用户名: 密码: 验证码:
含锰酶模型化合物的合成表征及其催化机理探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含金属锰酶因其独特的生物功能吸引了越来越多的研究兴趣。基于含锰酶的活性中心结构,通过设计并合成与酶活性中心结构类似的金属配合物,模拟酶的催化反应,借此来研究其催化机理,成为研究这些含锰酶的有效方法之一。本论文旨在通过对模型化合物的研究,特别是研究小分子对模型化合物的催化活性的影响,深入了解含锰酶的催化机理。
     基于锰过氧化氢酶及锰超氧化物歧化酶的活性中心,合成了两类希夫碱锰配合物:含Salen类配体的锰配合物以及含Hbap类配体的锰配合物(salen为N,N'-二(亚水杨基)-1,2-乙二胺,Hbap为N-(2-亚水杨基)氨基吡啶)。其中配合物Mn(Brbap)Im、Mn(MeObap)Im、以及还原的Mn(bap)Py为新配合物。应用X-射线单晶衍射、紫外光谱、电喷雾质谱、元素分析和电化学等方法对配合物的结构进行了表征。
     对上述所合成的配合物的锰过氧化氢酶活性及其机理进行了研究。详细分析了配体中苯环上取代基、溶液的酸碱性、小分子有机碱,如咪唑,吡啶等轴向配位对活性的影响。研究发现苯环上给电子基团可以提高配合物的过氧化氢酶活性,而吸电子基团却没有明显的影响。溶液的pH值也可以明显调控salen类锰配合物的催化活性。
     通过结合了小分子碱的配合物与原配合物的比较,我们认为有机小分子碱增强配合物催化活性的机理为:当等当量的小分子碱存在时,它首先与配合物的金属离子配位,形成了一个活性较高的中间体;当过量的碱存在时,除了与金属离子配位外,它们还起到了分子内碱的作用,协助底物质子化作用。
     而对于双核的salen类锰配合物的催化作用是通过不同的机理完成的,它的结构更接近于锰过氧化物酶的活性中心,所以它的活性稍高于单核的类似配合物。
     通过对模拟配合物的结构和催化反应的研究促进了我们对锰过氧化氢酶及锰超氧化物歧化酶的催化反应机理的了解,而且有望在不久的将来将具有催化活性的配合物取代相应的酶运用于实际应用中。
Manganese containing enzymes have attracted much interest due to their unique biological functions. Many information about catalytic mechanisms of these enzymes were obtained with the assistances of their model compounds based on mimic the structure of their activity sites, therefore model compounds study is one of the important method for enzymes research. This study is try to through research the model complex especially the influence of small molecule of the activity of the model complex that to learn the function of the amino residue in the activity site of enzyme during the catalyze reaction.
     Two types of manganese models were synthesized based on the activity sites of the manganese catalase and manganese superoxide dismutase. They are manganese salen complexes and Manganese Hbap complexes. Among them Mn(Brbap)Im, Mn(MeObap)Im and reduced Mn(bap)Py are new compounds which havn't been reported yet. The structures of these compounds were characterized with X-ray diffraction, UV-vis spectroscopy, element analysis, mass spectrometry and cyclic voltammetry.
     The catalytic activities of MnCAT and MnSOD of these compounds were investigated in detail. The influence on catalytic activity by salen ring substitution, pH of the solution, small molecule coordination to the axial site like imidazole or pyridine were discussed. We found that electron-donating groups enhance the reaction rate. And the activity could also tuned by the pH value. Through compare we found that some small molecule organic base like imidazole could enhance the activity. We found that the dinuclear [Mn(salen)]2 showed different catalytic reaction intermediates in the presence and absence of sodium hydroxide.
     The discovery of the catalase-like activity and the base enhancement of these complex provide valuable information for improvement and optimization of the catalase-like activity of any manganese salen complexes.
引文
[1]Oberley L. W. Superoxide Dismutase. CRC Press. Florida.1985
    [2]McCord J., Fridovich M. An enzyme based theory of obligate anaerobiosic:the physiological functi n of superoxide Dismutase. Proc. Natl. Acad Sci. USA.68:5-37
    [3]Marklund S L. Role of toxic effects of oxygen in reperfusion damage. Inorg. Chem.1988, 20:23-29
    [4]McCord J M. Oxygen-derved radicals:a link between reperfusion injyury and inflammation. Fed Proc.1987,46:2402-2420
    [5]J. Dehand., J. Jordanoo., F. Keck. Synthesis of mixed-ligand complexes of manganese with glycine tyrosine anion. Inorg. Chim. Acta.1977,21:13-15
    [6]H. C. Freeman., M. J. Healy., M. L. Schudder. A crystallographic study of the structure of glycyl-L-amino copper(II) hydrate and the conformations of copper complexes. J. Bull. Chem.1977,252:8840-8847
    [7]F. J. Yost., I. Fridovich. Iron containing Superoxide Dismutase from Escherrichia Coil. J. Bull. Chem.1973,248:4905-4908
    [8]D. Xiang., C. Duan., X. Tan. Synthesis, crystal structure and superoxide dismutase activity of a five-coordinated manganese(II) complex. J. Chem. Soc. Dalton. Tran.1998, 1201-1204
    [9]Z. Liao., X. Zheng., B. Luo., L. Shen., D. Li., H. Liu., W. Zhao., Synthesis, characterization and SOD like activities of manganese containing complexes. Polyhedron. 2001,20:2813-2821
    [10]S. Marklund., G. Marklund. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem.1974,47(3):469-474
    [11]L. Magnani., E. M. Gaydou., J. C. Hubaud. Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion. Analytica Chimica Acta.2000,41:209-216
    [12]W. J. Geary., The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev.1971,7(1):81-122
    [13]T. W. Kirby, J. R. Lancaster. Isolation and characterization of iron containing superoxide dismutase of bacterium bryantii. Arch. Biochem. Biopphys.,1981,210:140-148
    [14]J. B. Keele, J. M. McCord and 1. Fridovich, Superoxide Dismutase from Eschefichia Coli, A new manganese containing enzyme. J. Bio. Chem.1970,245:6176-6181
    [15]Vincent L. Pecoraco. Monomeric (benzoato)manganese(II) complexes as manganese superoxide dismutase mimics. Inorg. Chem.1993,32:1879-1880
    [16]Mathur P. Crowder M., Dismukes G C. Dimanganese(II) complexes of a septadentate ligand, functional analogs of the manganese pseudocatalase. J. Am. Chem. Soc.1987, 109:5227-5233
    [17]Pessiki P. J. Dismukes G. C. Structural and Functional Models of the Dimanganese Catalase Enzymes.3. Kinetics and Mechanism of Hydrogen Peroxide Dismutation. J. Am. Chem. Soc.1994,116:898-903
    [18]Boelrijk A. E. M., Dismukes G C. Mechanism of Hydrogen Peroxide Dismutation by a Dimanganese Catalase Mimic:Dominant Role of an Intramolecular Base on Substrate Binding Affinity and Rate Acceleration. Inorg. Chem.2000,39:3020-3028
    [19]Dismukes G. C. Manganese enzymes with binuclear active sites. Chem. Rew.1996, 96:2909-2929
    [20]S. L. Mark. Role of toxic effects of oxygen in reperfusion damage. J. Mol. Cell. Cardiol. 1988,2:23-30
    [21]Luo. Q. H. Synthesis crystal structure and properties of [Cu(tren)imZn(tren)] as a model compound of FeSOD. Science in China Ser B.2000,36(2):170-199
    [22]Liu. X. L, Cheng. Q. Y, Zhou. W. H. Synthesis, crystal and electronic structure, a nd activities of Zinc complexes of N,N-bis(benzimidazol-2-ylmethyl)amine. Acta Chimica Sinica.2001,59(7):1045-1053
    [23]Fridovich, L. Darr, D. J. Chelating agent complexes with manganese superoxide dismutase minics. EurPat. Appl.1989,284:645-657
    [24]Miao, Zh. Zhou, W. H, Liu. Synthesis, Characterization and activity determination of four superoxide dismutase mimetic complexes. Journal of Inorganic Chemistry. 1999,19:537-541
    [25]Z. Liao, W. Liu, J. Liu, et al. A study on superoxide dismutase activity of some model compounds. J. Inorg. Biochem.1994,55:165-174
    [26]Miao, F. M, Fan. Z, Zhou. Synthesis and crystal structure and quantum chemistry of tris(2-benzimidazylmethyl) amine with manganese(II). Acta. Physico. Chimica. Sinica. 1999,15:775-783
    [27]梅光泉,田亚平,方允中等.若干锰(Ⅱ)配合物的合成及其清除活性氧效能的研究.无机化学学报.2002,18(1):357-361.
    [28]Boelrijk A. E. M., Dismukes G. C. Mechanism of Hydrogen Peroxide Dismutation by a Dimanganese Catalase Mimic. Inorg.Chem.2000,39:3020-3028
    [29]Naruta Y., Sasayama, M., Sasaki, T. Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew. Chem. Int. Ed.Engl.1994,33:1839-1845
    [30]Karl Wieghardt.The active site in manganese-containing metalloproteins and inorganic model complexes.Angew Chem Int Ed Engl.1989,28:1153-1172
    [31]Wu A. J., Penner-Hahn J. E., Pecoraro V. L. Structural, Spectroscopic, and Reactivity Models for the Manganese Catalases. Chem. Rev.2004,104:903
    [32]S. Wang, L. Wang, Q. Wang, Q. Luo. Synthesis,characterization and crystal structure of a new tripodal ligand containing imidazole and phenolate moieties and its iron complexes. Inorg. Chim. Acta.1997,254(1):71-77
    [33]Jacobson J.K., Chang W.B., Ci Y.X. Application of metal-porphyrin in analytic chemistry. Anal. Chem. Chin.1994,22:516-529
    [34]乐学义,童明良.氨基酸席大碱类过渡会属SOD模犁配合物的设计、合成、表征及量子化学研究.无机化学学报.2002,18(10):1023-1027
    [35]F. Reynolds, Miquel Costas, Masami Ito, Du-Hwan.4-Nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD):comparison with relevant Fe(II) and Mn(II) model complexes. Biol Inorg Chem.2003,8:263-272.
    [36]Riley D. P. Functional mimics of superoxide dismutase as therapeutic agent. Chem. Rev. 1999,99:2573-2580
    [37]梅光泉.金属酶及其化学模拟.襄樊职业技术学院学报.2004,3(6):1-4
    [38]Rardin R. L., Tolman W. B., Lippard S. Informative for designing more active model compounds of Catalase. J. New J. Chem.1991,15:417-430
    [39]Nicole Reddig, Daniel Pursche and Annette Rompel. Unique example of flexible phenol coordination in mononuclear manganese compounds. The Royal Society of Chemistry. 2004,14:1474-1480
    [40]D. D. Cox, S. J. Benkovic, L. M. Bloom. LMCT Bands as Probes for the Active Sites of Nonheme Iron Oxygenases. Am. Chem. Soc.1988,110:8085-8092
    [41]由业诚,高大彬等.杂环化学.第四版.北京.科学出版社2004,271-289
    [42]Y. H. Zhou, H. Fu, W. X. Zhao,W. L. Chen. Synthesis, structure of mimics for the active site and Arg14 residue of copper, zinc-superoxide dismutase. Inorg. Chem. 2007,46:734-739
    [43]许申鸿,杭瑚,李运平.超氧化物歧化酶邻苯三酚测活法的研究及改进.化学通报.2001,8:516-519
    [44]L. Costanzo, G Deguidi, S. Giuffrida, E. Rizzarelli. Determination of superoxide dismutase-like activity of copper complexes. Relevance of the speciation for the correct interpretation of in vitro O2 scavenger activity. J. Inorg. Biochem.1993,50:273-281
    [45]R. N. Patel. X-band electron paramagnetic resonance, optical spectra and some biological (SOD and antimicrobial activity studies of the copper(II) complexes. Spectrochimica. Acta. Part A.2004,60:2201-2208
    [46]Pelmenschikov, P. E. M. Siegbahn. Copper-zinc superoxide dismutase:theoretical insights into the catalytic mechanism. Inorg. Chem.2005,44(9):3311-3320
    [47]Baudry M., Etienne S., Bruce A. Biochem. Salen-manganese complexes are superoxide dismutase-mimics. Biophys. Res. Commun.1993,192:964-980
    [48]穆玲.铜超氧化物歧化酶模型化合物的设计、合成、表征及构效关系研究.天津师范大学硕士论文,2002.04
    [49]T. O. Slykhouse, J. A. Fee. Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron containing protein of Escherichia Coli.B. J. Biol. Chem.1976,251:5472-5477
    [50]张龙泽,马书林,SOD模拟配合物的研究进展.药学学报,2002,37(3):235-240
    [51]Pamelak. Gonzales, Jing Zhuang, Susana. Doctrow, et al. EUK-8, a Synthetic Superoxide Dismutase and Catalase Mimetic, Ameliorates Acute Lung Injury in Endotoxemic Swine.
    JPET.1995,275:798-800
    [52]Zhang Kunsheng, Tian huilin. Research and function of catalase in organism. Food Science and Technology.2007,1:8-10
    [53]Mc. Cord, Keilin, D. Hemocuprein and hepatoprein-Cu-protein compounds of blood in mammals. Proc. Soc. Biol. Sci.1939,126:303-308
    [54]Stallings, W. C. Wagner, U. G Pattridge, K. Comparison of the crystal structure of genetically engineered human MnSOD and MnSOD from Thermu. Protein Sci.1993, 814-825
    [55]Borgstahl, G. E. Parge, H. E. Hichey, M. J. The structure of human mitochondria manganese reveals a novel tetrameric interface of two helix bundles. Cell.1992, 71:107-118
    [56]Fridovich, I. The role of superoxide radicals in the oxygen enhancement of radication damage. Science,1978,201:875-883
    [57]Parker. M.W, Blake. C. Crystal structure of manganese Superoxide Dismutase from Bacillus stearthermophilus. J. Mol. Biol.1988,199:649-661
    [58]R. G. Bhirud and T. S. Srivastava, Synthesis, characterization and superoxide dismutase activity of some ternary copper(II) complexes. Inorg. Chim. Acta.1991, 179:125-131
    [59]罗勤慧.铜锌超氧配合物歧化酶的模拟化学研究.高等学校化学学报.1997,18(7):1012-1018
    [60]李大珍,程志明.几种铜(Ⅱ)-氨基酸络合物的SOD样活性及配体结构对活性的影响.北京师范大学学报(自然科学版).1996,32(2):251-255
    [61]Youn, H. D. Kim, E. J. Roe, J. H. Hah, Y. C. A novel nickel-containing Superoxide Dismutase from Streptomyces. Biochem. J.1996,318:889-896
    [62]Edwards, R. A. Baker, H. M. Whittaker. Crystal structure of Escherichia coli manganese Superoxide Dismutase at 2.1 A resolution. J. Biol. Inorg. Chem.1998,3:118-123
    [63]廖展如,陈战芬,孟祥高等.金属拟酶抗逆剂的设计与合成.华中师范大学学报:自然科学版.2003,37(3):336-342
    [64]Wong, G. H. W. Goeddel, D. V. Induction of tumor necrosis factor:possible protective mechanism. Science.1998,242:941-943
    [65]王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社.2004,351-383
    [66]Reddig N., Pursche D., Rompel A. Unique example of flexible phenol coordination in mononuclear manganese compounds. J. Chem. Soc., Dalton Trans.2004:1474-1479
    [67]Durot S., Policar C., Pelosi G Structural and magnetic properties of carboxylato-bridged manganese(II) complexes involving tetradentate ligands:Discrete complex and 1D polymers. Inorg. Chem.2003,42:8072-8081
    [68]Kaizer J., Costas M., Que J. L. A Dramatic Push Effect on the Homolysis of FeⅢ(OOR) Intermediates To Form Non-Heme FeⅣ=O Complexes. Angew. Chem. Int. Ed.2003, 42:3671-3673
    [69]Oberley, L. W. Beuttner, G. R. Role of Superoxide Dismutase in cancer, a review. Cancer. Res.1979,391:141-149
    [70]Drazenka,Vedruzi.The Enzymes of Oxalate Metabolism Unexpected Structures and Mechanisms. Arch.Biochem.Biophys,2005,433:176-192
    [71]Goldsmith C. R., Cole A. P., Stack T. D. P. C-H Activation by a Mononuclear Manganese(III) Hydroxide Complex:Synthesis and Characterization of a Manganese-Lipoxygenase Mimic. J. Am. Chem. Soc.2005,127:9904-9908
    [72]Wo ng, G. H. Elwell, J. H. Oberley, Manganese Superoxide Dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell.1989,58:923-931
    [73]James P. C., Pursche D., Hsieh W. Y. Catalytic oxidation of 3,5-Di-tert-butylcatechol by a series of mononuclear manganese complexes:synthesis, structure, and kinetic investigation. Inorg. Chem.2003,42:6274-6279
    [74]Kaizer J., Csay T., Kovari P., Speier G., Parkanyi L. Catalase mimics of a manganese(II) complex:The effect of axial ligands and pH. [J]. Mol. Cataly. A:Chemical.2008, 280:203-209
    [75]薛征,王志林,罗勤慧.单核锰配合物对几类氧化还原酶的功能模拟.无机化学学报,2003,19(10):1033-1036.
    [76]Fuller A. L., Watkins R. W., Dunbar K. R. Manganese(II) chemistry of a new N3O-donor chelate ligand:synthesis, X-ray structures, and magnetic properties of solvent-and oxalate-bound complexe. J. Chem. Soc., Dalton Trans.2005:1891-1900
    [77]Gorecki, M. Beek, Y. Hrtm, J. R. Recombinant human Superoxide Dismutase production and potential therapeutical uses. Free Rad Res Comns.2005,12(13):401-410
    [78]Michelson, A. M. Varitation of Superoxide Dismutases during the development of
    the fruit fly. Academic. Press. London.1977
    [79]Wu J. Z., Bouwman E., Mills A. M. Manganese(II) complexes of a set of 2-aminomethylpyridine-derived ligands bearing a methoxyalkyl arm:syntheses, structures and magnetism. Inorg. Chim. Acta.2004,357:2694-2699
    [80]Vance, C. K. Miller, A. F. A simple proposal that can explain the inactivity of metal-substituted Superoxide Dismutase. J. Am. Chem. Soc.1998,120:461-467
    [81]梅光泉,应惠芳.超氧化物歧化酶中微量元素的化学行为和生物学功效.微量元素与健康研究.2003,20(5):60-70
    [82]瞿庆庆.金属酶及其化学模拟.襄樊职业技术学院学报.2004,3(6):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700