2003,83:871-932.
    12. Chen L, Li H, Zhao R, Zhu j:Study progress of cell endocytosis. Chinese-German Journal of Clinical Oncology2009,8(6):P360-P365.
    13Simionescu M, Popov D, Sima A: Endothelial transcytosis in health and disease. Cell Tissue Res2009,335:27-40.
    14M F:The human aorta: sulfate-containing polyuronides and the deposition of cholesterol. Arch Pathol1949,48:342-350.
    15EB S:The relationship between plasma and tissue lipids in human atherosclerosis. Adv Lipid Res1974,12:1-49.
    16SR S, B R, P V, GS B:Proteoglycans, lipoproteins, and atherosclerosis Adv Exp Med Biol1991,285:373-381.
    17N S, A S, A D, D T, M S:Pathobiochemical changes of the arterial wall at the inception of atherosclerosis. Curr Top Pathol1993,87(1-45).
    18RW W:Morphological characteristics of the developing atherosclerotic plaque: animal studies and studies of lesions from young people. Atheroscler Rev1991,23:91-103
    19. HC S, AB C, S G, JR G, Jr IW, ME R, SA S, CJ S, WD W, RW W:A definition of initial, fatty streak, and intermediate lesions of atherosclerosis:a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association Arterioscler Thromb1994,14.
    20Frank PG, Pavlides S, Lisanti MP:Caveolae and transcytosis in endothelial cells:role in atherosclerosis. Cell Tissue Res2009,335:41-47.
    21. Ma F, Wang L:Gene mutation analysis of familial hypercholesterolemia patients. Nanhua University.
    22. Lusis AJ:Atherosclerosis. Nature2000,407(6801):p.233-241.
    23Tabas I, Williams KJ, Boren J:Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis:Update and Therapeutic Implications. Circulation2007,116:1832-1844.
    24. Zhao M HZ, Gao X, Chen Y, Zhou M, Liu S:Highly Effective and Simple Method of Labeling Human Low Density Lipoprotein with125I. Academic Journal of The First Military Medical University1997,17(3):3.
    25Nachman RL, Jaffe EA:Endothelial cell culture: beginnings of modern vascular biology. JClin Invest2004,114(8):4.
    26. Cankova Z, Huang J-D, Kruth HS, Johnson M:Passage of low-density lipoproteins through Bruch's membrane and choroid. Experimental Eye Research2011:1-9.
    27Libby P:Vascular biology of atherosclerosis:overview and state of the art. Am J Cardiol2003,91:3-6.
    28Williams KJ, Tabas I:The Response-to-Retention Hypothesis of Early Atherogenesis. Arterioscler Thromb Vase Bio1995May,15(5):551-561.
    29Jona WK, Irab T:The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol1998Oct9,9:471-474.
    30. Libby P, Ridker PM, Hansson GK:Progress and challenges in translating the biology of atherosclerosis. Nature2011MAY19,473(317-325).
    31. Steinberg D:The Cholesterol Wars:the Skeptics vs. the Preponderance of Evidence1st edn Elsevier2007.
    32. Goldstein JL, Brown MS:The LDL receptor. Arterioscler. Thromb Vase Biol2009,29:431-438.
    33. Hansen CG, Nichols BJ:Molecular mechanisms of clathrin-independent endocytosis. Journal of Cell Science2009,122:1713-1721.
    34Gao H, Shi W, Freund LB:Mechanics of receptor-mediated endocytosis. PNAS2005July5,102(27):9469-9474.
    35PG F:Endothelial caveolae and caveolin-1as key regulators of atherosclerosis. Am J Pathol2010Aug,177(2):998-1003.
    36PG F, S P, MP L:Caveolae and transcytosis in endothelial cells:role in atherosclerosis. Cell Tissue Res2009Jan,335(1):41-47.
    37A vE, L R: Transendothelial lipoprotein transport and regulation of endothelial permeability and integrity by lipoproteins Curr Opin Lipidol2009Jun,20(3):197-205.
    38. Zhao M, Huang Z, Gao X, Chen Y, Zhou M, Liu S:Highly Effective and Simple Method of Labeling Human Low Density Lipoprotein with1251Academic Journal of The First Military Medical University1997,17(3):230-232.
    39. Wang H, Liu C, Ren Y, Xu Y, Wang H:Low Density Lipoprotein of Hmnan1251Solid Phase Label of with Iodogen ION EXCHANG E AND ADSORP11ON1995,11(3):264-267.
    40McFarlane:AS: Efficient trace-labelling of proteins with iodine. Nature1958:182:153.
    41. Dehouck B, Fenart L, Dehouck M-P, Pierce A, Torpier G, Cecchelli R: A New Function for the LDL Receptor: Transcytosis of LDL across the Blood-Brain Barrier. JCell Biol1997Aug25,138(4):877-889.
    42. Klein RL, Ascencao JL, Mironova M, Huang Y, Lopes-Virella MF:Effect of Inflammatory Cytokines on the Metabolism of Low-Density Lipoproteins by Human Vascular Endothelial Cells. Metabolism2001Jan,50(1):99-106.
    43H R, G S, G A: Topography and dynamics of receptors for acetylated and malondialdehyde-modifyied low density lipoproteins in the plasma membrane of mouse peritoneal macrophages as visualized by colloidal gold in conjunction with surface replicas. J Histochem Cytochem1984,32:1017-1027.
    44JJ MdL, EJ A, A P, M dlG, E K: Electrothermal atomic absorption spectrometric diagnosis of familial hypercholesterolemia. Anal Chem2000Jun1,72(11):2046-2013.
    45. Roach PD, Zollinger M, Noel S-P:Detection of the low density lipoprotein (LDL) receptor on nitrocellulose paper with colloidal gold-LDL conjugates Journal of Lipid Research1987,28:1515-1521.
    46. Vasile E, Simionescu M, Simionescu N: Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol1983,96(6):1677-1689.
    47. Vasile E, Antohe F, Simionescu M, Simionescu N:Transport pathways of beta-VLDL by aortic endothelium of normal and hypercholesterolemic rabbits. Atherosclerosis1989,75(2-3):195-210.
    48. Antohe F, Poznansky MJ, Simionescu M:Low density lipoprotein binding induces asymmetric redistribution of the low density lipoprotein receptors in endothelial cells. Eur J Cell Biol1999,78(6):407-415.
    49. Tuma PL, Hubbard AL:Transcytosis:crossing cellular barriers. Physiol Rev2003,83(3):871-932.
    50Manduteanu I, Simionescu M:Inflammation in atherosclerosis:a cause or a result of vascular disorders? J Cell Mol Med2012,16(9):1978-1990.
    51Willerson JT, Ridker PM:Inflammation as a cardiovascular risk factor. Circulation2004,109(21Suppl1):II2-10.
    52. Xiao N, Yin M, Zhang L, Qu X, Du H, Sun X, Mao L, Ren G, Zhang C, Geng Y et al. Tumor necrosis factor-alpha deficiency retards early fatty-streak lesion by influencing the expression of inflammatory factors in apoE-null mice. Mol Genet Metab2009,96(4):239-244.
    53Hong Wang AXWaEJB:Caveolin-1is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab2011,300:11.
    54. Cheng X, Chen Y, Xie JJ, Yao R, Yu X, Liao MY, Ding YJ, Tang TT, Liao YH, Cheng Y: Suppressive oligodeoxynucleotides inhibit atherosclerosis in ApoE(-/-) mice through modulation of Thl/Th2balance. J Mol Cell Cardiol/2008,45(2):168-175.
    55. Ni W, Egashira K, Kitamoto S, Kataoka C, Koyanagi M, Inoue S, Imaizumi K, Akiyama C, Nishida KI, Takeshita A: New anti-monocyte chemoattractant protein-1gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation2001,103(16):2096-2101.
    56. Jin S, Lu D, Ye S, Ye H, Zhu L, Feng Z, Liu S, Wang D, Hu Q:A simplified probe preparation for ELISA-based NF-kappaB activity assay JBiochem Biophys Methods2005,65(1):20-29.
    57. Carlsson O, Rosengren BI, Rippe B: Transcytosis inhibitor N-ethylmaleimide increases microvascular permeability in rat muscle. Am J Physiol Heart Circ Physiol2001,281(4):H1728-1733.
    58. Gupta SC, Sundaram C, Reuter S, Aggarwal BB:Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta2010,1799(10-12):775-787.
    59. Seargent JM, Yates EA, Gill JH: GW9662, a potent antagonist of PPARgamma, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARgamma agonist rosiglitazone, independently of PPARgamma activation. Br J Pharmacol2004,143(8):933-937.
    60. Lee G, El wood F, McNally J, Weiszmann J, Lindstrom M, Amaral K, Nakamura M, Miao S, Cao P, Learned RM et al. T0070907, a selective ligand for peroxisome proliferator-activated receptor gamma, functions as an antagonist of biochemical and cellular activities. J Biol Chem2002,277(22):19649-19657.
    61. Schonbeck U, Sukhova GK, Shimizu K, Mach F, Libby P:Inhibition of CD40signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A2000,97(13):7458-7463.
    62Lutgens E, Daemen MJ:CD40-CD40L interactions in atherosclerosis. Trends Cardiovasc Med2002,12(1):27-32.
    63. Van Antwerp DJ, Martin SJ, Verma IM, Green DR:Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol1998,8(3):107-111.
    64. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P:The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity1998,8(3):297-303.
    65. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P:Tumor necrosis factor-mediated cell death:to break or to burst, that's the question. Cell Moll Life Sci2010,67(10):1567-1579.
    66Ye J:Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun2008,374(3):405-408.
    67. Sung CK, She H, Xiong S, Tsukamoto H: Tumor necrosis factor-alpha inhibits peroxisome proliferator-activated receptor gamma activity at a posttranslational level in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol2004,286(5):G722-729.
    68. Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAKl/TABl/NIK cascade. Nat Cell Biol2003,5(3):224-230.
    69. Kim JY, Song EH, Lee HJ, Oh YK, Choi KH, Yu DY, Park SI, Seong JK, Kim WH:HBx-induced hepatic steatosis and apoptosis are regulated by TNFR1-and NF-kappaB-dependent pathways. J Mol Biol2010,397(4):917-931.
    70Wen X, Li Y, Liu Y:Opposite action of peroxisome proliferator-activated receptor-gamma in regulating renal inflammation:functional switch by its ligand. J Biol Chem2010,285(39):29981-29988.
    71. Gough NR:NF-κB Needs PPAR-γ Sci Signal2010,3(141):1.
    72Palade GE, Bruns RR:Structural modulations of plasmalemmal vesicles. J Cell Biol1968,37(3):633-649.
    73. Pavlides S, Gutierrez-Pajares JL, Danilo C, Lisanti MP, Frank PG: Atherosclerosis, caveolae and caveolin-1. Adv Exp Med Biol2012,729:127-144.
    74Frank PG, Lisanti MP:Caveolin-1and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol2004,15(5):523-529.
    75Frank PG: Endothelial caveolae and caveolin-1as key regulators of atherosclerosis. Am.J Pathol2010,177(2):544-546.
    76. Scheiffele P, Verkade P, Fra AM, Virta H, Simons K, Ikonen E:Caveolin-1and-2in the exocytic pathway of MDCK cells J Cell Biol1998,140(4):795-806.
    77. Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP:Role of caveolin-1in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol2008,295(1):C242-248.
    78. Burgermeister E, Tencer L, Liscovitch M:Peroxisome proliferator-activated receptor-gamma upregulates caveolin-1and caveolin-2expression in human carcinoma cells. Oncogene2003,22(25):3888-3900.
    79. Garrean S, Gao XP, Brovkovych V, Shimizu J, Zhao YY, Vogel SM, Malik AB:Caveolin-1regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide J Immunol2006,177(7):4853-4860.
    80. Hamanaka R, Kohno K, Seguchi T, Okamura K, Morimoto A, Ono M, Ogata J, Kuwano M:Induction of low density lipoprotein receptor and a transcription factor SP-1by tumor necrosis factor in human microvascular endothelial cells. JBiol Chem1992,267(19):13160-13165.
    81. Huang Z, Zhou X, Nicholson AC, Gotto AM, Jr., Hajjar DP, Han J: Activation of peroxisome proliferator-activated receptor-alpha in mice induces expression of the hepatic low-density lipoprotein receptor Br J Pharmacol2008,155(4):596-605.
    82. Duan Y, Chen Y, Hu W, Li X, Yang X, Zhou X, Yin Z, Kong D, Yao Z, Hajjar DP et al. Peroxisome Proliferator-activated receptor gamma activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type9and low density lipoprotein receptor expression. J Biol Chem2012,287(28):23667-23677.
    1.张又枝,金肆:内皮细胞Caveolae及其蛋白Caveolin、Cavin研究进展.中南医学杂志2012,40(6):7.
    2Palade GE:An electron microscope study of the mitochondrial structure.J Histochem Cytochem1953,1(4):188-211.
    3Yamada E: The fine structure of the renal glomerulus of the mouse.J Histochem Cytochem1955,3(4):309.
    4Shin JS, Gao Z, Abraham SN:Involvement of cellular caveolae in bacterial entry into mast cells. Science2000,289(5480):785-788.
    5Jin S, Zhang Y, Yi F, Li PL:Critical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol2008,28(3):485-490.
    6Jin S, Zhou F, Katirai F, Li PL:Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal2011,15(4):1043-1083.
    7Jin S, Zhou F:Lipid raft redox signaling platforms in vascular dysfunction: features and mechanisms. Curr Atheroscler Rep2009,11(3):220-226.
    8. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP:Cell-type and tissue-specific expression of caveolin-2. Caveolins1and2co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem1997,272(46):29337-29346.
    9Rahman A, Sward K:The role of caveolin-1in cardiovascular regulation. Acta Physiol(Oxf)2009,195(2):231-245.
    10. Vinten J, Johnsen AH, Roepstorff P, Harpoth J, Tranum-Jensen J: Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta2005,1717(1):34-40.
    11. Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF:Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. CellMetab2008,8(4)310-317
    12. Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function.Cell2008,132(1):113-124.
    13Gustincich S, Schneider C:Serum deprivation response gene is induced by serum starvation but not by contact inhibition Cell Growth Differ1993,4(9):753-760.
    14. Mineo C, Ying YS, Chapline C, Jaken S, Anderson RG:Targeting of protein kinase Calpha to caveolae. J Cell Biol1998,141(3):601-610.
    15. Hansen CG, Bright NA, Howard G, Nichols BJ:SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol2009,11(7):807-814.
    16. Izumi Y, Hirai S, Tamai Y, Fujise-Matsuoka A, Nishimura Y, Ohno S:A protein kinase Cdelta-binding protein SRBC whose expression is induced by serum starvation. JBiol Chem1997,272(11):7381-7389.
    17. McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ, Luby-Phelps K, Anderson RG:SRBC/cavin-3is a caveolin adapter protein that regulates caveolae function. EMBOJ2009,28(8):1001-1015.
    18. Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, Abankwa D, Luetterforst R, Fernandez-Rojo M, Breen MR et al. MURC/Cavin-4and cavin family members form tissue-specific caveolar complexes J Cell Biol2009,185(7):1259-1273.
    19. Ogata T, Ueyama T, Isodono K, Tagawa M, Takehara N, Kawashima T, Harada K, Takahashi T, Shioi T, Matsubara H et al. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol2008,28(10):3424-3436.
    20. Ogi M, Yokomori H, Oda M, Yoshimura K, Nomura M, Ohshima S, Akita M, Toda K, Ishii H: Distribution and localization of caveolin-1in sinusoidal cells in rat liver. Med'Electron Microsc2003,36(1):33-40.
    21. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T:Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells J Biol Chem1996,271(37):22810-22814.
    22. Michel JB, Feron O, Sacks D, Michel T: Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin J Biol Chem1997,272(25):15583-15586.
    23Sowa G, Pypaert M, Sessa WC:Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci U S A2001,98(24):14072-14077.
    24. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1gene-disrupted mice Science2001,293(5539):2449-2452.
    25. Albinsson S, Shakirova Y, Rippe A, Baumgarten M, Rosengren BI, Rippe C, Hallmann R, Hell strand P, Rippe B, Sward K:Arterial remodeling and plasma volume expansion in caveolin-1-deficient mice. Am JPhysiol Regul Integr Comp Physiol2007,293(3):R1222-1231.
    26. Dubroca C, Loyer X, Retailleau K, Loirand G, Pacaud P, Feron O, Balligand JL, Levy BI, Heymes C, Henrion D:RhoA activation and interaction with Caveolin-1are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries. Cardiovasc Res2007,73(1):190-197.
    27. Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J, Jr., Chien KR:Defects in caveolin-1cause dilated cardiomyopathy and pulmonary hypertension in knockout mice Proc Natl Acad Sci U S A2002,99(17):11375-11380.
    28. Desjardins F, Lobysheva I, Pelat M, Gallez B, Feron O, Dessy C, Balligand JL: Control of blood pressure variability in caveolin-1-deficient mice:role of nitric oxide identified in vivo through spectral analysis Cardiovasc Res2008,79(3):527-536.
    29. Bernatchez P, Sharma A, Bauer PM, Marin E, Sessa WC:A noninhibitory mutant of the caveolin-1scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. Journal of Clinical Investigation2011,121(9):3747-3755.
    30Pani B, Singh BB:Lipid rafts/caveolae as microdomains of calcium signaling. Cell'Calcium2009,45(6):625-633.
    31Isshiki M, Anderson RG: Calcium signal transduction from caveolae Cell Calcium1999,26(5):201-208.
    32. Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC:Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. JBiol Chem2007,282(22):16631-16643.
    33. Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J:Evidence for a functional role of endothelial transient receptor potential V4in shear stress-induced vasodilatation. Arterioscler Thromb Vase Biol2006,26(7):1495-1502.
    34. Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O et at. Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation:Ca2+signals and gap junction function are regulated by caveolin in endothelial cells. Circulation2008,117(8):1065-1074.
    35Yang B, Rizzo V:TNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol2007,292(2):H954-962.
    36. Zhang AY, Yi F, Zhang G, Gulbins E, Li PL:Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Hypertension2006,47(1):74-80.
    37. Wang L, Sapuri-Butti AR, Aung HH, Parikh AN, Rutledge JC: Triglyceride-rich lipoprotein lipolysis increases aggregation of endothelial cell membrane microdomains and produces reactive oxygen species. Am J Physiol Heart Circ Physiol2008,295(1):H237-244.
    38. Milovanova T, Chatterjee S, Hawkins BJ, Hong N, Sorokina EM, Debolt K, Moore JS, Madesh M, Fisher AB:Caveolae are an essential component of the pathway for endothelial cell signaling associated with abrupt reduction of shear stress. Biochim Biophys Acta2008,1783(10):1866-1875.
    39. Unno M, Matsui T, Ikeda-Saito M:Structure and catalytic mechanism of heme oxygenase. Nat Prod Rep2007,24(3):553-570.
    40. Kim HP, Wang X, Galbiati F, Ryter SW, Choi AM:Caveolae compartmentalization of heme oxygenase-1in endothelial cells FASEB J2004,18(10):1080-1089.
    41. Jin Y, Kim HP, Chi M, Ifedigbo E, Ryter SW, Choi AM:Deletion of caveolin-1protects against oxidative lung injury via up-regulation of heme oxygenase-1. Am J Respir CellMol Biol2008,39(2):171-179.
    42Traub O, Berk BC:Laminar shear stress:mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vase Biol1998,18(5):677-685.
    43. Rizzo V, McIntosh DP, Oh P, Schnitzer JE:In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association.J Biol Chem1998, 273(52):34724-34729.
    44Rizzo V, Sung A, Oh P, Schnitzer JE:Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem1998,273(41):26323-26329.
    45. Sun RJ, Muller S, Stoltz JF, Wang X: Shear stress induces caveolin-1translocation in cultured endothelial cells Eur Biophys J2002,30(8):605-611.
    46. Yang B, Radel C, Hughes D, Kelemen S, Rizzo V:p190RhoGTPase-activating protein links the betal integrin/caveolin-1mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vase Biol2011,31(2):376-383.
    47. Albinsson S, Nordstrom I, Sward K, Hellstrand P:Differential dependence of stretch and shear stress signaling on caveolin-1in the vascular wall. Am J Physiol Cell Physiol2008,294(1):C271-279.
    48Palade GE, Bruns RR:Structural modulations of plasmalemmal vesicles J Cell Biol1968,37(3):633-649.
    49Predescu D, Vogel SM, Malik AB:Functional and morphological studies of protein transcytosis in continuous endothelia. Am J Physiol Lung CellMol Physiol2004,287(5):L895-901.
    50. Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP: Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem2001,276(52):48619-48622.
    51. Rippe B, Rosengren BI, Carlsson O, Venturoli D:Transendothelial transport: the vesicle controversy. J Vase Res2002,39(5):375-390.
    52. Rosengren BI, Rippe A, Rippe C, Venturoli D, Sward K, Rippe B: Transvascular protein transport in mice lacking endothelial caveolae. Am J Physiol Heart Circ Physiol2006,291(3):H1371-1377.
    53. Miyawaki-Shimizu K, Predescu D, Shimizu J, Broman M, Predescu S, Malik AB:siRNA-induced caveolin-1knockdown in mice increases lung vascular permeability via the junctional pathway. Am JPhysiol Lung Cell Mol Physiol2006,290(2):L405-413.
    54. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP:Microvascular hyperpermeability in caveolin-1(-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1null mice. J Biol Chem2002,277(42):40091-40098.
    55. Siddiqui MR, Komarova YA, Vogel SM, Gao X, Bonini MG, Rajasingh J, Zhao YY, Brovkovych V, Malik AB:Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability J Cell Biol2011,193(5):841-850.
    56. Sun Y, Hu G, Zhang X, Minshall RD:Phosphorylation of caveolin-1regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways Circ Res2009,105(7)676-685,615p following685.
    57. Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, Li X, Wang H, Yang XF:Endothelial progenitor cells in atherosclerosis Front Biosci2012,17:2327-2349.
    58Williams KJ, Tabas I:Lipoprotein retention-and clues for atheroma regression. Arterioscler Thromb Vase Biol2005,25(8):1536-1540.
    59. Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP:Genetic ablation of caveolin-1confers protection against atherosclerosis Arterioscler Thromb Vase Biol2004,24(1):98-105.
    60. Fernandez-Hernando C, Yu J, Suarez Y, Rahner C, Davalos A, Lasuncion MA, Sessa WC:Genetic evidence supporting a critical role of endothelial caveolin-1during the progression of atherosclerosis Cell Metab2009,10(1):48-54.
    61. Fernandez-Hernando C, Yu J, Davalos A, Prendergast J, Sessa WC: Endothelial-specific overexpression of caveolin-1accelerates atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol2010,177(2):998-1003.
    62. Scheiffele P, Verkade P, Fra AM, Virta H, Simons K, Ikonen E:Caveolin-1and-2in the exocytic pathway of MDCK cells J Cell Biol1998,140(4):795-806.
    63. Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H, Jr., Christ GJ, Edelmann W et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol2002,22(7):2329-2344.
    64. Xie L, Frank PG, Lisanti MP, Sowa G: Endothelial cells isolated from caveolin-2knockout mice display higher proliferation rate and cell cycle progression relative to their wild-type counterparts. Am J Physiol Cell Physiol2010,298(3):C693-701.
    65. Shatseva T, Lee DY, Deng Z, Yang BB:MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci2011,124(Pt16):2826-2836.
    66. Xie L, Vo-Ransdell C, Abel B, Willoughby C, Jang S, Sowa G: Caveolin-2is a negative regulator of anti-proliferative function and signaling of transforming growth factor-beta in endothelial cells. Am J Physiol Cell Physiol2011,301(5):C1161-1174.
    67Sowa G, Xie L, Xu L, Sessa WC:Serine23and36phosphorylation of caveolin-2is differentially regulated by targeting to lipid raft/caveolae and in mitotic endothelial cells. Biochemistry2008,47(1):101-111.
    68. Wang XB, Lee H, Capozza F, Marmon S, Sotgia F, Brooks JW, Campos-Gonzalez R, Lisanti MP:Tyrosine phosphorylation of caveolin-2at residue27: differences in the spatial and temporal behavior of phospho-Cav-2(pY19and pY27). Biochemistry2004,43(43):13694-13706.
    69Liu L, Pilch PF:A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization JBiol Chem2008,283(7):4314-4322.
    70. Shastry S, Delgado MR, Dirik E, Turkmen M, Agarwal AK, Garg A: Congenital generalized lipodystrophy, type4(CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet A2010,152A(9):2245-2253.
    71. Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R, Schulze A, Lucke B, Lutzkendorf S, Karbasiyan M et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations PLoS Genet2010,6(3):e1000874.
    72. Davalos A, Fernandez-Hernando C, Sowa G, Derakhshan B, Lin MI, Lee JY, Zhao H, Luo R, Colangelo C, Sessa WC:Quantitative proteomics of caveolin-1-regulated proteins:characterization of polymerase i and transcript release factor/CAVIN-1IN endothelial cells Mol Cell Proteomics2010,9(10):2109-2124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700