用户名: 密码: 验证码:
细胞色素c向过氧化物酶结构—功能的转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血红素蛋白是一大类含有原卟啉Ⅸ(血红素,heme)作为辅基的金属蛋白,在生命体系中执行着重要的生物功能,如:血红蛋白(hemoglobin,Hb)和肌红蛋白(myoglobin,Mb)等具有载氧功能,细胞色素c(cytochrome c,Cyt c)和细胞色素b_5(cytochrome b_5,Cyt b_5)等具有电子传递功能,细胞色素P450(cytochrome P450,Cyt P450)和细胞色素c过氧化物酶(cytochrome c peroxidase,CcP)等具有生物催化功能,CO敏感器(CooA)和NO敏感器(soluble guanylate cyclase,sGC)具有生物传感功能等。相同的辅基heme如何被不同的蛋白分子所利用,来执行不同的生物功能,一直是化学生物学和蛋白质化学研究领域所关注的重点,人们正试图对这一问题进行解答来认识金属蛋白结构—性质—反应—功能之间所蕴含的微妙关系。
     Cyt c是血红素蛋白中电子传递蛋白的典型代表,其辅基heme与蛋白肽链的结合除了来自heme轴向配体组氨酸(His18)和甲硫氨酸(Met80)的配位作用、氢键和疏水相互作用等非共价键作用方式外,血红辅基heme的两个乙烯基还与蛋白肽链上的结构片段域Cys-Xaa-Xaa-Cys-His(CXXCH)中的两个半胱氨酸形成硫醚键以共价键方式相结合。因而Cyt c的血红素辅基(heme c)与蛋白多肽链之间的结合很牢固,蛋白质的性质相对很稳定。
     正是由于Cyt c蛋白的稳定性使其不但是血红素蛋白结构与功能关系研究的典型代表,而且也是血红素蛋白结构与功能转换研究的良好模板蛋白。虽然Cyt c在生物体内的主要功能是在线粒体中传递电子和参与细胞调亡,在生物体外的一定条件下却也能表现出过氧化物酶活性并具有诸多优点,如:抗热变性、抗有机溶剂等。但与辣根过氧化物酶(horseradish peroxidase,HRP)和细胞色素c过氧化物酶等天然过氧化物酶相比,Cyt c的过氧化物酶活性是很低的,其原因主要在于Cyt c与HRP及CcP等天然过氧化物酶在结构上存在较大的差异。通过晶体结构对比分析,我们不难发现Cyt c与HRP的结构之间主要存在以下区别:首先是血红素辅基heme在HRP中是处于五配位高自旋状态,而在Cyt c中是处于六配位低自旋;其次是HRP中heme的轴向位置有一个组氨酸,但没有与heme配位,而是一个远端组氨酸(distal histidine);除此之外,HRP还有一个带正电荷的远端精氨酸(distal arginine)存在,这些结构特征都是Cyt c所不具备的。HRP所具有的这些结构特点不但有利于过氧化物酶反应过程中活性中间体CompoundⅠ的形成,而且也有利于反应底物与酶的结合。
     虽然对Cyt c蛋白分子进行定点突变及其过氧化物酶活性研究的报道不少,但却几乎没有人对如何将Cyt c转化成为类过氧化物酶(peroxidase-like)分子进行过专门的分子设计。因此通过分子设计和蛋白质工程等方法,将Cyt c这个具有较高稳定性的电子传递蛋白转化为一个具有较高pemxidase-like活性的酶分子,不但有助于我们对血红素蛋白结构—性质—反应—功能之间关系的理解,同时也有可能创造出一个具有一定应用前景的、新的金属蛋白酶。
     通过对Cyt c的晶体结构进行观察分析后,我们发现Pro71几乎位于heme辅基Met80一侧的正上方,如果将Pro71替换成His71后,His71上的Nε原子与heme中心Fe~(3+)间的距离为~5.62(?),非常接近HRP和CcP分子中远端组氨酸Nε原子到heme中心Fe~(3+)的距离(在HRP和CcP中该距离分别为~5.84和~5.55(?))。因而我们通过基因突变方法,首先用一个无配位能力的缬氨酸(Valine,Va1)取代了轴向配体Met80,得到一个Cyt c的单点突变体(Cyt c M80V,M80V);在此基础上又用histidine取代了71位的proline,得到一个双点突变体(Cyt cP71H/M80V,P71H/M80V)。突变体蛋白的peroxidase-like催化活性实验结果显示,Cyt c M80V突变体蛋白的peroxidase-like催化活性确实比野生型细胞色素c(wild type cytochrome c,WT Cyt c)高;然而,再在71位引入一个“distal histidine”后所得Cyt c P71H/M80V双点突变体蛋白的催化活性不仅没有比Cyt c M80V高,反而比WT Cyt c还低。于是我们对P71H/M80V蛋白性质进行了一系列的研究,结果表明可能是由于Cyt c中Ωloop D肽段(residues 70-84)具有很强的柔韧性,使得His71并没有象HRP中的distal histidine一样起到酸碱催化功能,而是与heme发生了配位作用,无论是在氧化态还是还原态都成了heme的第六轴向配体。
     由于在71位引入的histidine没有起到distal histidine的作用,我们对Cyt c分子再次进行分析后发现,Tyr67虽然不象Pro71一样位于heme的正上方(假定heme位于水平面上,第五轴向配体His18位于heme的下方),但也位于heme的斜上方。同时分子模拟结果显示,如果将Tyr67突变成His67后,His67的Nε原子与heme中心Fe~(3+)间的距离为~5.18(?),接近HRP中distal histidine到heme中心Fe~(3+)的距离(~5.84(?)),于是我们构建了Cyt c Y67H和Y67H/M80V突变体基因并进行了蛋白表达和性质研究。研究结果表明,Cyt c Y67H和Y67H/M80V蛋白的过氧化物酶活性都在WT Cyt c的基础上得到了很大的提高;而且在同样条件下,Cyt c Y67H催化氧化邻甲氧基苯酚反应得到的表观二级反应速率常数(k_(cat)/K_m)比天然过氧化物酶HRP还高。
     在天然过氧化物酶(如HRP)中除了有一个远端组氨酸外,还有一个远端精氨酸(distal arginine)。为了模拟过氧化物酶的这一结构,我们又制备了Cyt cY67R和Y67R/P71H/M80V突变体蛋白,并对它们的基本性质和催化活性进行了研究。结果表明在Cyt c的heme腔中引入的arginine(Arg67)确实提高了Cyt c的催化活性,但同时也可能是由于Arg的R基团较大而产生的空间效应影响了底物(guaiacol)的结合,从而导致了米氏常数(K_m)的增加。
     此外,为了进一步研究在heme的轴向配体Met80存在的情况下,Cyt c中第71位的保守氨基酸残基proline被具有较强配位能力的histidine替换后,对Cyt c蛋白结构和性质的影响,我们又制备了Cyt c P71H这个单点突变体蛋白。通过一系列光谱学性质研究后,我们发现在Cyt c P71H中heme的轴向配体随蛋白所处的氧化还原状态不同而发生变化,在氧化态时heme的第六轴向配体是His71,而在还原态时和WT Cyt c一样仍然是Met80。这一研究表明Cyt c分子中位于Ωloop D肽段中的Pro71对稳定Cyt c分子的构象有着重要的作用,在加上Ωloop D这一肽段本身就比较柔韧,所以要想在71位构建一个distal histidine需要重新进行分子设计。
     总之,本论文的这些研究不但丰富了我们对Cyt c分子的认识,同时也进一步拓宽了我们对血红素蛋白结构—性质—反应—功能关系的理解。
Hemoproteins, a large class of metalloproteins which have iron protohemeⅨ(heme) as a common prosthetic group, play versatile roles in biological systems, such as oxygen transport (e.g. hemoglobin, Hb and myoglobin, Mb), electron transfer (e.g. cytochrome c, Cyt c and cytochrome b_5, Cyt b_5) , biological catalysis (e.g. cytochrome P450, Cyt P450 and cytochrome c peroxidase, CcP) and biological sensor (e.g. CooA for CO and sGC for NO). By sharing the same prosthetic group, how various hemoproteins can perform a range of functions by means of different combination of heme and protein scaffolds is a major subject of chemical biology and protein chemistry. People, including chemists and biologists, are attempting to answer such a question so as to understand the precise structure-property-reactivity-function relationship of metalloproteins.
     Cyt c is a typical electron-transfer hemoprotein. In addition to the two axial ligations provided by His18 and Met80, the hydrogen bond and hydrophobic interactions between the heme and the protein polypeptide, the heme also covalently linked to the protein matrix through two thioether bonds which are formed between vinyl groups of the heme and cysteine residues of a classic Cys-Xaa-Xaa-Cys-His (CXXCH) heme-binding motif of the polypeptide chain. Therefore, Cyt c is a very stable protein.
     It is the stability of Cyt c that makes it not only the typical representative for studying the structure-function relationship, but also an excellent template for structure-function convention study of hemoproteins. In living systems, the main functions of Cyt c are electron transfer and inducing apoptosis, but Cyt c, under certain conditions, can also catalyze peroxidase-like reactions and presents several advantages. For example, Cyt c is able to perform catalytic reactions at high temperature and high concentration of organic solvents. However, compared with natural peroxidase, such as horseradish peroxidase (HRP) and cytochrome c peroxidase (CcP), the peroxidase activity of Cyt c is very low because of the differences of their structures. After careful comparison of the structures of Cyt c and HPR, we could find out that there are structural differences between them. HRP has a 5-cooridination high spin heme iron, and a distal histidine as well as a positively charged arginine in the heme pocket, whereas, Cyt c has a 6-coordination low spin heme iron but it lacks the distal histidine as well as the distal arginine in its heme pocket. The structural characters of HRP not only benefit the formation of compound I but also facilitate the access of substrate in the peroxidase reaction cycle.
     Even though many researches on site-directed mutation and peroxidase reaction of Cyt c have been reported, no one has specialized on how to convert Cyt c into a peroxidase-like enzyme by molecular design. Therefore, by means of molecular design and protein engineering, converting Cyt c, a stable electron-transfer hemoprotein, into an efficient, peroxidase-like metalloenzyme can not only help us to understand the structure-property-reaction-function relationship of hemoproteins but also probably create a new metalloenzyme with potential application in industry.
     Based on the crystal structure analysis of Cyt c (PDB ID 2YCC), we found that Pro71 is almost located at the distal position of the heme pocket. If it is replaced by a histidine, the distance between Nεatom of His71 and heme ferric iron is~5.62 ?, which is close to the distance between Nεatom of the distal histidine and heme iron in HRP and CcP (~5.84 and~5.55 ?, respectively). Therefore, we first constructed a single-site mutant (Cyt c M80V, M80V) by replacing the heme axial ligand Met80 with valine that has not coordination capacity, and then we introduced a "distal" histidine at position 71 by constructing a double-site mutant of Cyt c P71H/M80V using site-directed mutagenesis.
     As expected, the peroxidase activity of the Cyt c M80V mutant was enhanced by the vacancy at the sixth ligand site of the heme. In contrast, the introduction of a "distal" histidine in the double-site variant, Cyt c P71H/M80V, did not increase the peroxidase activity at all, but rather caused it to decrease. Therefore, we characterized the Cyt c P71H/M80V variant protein electrochemically and spectroscopically. All the experimental results showed that the introduced histidine at position 71 did not act as a functional distal-histidine, but most likely coordinated to the heme iron, maybe due to the flexibility of theΩloop segment (resides 70-84) of Cyt c protein.
     Because of failed construction of a distal histidine at position 71 in Cyt c, we further examined the crystal structure of Cyt c and found out that Tyr67 is also situated above the heme plane. At the same time, molecular simulation suggests that the replacement of Tyr67 with histidine should place the Nεof His67 at~5.18 ? from the heme iron, a distance that approximates the distance between the Ns of the distal histidine and the heme iron in HRP and CcP (5.84 and 5.55 ?, respectively). Thus we constructed Cyt c Y67H and Y67H/M80V mutant genes and expressed them to proteins. Kinetic studies showed that the obtained Cyt c variants, Cyt c Y67H and Y67H/M80V have much higher peroxidase activities than the wild-type cytochrome protein. Moreover, the apparent second-order rate constant (K_(cat)/K_m) toward guaiacol oxidation of Cyt c Y67H was even higher than that of the native horseradish peroxidase under the same conditions.
     Besides a distal histidine, typical peroxidases, such as HRP and CcP, usually have a distal arginine in the distal heme pocket. In order to mimic this feature we introduced an arginine in the heme pocket of cytochrome c by constructing Cyt c Y67R and Y67R/P71H/M80V variants. The two mutant proteins were expressed, and their peroxidase activities were examined with guaiacol as substrate. The results showed that the introduced arginine indeed enhances the peroxidase activity of Cyt c. However, the Michaelis-Menten constant (K_m) is also increased probably due to the steric effect brought up by the large R-group of arginine which inhibits the substrate access to the heme pocket.
     In order to further examine the effects of Pro71His mutation on the protein structure and property in the presence of Met80, we prepared another mutant of Cyt c, Cyt c P71H variant protein. UV-visible, CD and resonance Raman spectroscopies indicate that in the oxidized mutant the histidine (His71) serves as the sixth axial ligand, while the Met80 still coordinate to the heme in the reduced form. This study illustrates that the Pro71, in theΩloop D segment, plays important roles in stabilizing the structure of Cyt c. So, further molecular designs are required in order to construct a functional distal histidine at position 71 in the heme pocket of Cyt c.
     In summary, the above research results not only enrich our knowledge about Cyt c per se, but also extend our understanding of the structure-property-reactivity-function relationships of other hemoproteins.
引文
[1] Huheey JE. Inorganic Chemistry [M]. New Youk: Harper and Row; 1983.
    [2] Turano P, Lu Y. In: Bertini I, Sigel H, Sigel A, editors. Handbook on Metalloproteins [M]. New York: Marcel Dekker; 2001. p 269-356.
    [3] Lu Y, Berry SM, Pfister TD. Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds [J]. Chem Rev 2001; 101 (10): 3047-3080.
    [4] Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects [J]. Pharmacol Ther 2006; 111(2): 327-345.
    [5] Moore GR, Pettigrew GW. Cytochromes c: Evolutionary, Structural and Physicochemical Aspects [M]. Berlin: Springer-Verlag; 1990.
    [6] Martinez SE, Huang D, Szczepaniak A, Cramer WA, Smith JL. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation [J]. Structure 1994; 2 (2): 95-105.
    [7] Lanzilotta WN, Schuller DJ, Thorsteinsson MV, Kerby RL, Roberts GP, Poulos TL. Structure of the CO sensing transcription activator CooA [J]. Nat Struct Biol 2000; 7 (10): 876-880.
    [8] Arciero DM, Collins MJ, Haladjian J, Bianco P, Hooper AB. Resolution of the four hemes of cytochrome c_(554) from Nitrosomonas europaea by redox potentiometry and optical spectroscopy [J]. Biochemistry 1991; 30 (48): 11459-11465.
    [9] Neya S, Hori H, Imai K, Kawamura-Konishi Y, Suzuki H, Shiro Y, Iizuka T, Funasaki N. Remarkable functional aspects of myoglobin induced by diazaheme prosthetic group [S]. J Biochem (Tokyo) 1997; 121 (4): 654-660.
    
    [10] Stevens JM, Daltrop O, Allen JW, Ferguson SJ. C-type cytochrome formation: chemical and biological enigmas [J]. Acc Chem Res 2004; 37 (12): 999-1007.
    [11] Fee JA, Todaro TR, Luna E, Sanders D, Hunsicker-Wang LM, Patel KM, Bren KL, Gomez-Moran E, Hill MG Ai J, Loehr TM, Oertling WA, Williams PA, Stout CD, McRee D, Pastuszyn A. Cytochrome rC552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme [J]. Biochemistry 2004; 43 (38): 12162-12176.
    [12] Lin YW, Wang WH, Zhang Q, Lu HJ, Yang PY, Xie Y, Huang ZX, Wu HM. Converting cytochrome b5 into cytochrome c-like protein [J]. Chembiochem 2005; 6 (8): 1356-1359.
    [13] Lee D, Pervushin K, Bischof D, Braun M, Thony-Meyer L. Unusual heme-histidine bond in the active site of a chaperone [J]. J Am Chem Soc 2005; 127 (11): 3716-3717.
    [14] Vu BC, Jones AD, Lecomte JT. Novel histidine-heme covalent linkage in a hemoglobin [J]. J Am Chem Soc 2002; 124 (29): 8544-8545.
    [15] Colas C, Ortiz de Montellano PR. Autocatalytic radical reactions in physiological prosthetic heme modification [J]. Chem Rev 2003; 103 (6): 2305-2332.
    [16] Lemberg R, Barrett J. Cytochromes [M]. New York: Academic Press; 1973.
    [17] Dawson JH, Sono M. Cytochrome P450 and chloroperoxidase: thiolate-ligated heme enzymes: Spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation [J]. Chem Rev 1987; 87 (6): 1255-1276.
    [18] Rodgers KR. Heme-based sensors in biological systems [J]. Curr Opin Chem Biol 1999; 3 (2): 158-167.
    [19] Gilles-Gonzalez MA, Gonzalez G. Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses [J]. J Inorg Biochem 2005; 99 (1): 1-22.
    [20] 林英武,黄仲贤.血红素蛋白结构及功能的相互转换[J].世界科技研究与发展2006;28(1):8-13.
    [21] Reedy CJ, Gibney BR. Heme protein assemblies [J]. Chem Rev 2004; 104 (2): 617-649.
    [22] Yang HJ, Matsui T, Ozaki S, Kato S, Ueno T, Phillips GN, Jr., Fukuzumi S, Watanabe Y. Molecular engineering of myoglobin: influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin [J]. Biochemistry 2003; 42 (34): 10174-10181.
    [23] Lloyd E, Hildebrand DP, Tu KM, Mauk AG Conversion of myoglobin into a reversible electron transfer protein that maintains bishistidine axial ligation [J]. J Am Chem Soc 1995; 117 (24): 6434-6438.
    [24] Ihara M, Shintaku M, Takahashi S, Ishimori K, Morishima I. Conversion of an electron-transfer protein into an oxygen binding protein: The axial cytochrome b_5 mutant with an unusually high O_2 affinity [J]. J Am Chem Soc 2000; 122 (46 ): 11535-11536.
    [25] Ozaki S, Matsui T, Roach MP, Watanabe Y. Rational molecular design of a catalytic site: engineering of catalytic functions to the myoglobin active site framework [J]. Coord Chem Rev 2000; 198 (1): 39-59.
    [26] Avila L, Huang HW, Damaso CO, Lu S, Moenne-Loccoz P, Rivera M. Coupled oxidation vs heme oxygenation: insights from axial ligand mutants of mitochondrial cytochrome b_5 [J]. JAm Chem Soc 2003; 125 (14): 4103-4110.
    [27] Hildebrand DP, Burk DL, Maurus R, Ferrer JC, Brayer GD, Mauk AG The proximal ligand variant His93Tyr of horse heart myoglobin [J]. Biochemistry 1995; 34 (6): 1997-2005.
    [28] Ravichandran KG Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's [J]. Science 1993; 261 (5122): 731-736.
    [29] Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450 [J]. J Biol Chem 1985; 260 (30): 16122-16130.
    [30] Dawson JH. Probing structure-function relations in heme-containing oxygenases and peroxidases [J]. Science 1988; 240 (4851): 433-439.
    [31] Ortiz de Montellano PR. Cytochrome P450: Structrue, Metabolism, and Biochemistry [M]. Plenum: New YorK; 1995.
    [32] Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases [J]. Chem Rev 1996; 96 (7): 2841-2888.
    [33] Matsui T, Nagano S, Ishimori K, Watanabe Y, Morishima I. Preparation and reactions of myoglobin mutants bearing both proximal cysteine ligand and hydrophobic distal cavity: protein models for the active site of P-450 [J]. Biochemistry 1996; 35 (40): 13118-13124.
    [34] Adachi S, Nagano S, Ishimori K, Watanabe Y, Morishima I, Egawa T, Kitagawa T, Makino R. Roles of proximal ligand in heme proteins: replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase [J]. Biochemistry 1993; 32 (1): 241-252.
    [35] Hildebrand DP, Ferrer JC, Tang HL, Smith M, Mauk AG Trans effects on cysteine ligation in the proximal His93Cys variant of horse heart myoglobin [J]. Biochemistry 1995; 34 (36): 11598-11605.
    [36] Sigman JA, Kwok BC, Lu Y. From myoglobin to heme-copper oxidase: design and engineering of a CuB center into sperm whale myoglobin [J]. J Am Chem Soc 2000; 122 (34): 8192 -8196.
    [37] Hunter CL, Maurus R, Mauk MR, Lee H, Raven EL, Tong H, Nguyen N, Smith M, Brayer GD, Mauk AG. Introduction and characterization of a functionally linked metal ion binding site at the exposed heme edge of myoglobin [J]. Proc Natl Acad Sci U S A 2003; 100 (7): 3647-3652.
    [38] Sligar SG, Egeberg KD, Sage JT, Morikis D, Champion PM. Alteration of heme axial ligands by site-directed mutagenesis: a cytochrome becomes a catalytic demethylase [J]. J Am Chem Soc 1987; 109 (25): 7896-7897.
    [39] Wang WH, Wang YH, X. LJ, Xie Y, Huang ZX. Engineering a hydrophilic heme catalytic pocket into microsomal cytochrome b_5: Construction of hovel metalloproteins with high peroxidase activity [J]. Chem Lett 2002: 674-675.
    [40] Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature [J].J Biol Chem 1964; 239: 2370-2378.
    [41] Omura T, Sato R. A new cytochrome in liver microsomes [i].J Biol Chem 1962; 237: 1375-1376.
    [42] Mathews FS, Bethge PH, Czerwinski EW. The structure of cytochrome b_(562) from Escherichia coli at 2.5 A resolution [J]. J Biol Chem 1979; 254 (5): 1699-1706.
    [43] Hamada K, Bethge PH, Mathews FS. Refined structure of cytochrome b_(562) from Escherichia coli at 1.4 A resolution [J]. J Mol Biol 1995; 247 (5): 947-962.
    [44] Uno T, Yukinari A, Tomisugi Y, Ishikawa Y, Makino R, Brannigan JA, Wilkinson AJ. Cysteine thiolate coordination in the ferrous CO complex of an engineered cytochrome b_(562) [J]. J Am Chem Soc 2001; 123 (10): 2458-2459.
    [45] Tomlinson EJ, Ferguson SJ. Conversion of a c type cytochrome to a b type that spontaneously forms in vitro from apo protein and heme: implications for c type cytochrome biogenesis and folding [J]. Proc Natl Acad Sci USA 2000; 97 (10): 5156-5160.
    [46] Tomlinson EJ, Ferguson SJ. Loss of either of the two heme-binding cysteines from a class Ⅰ c-type cytochrome has a surprisingly small effect on physicochemical properties [J]. J Biol Chem 2000; 275 (42): 32530-32534.
    [47] Barker PD, Nerou EP, Freund SM, Fearnley IM. Conversion of cytochrome b_(562) to c-type cytochromes [J]. Biochemistry 1995; 34 (46): 15191-15203.
    [48] 杨福愉,黄芬主编.第十章 脱血红素细胞色素c与线粒体蛋白的运输.见:膜脂—膜蛋白相互作用及其在医学和农业上的应用[M].山东:山东科学技术出版社;1996.p 187-220.
    [49] Dopner S, Hildebrandt P, Rosell FI, Mauk AG, von Walter M, Buse G, Soulimane T. The structural and functional role of lysine residues in the binding domain of cytochrome c in the electron transfer to cytochrome c oxidase [J]. Eur J Biochem 1999; 261 (2): 379-391.
    [50] Wang Y, Margoliash E. Enzymic activities of covalent 1:1 complexes of cytochrome c and cytochrome c peroxidase [J]. Biochemistry 1995; 34 (6): 1948-1958.
    [51] Mei H, Wang K, Peffer N, Weatherly G, Cohen DS, Miller M, Pielak G, Durham B, Millett F. Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase [J]. Biochemistry 1999; 38 (21): 6846-6854.
    [52] Bleackley RC, Heibein JA. Enzymatic control of apoptosis [J]. Nat Prod Rep 2001; 18 (4): 431-440.
    [53] Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c [J]. Cell 1996; 86 (1): 147-157.
    [54] Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked [J]. Science 1997; 275 (5303): 1129-1132.
    [55] Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chert ZJ, Wang X, Williams RS. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis [J]. Cell 2000; 101 (4): 389-399.
    [56] Lim ML, Lum MG, Hansen TM, Roucou X, Nagley P. On the release of cytochrome c from mitochondria during cell death signaling [J]. J Biomed Sci 2002; 9 (6 Pt 1): 488-506.
    [57] Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z, Liu XJ. Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis [J]. Proc Natl Acad Sci U S A 2006; 103 (24): 8965-8970.
    [58] Qu XG, Qiao ZH, Lu TH, Dong SJ. Study on the electrochemical behiviour of cytochrome c [J]. Chinese Journal of Analytical Chemistry 1994; 22 (12): 1267-1272.
    [59] 王镜岩,朱圣庚,徐长法主编.第24章 生物氧化-电子传递和氧化磷酸化作用.见:生物化学(下册)第三版[M].北京:高等教育出版社;2002.p 114-146.
    [60] Noritomi H, Hidaka Y, Kato S, Nagahama K. Recovery of protein from reverse micelles through gas hydrate formation [J]. Biotechnology Techniques 1999; 13 (3): 181-183.
    [61] 陶慰孙,李惟,姜涌明主编.第六章 蛋白质分子构象.见:蛋白质分子基础[M].北京:高等教育出版社;2002.p190-237.
    [62] Colon W, Wakem LP, Sherman F, Roder H. Identification of the predominant non-native histidine ligand in unfolded cytochrome c [J], Biochemistry 1997;36 (41): 12535-12541.
    [63] Bushnell GW, Louie GV, Brayer GD. High-resolution three-dimensional structure of horse heart cytochrome c [J]. J Mol Biol 1990; 214 (2): 585-595.
    [64] Bryson EA, Rankin SE, Carey M, Watts A, Pinheiro TJ. Folding of apocytochrome c in lipid micelles: formation of alpha-helix precedes membrane insertion [J]. Biochemistry 1999; 38 (30): 9758-9767.
    [65] Berghuis AM, Brayer GD. Oxidation state-dependent conformational changes in cytochrome c [J]. J Mol Biol 1992; 223 (4): 959-976.
    [66] Louie GV, Brayer GD. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c [J]. J Mol Biol 1990; 214 (2): 527-555.
    [67] Banci L, Bertini I, Bren KL, Gray HB, Sompornpisut P, Turano P. Solution structure of oxidized Saccharomyces cerevisiae iso-1-cytochrome c [J]. Biochemistry 1997; 36 (29): 8992-9001.
    [68] Baistrocchi P, Banci L, Bertini I, Turano P, Bren KL, Gray HB. Three-dimensional solution structure of Saccharomyces cerevisiae reduced iso-1-cytochrome c [J]. Biochemistry 1996; 35 (43): 13788-13796.
    
    [69] Hampsey DM, Das G, Sherman F. Amino acid replacements in yeast iso-1-cytochrome c. Comparison with the phylogenetic series and the tertiary structure of related cytochromes c [J]. J Biol Chem 1986; 261 (7): 3259-3271.
    [70] Sorrell TN, Martin PK. A novel, functional variant of cytochrome c: Replacement of the histidine ligand with arginine via site-directed mutagenesis [J]. J Am Chem Soc 1989; 111: 766-767.
    [71] Dickerson RE, Timkovich R. In: Boyer PD, editor. The Enzymes 3 ed [M]. Volume 11. New York: Academic Press, Inc.; 1975. p 397-547.
    [72] Raphael AL, Gray HB. Axial ligand replacement in horse heart cytochrome c by semisynthesis [J]. Proteins 1989; 6 (3): 338-340.
    [73] Reid LS, Taniguchi VT, Gray HB, Mauk AG. Oxidation-reduction equilibrium of cytochrome b_5 [J]. J Am Chem Soc 1982; 104: 7516-7519.
    [74] Raphael AL, Gray HB. Semisynthesis of axial-ligand (position 80) mutants of cytochrome c [J]. J Am Chem Soc 1991; 113 (3): 1038-1040.
    [75] Huang YY, Hara T, Sligar S, Coon MJ, Kimura T. Thermodynamic properties of oxidation-reduction reactions of bacterial, microsomal, and mitochondrial cytochromes P-450: an entropy-enthalpy compensation effect [J]. Biochemistry 1986; 25 (6): 1390-1394.
    [76] Wallace CJ, Clark-Lewis I. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis [J]. J Biol Chem 1992; 267 (6): 3852-3861.
    [77] Silkstone G, Stanway G, Brzezinski P, Wilson MT. Production and characterisation of Met80X mutants of yeast iso-1-cytochrome c: spectral, photochemical and binding studies on the ferrous derivatives [J]. Biophys Chem 2002; 98 (1-2): 65-77.
    [78] Silkstone GG, Cooper CE, Svistunenko D, Wilson MT. EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition [J]. J Am Chem Soc 2005; 127 (1): 92-99.
    [79] Takano T, Dickerson RE. Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure [J]. J Mol Biol 1981; 153 (1): 95-115.
    [80] Hildebrandt P, Vanhecke F, Heibel G, Mauk AG. Structural changes in cytochrome c upon hydrogen-deuterium exchange [J]. Biochemistry 1993; 32 (51): 14158-14164.
    [81] Lett CM, Guillemette JG. Increasing the redox potential of isoform 1 of yeast cytochrome c through the modification of select haem interactions [J]. Biochem J 2002; 362 (Pt 2): 281-287.
    [82] Luntz TL, Schejter A, Garber EA, Margoliash E. Structural significance of an internal water molecule studied by site-directed mutagenesis of tyrosine-67 in rat cytochrome c [J]. Proc Natl Acad Sci USA 1989; 86 (10): 3524-3528.
    [83] Frauenhoff MM, Scott RA. The role of tyrosine 67 in the cytochrome c heme crevice structure studied by semisynthesis [J]. Proteins 1992; 14 (2): 202-212.
    [84] Komar-Panicucci S, Bixler J, Bakker G, Sherman F, McLendon G. Tuning the redox potential of cytochrome c through synergistic site replacements [J]. J Am Chem Soc 1992; 114(13): 5443-5445.
    [85] Pielak GJ, Oikawa K, Mauk AG, Smith M, Kay CM. Elimination of the negative Soret cotton effect of cytochrome c by replacement of the Invariant phenylalanine using site-directed mutagenesis [J]. J Am Chem Soc 1986 108 (10): 2724-2727.
    [86] Poulos TL, Kraut J. The stereochemistry of peroxidase catalysis [J]. J Biol Chem 1980; 255 (17): 8199-8205.
    [87] Kassner RJ. Effects of nonpolar environments on the redox potentials of heme complexes [J]. Proc Natl Acad Sci USA 1972; 69 (8): 2263-2267.
    [88] Pielak GJ, Mauk AG, Smith M. Site-directed mutagenesis of cytochrome c shows that an invariant Phe is not essential for function [J]. Nature 1985; 313 (5998): 152-154.
    [89] Rafferty SP, Pearce LL, Barker PD, Guillemette JG Kay CM, Smith M, Mauk AG Electrochemical, kinetic, and circular dichroic consequences of mutations at position 82 of yeast iso-1 -cytochrome c [J]. Biochemistry 1990; 29 (40): 9365-9369.
    [90] Rosell FI, Harris TR, Hildebrand DP, Dopner S, Hildebrandt P, Mauk AG Characterization of an alkaline transition intermediate stabilized in the Phe82Trp variant of yeast iso-1-cytochrome c [J]. Biochemistry 2000; 39 (30): 9047-9054.
    [91] Hawkins BK, Hilgen-Willis S, Pielak GJ, Dawson JH. Novel axial ligand interchange in cytochrome c: Incorporation of a histidine at position 82 leads to displacement of the wild-type methionine-80 ligand [J]. J Am Chem Soc 1994; 116 (7): 3111-3112.
    
    [92] Schejter A, Taler G Navon G, Liu XJ, Margoliash E. Oxidation state-induced change of iron ligand in the phenylalanine-82 to histidine mutant of yeast iso-1 -cytochrome c [J]. J Am Chem Soc 1996; 118 (2): 477-478.
    
    [93] Rosell FI, Mauk AG. Spectroscopic properties of a mitochondrial cytochrome c with a single thioether bond to the heme prosthetic group [J]. Biochemistry 2002; 41 (24): 7811-7818.
    [94] Wallace CJ, Clark-Lewis I. A rationale for the absolute conservation of Asn70 and Pro71 in mitochondrial cytochromes c suggested by protein engineering [J]. Biochemistry 1997; 36 (48): 14733-14740.
    [95] Ramdas L, Sherman F, Nall BT. Guanidine hydrochloride induced equilibrium unfolding of mutant forms of iso-1-cytochrome c with replacement of proline-71 [J]. Biochemistry 1986; 25 (22): 6952-6958.
    [96] Sinibaldi F, Howes BD, Piro MC, Caroppi P, Mei G, Ascoli F, Smulevich G, Santucci R. Insights into the role of the histidines in the structure and stability of cytochrome c [J]. J Biol Inorg Chem 2006; 11(1): 52-62.
    [97] Pierce MM, Nall BT. Fast folding of cytochrome c [J]. Protein Sci 1997; 6 (3): 618-627.
    [98] Mulligan-Pullyblank P, Spitzer JS, Gilden BM, Fetrow JS. Loop replacement and random mutagenesis of omega-loop D, residues 70-84, in iso-1-cytochrome c [J]. J Biol Chem 1996; 271 (15): 8633-8645.
    [1] Tappel AL. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds [J]. Arch Biochem Biophys 1953; 44 (2): 378-395.
    [2] Radi R, Thomson L, Rubbo H, Prodanov E. Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide [J]. Arch Biochem Biophys 1991; 288(1): 112-117.
    [3] Akasaka R, Mashino T, Hirobe M. Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c [J]. Arch Biochem Biophys 1993; 301 (2): 355-360.
    [4] Foppoli C, Marco CD, Blarzino C, Coccia R, Mosca L, Rosei MA. Dimers formation by cytochrome c-catalyzed oxidation of tyrosine and enkephalins [J]. Amino Acids 1997; 13: 273-280.
    [5] Vazquez-Duhalt R. Cytochrome c as a biocatalyst [J]. J Mol Catal B: Enzym 1999; 7:241-249.
    [6] Diederix RE, Ubbink M, Canters GW. The peroxidase activity of cytochrome c-550 from Paracoccus versutus [J]. Eur J Biochem 2001; 268 (15): 4207-4216.
    [7] Diederix RE, Ubbink M, Canters GW. Effect of the protein matrix of cytochrome c in puppressing the inherent peroxidase activity of its heme prosthetic group [J]. ChemBioChem 2002; 3:110-112.
    [8] Diederix RE, Ubbink M, Canters GW. Peroxidase activity as a tool for studying the folding of c-type cytochromes [J]. Biochemistry 2002; 41 (43): 13067-13077.
    [9] Worrall JA, Diederix RE, Prudencio M, Lowe CE, Ciofi-Baffoni S, Ubbink M, Canters GW. The effects of ligand exchange and mobility on the peroxidase activity of a bacterial cytochrome c upon unfolding [J]. Chembiochem 2005; 6 (4): 747-758.
    [10] Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL. Crystal structure of horseradish peroxidase C at 2.15 A resolution [J]. Nat Struct Biol 1997; 4 (12): 1032-1038.
    [11] Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme [J]. Phytochemistry 2004; 65 (3): 249-259.
    [12] Poulos TL, Freer ST, Alden RA, Xuong NH, Edwards SL, Hamlin RC, Kraut J. Crystallographic determination of the heme orientation and location of the cyanide binding site in yeast cytochrome c peroxidase [J]. J Biol Chem 1978; 253 (10): 3730-3735.
    [13] Finzel BC, Poulos TL, Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution [J]. J Biol Chem 1984; 259 (21): 13027-13036.
    [14] Hiner AN, Raven EL, Thorneley RN, Garcia-Canovas F, Rodriguez-Lopez JN. Mechanisms of compound I formation in heme peroxidases []]. J Inorg Biochem 2002; 91 (1): 27-34.
    [15] Ozaki S, Matsui T, Roach MP, Watanabe Y. Rational molecular design of a catalytic site: engineering of catalytic functions to the myoglobin active site framework [J]. Coord Chem Rev 2000; 198 (1): 39-59.
    [16] Berglund GI, Carlsson GH, Smith AT, Szoke H, Henriksen A, Hajdu J. The catalytic pathway of horseradish peroxidase at high resolution [J]. Nature 2002; 417 (6887): 463-468.
    [17] Berghuis AM, Brayer GD. Oxidation state-dependent conformational changes in cytochrome c [J]. J Mol Biol 1992; 223 (4): 959-976.
    [18] [美]J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译.第13章 诱变.见:分子克隆实验指南,第3版[M].北京:科学出版社;2002.p1080-1171.
    [19] Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection [J]. Proc Natl Acad Sci USA 1985; 82 (2): 488-492.
    [20] Higuchi R, Krummel B, Saiki RK. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions [J]. Nucleic Acids Res 1988; 16 (15): 7351-7367.
    [21] Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction [J]. Gene 1989; 77 (1): 51-59.
    [22] Kammann M, Laufs J, Schell J, Gronenborn B. Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR) [J]. Nucleic Acids Res 1989; 17 (13): 5404.
    [23] Sarkar G, Sommer SS. The "megaprimer" method of site-directed mutagenesis [J]. Biotechniques 1990; 8 (4): 404-407.
    [24] Sarkar G, Sommer SS. Double-stranded DNA segments can efficiently prime the amplification of human genomic DNA [J]. Nucleic Acids Res 1992; 20 (18): 4937-4938.
    [25] Landt O, Grunert HP, Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction [J]. Gene 1990; 96 (1): 125-128.
    [26] Ke SH, Madison EL. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method [J]. Nucleic Acids Res 1997; 25 (16): 3371-3372.
    [27] Hemsley A, Arnheim N, Toney MD, Cortopassi G, Galas DJ. A simple method for site-directed mutagenesis using the polymerase chain reaction [J]. Nucleic Acids Res 1989; 17(16): 6545-6551.
    [28] Deng WP, Nickoloff JA. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site [J]. Anal Biochem 1992; 200 (1): 81-88.
    [29] Zhu L. In vitro site-directed mutagenesis using the unique restriction site elimination (USE) method [J]. Methods Mol Biol 1996; 57: 13-29.
    [30] Rosell FI, Mauk AG Spectroscopic properties of a mitochondrial cytochrome c with a single thioether bond to the heme prosthetic group [J]. Biochemistry 2002; 41 (24): 7811-7818.
    [31] Pollock WB, Rosell FI, Twitchett MB, Dumont ME, Mauk AG Bacterial expression of a mitochondrial cytochrome c. Trimethylation of lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition [J]. Biochemistry 1998; 37 (17): 6124-6131.
    [32] QuikChange~(?) Site-Directed Mutagenesis Kit (Catalog #200519): INSTRUCTION MANUAL.
    [33] Cutler RL, Pielak GJ, Mauk AG, Smith M. Replacement of cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c with threonine: improved stability of the mutant protein [J]. Protein Eng 1987; 1 (2): 95-99.
    [34] Vovis GF, Lacks S. Complementary action of restriction enzymes endo R-Dpnl and Endo R-DpnII on bacteriophage fl DNA [J]. J Mol Biol 1977; 115 (3): 525-538.
    [35] Lacks S, Greenberg B. A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA [J]. J Biol Chem 1975; 250 (11): 4060-4066.
    
    [36] Lacks S, Greenberg B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation [J]. J Mol Biol 1977, 114(1): 153-168.
    [37] Geier GE, Modrich P. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease [J]. J Biol Chem 1979; 254 (4): 1408-1413.
    [38] McClelland M, Nelson M. The effect of site-specific DNA methylation on restriction endonucleases and DNA modification methyltransferases-a review [J]. Gene 1988; 74(1): 291-304.
    [39] Silkstone G, Stanway G, Brzezinski P, Wilson MT. Production and characterisation of Met80X mutants of yeast iso-1-cytochrome c: spectral, photochemical and binding studies on the ferrous derivatives [J]. Biophys Chem 2002; 98 (1-2): 65-77.
    [40] 盛小禹主编.实验六CaCl_2法转化大肠杆菌.见:基因工程实验技术教程[M].上海:复旦大学出版社;1999.p95-110.
    [41] 李建武,萧能赓,余瑞元,袁明秀,陈丽蓉,陈雅蕙,陈来同等编.实验26细胞色素c的制备和测定.见:生物化学实验原理与方法[M].北京:北京大学出版社;1994.p 240-243.
    [42] Berry EA, Trumpower BL. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra [J]. Anal Biochem 1987; 161 (1): 1-15.
    [43] Baymann F, Moss DA, Mantele W. An electrochemical assay for the characterization of redox proteins from biological electron transfer chains [J]. Anal Biochem 1991; 199 (2): 269-274.
    [44] Silkstone GG, Cooper CE, Svistunenko D, Wilson MT. EPR and optical spectroscopic studies of Met80X mutants of yeast ferdcytochrome c. Models for intermediates in the alkaline transition [J]. J Am Chem Soc 2005; 127 (1): 92-99.
    [45] 林英武.细胞色素b_5向细胞色素c的结构转化以及不同表达体系对其结构、性质和功能的影响[D].上海:复旦大学;2005.
    [46] Margoliash E, Frohwirt N. Spectrum of horse-heart cytochrome c [J]. Biochem J 1959; 71 (3): 570-572.
    [47] Wallace CJ, Clark-Lewis I. Functional role of heine ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis [J]. J Biol Chem 1992; 267 (6): 3852-3861.
    [48] Raphael AL, Gray HB. Axial ligand replacement in horse heart cytochrome c by semisynthesis [J]. Proteins 1989; 6 (3): 338-340.
    [49] Allen JW, Ferguson SJ. Variation of the axial haem ligands and haem-binding motif as a probe of the Escherichia coli c-type cytochrome maturation (Ccm) system [J]. Biochem J 2003; 375 (Pt 3): 721-728.
    [50] Lu Y, Casimiro DR, Bren KL, Richards JH, Gray HB. Structurally engineered cytochromes with unusual ligand-binding properties: expression of Saccharomyces cerevisiae Met-80→Ala iso-1-cytochrome c [J]. Proc Natl Acad Sci USA 1993; 90 (24): 11456-11459.
    [51] Scholtz JM, Qian H, York EJ, Stewart JM, Baldwin RL. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water [J]. Biopolymers 1991; 31(13): 1463-1470.
    [52] Banci L, Bertini I, Bren KL, Gray HB, Turano P. pH-dependent equilibria of yeast Met80Ala-iso-1-cytochrome c probed by NMR spectroscopy: a comparison with the wild-type protein [J]. Chem Biol 1995; 2 (6): 377-383.
    [53] Obataya I, Kotaki T, Sakamoto S, Ueno A, Mihara H. Design, synthesis and peroxidase-like activity of 3 alpha-helix proteins covalently bound to heme [J]. Bioorg Med Chem Lett 2000; 10 (24): 2719-2722.
    [54] Kaminsky LS, Miller VJ, Davison AJ. Thermodynamic studies of the opening of the heme crevice of ferricytochrome c [J]. Biochemistry 1973; 12 (12): 2215-2221.
    [55] Schejter A, Plotkin B. The binding characteristics of the cytochrome c iron [J]. Biochem J 1988; 255 (1): 353-356.
    [56] Bren KL, Gray HB. Structurally engineered cytochromes with novel ligand-binding sites: Oxy and carbon monoxy derivatives of semisynthetic horse heart Ala80 cytochrome c [J]. J Am Chem Soc 1993; 115: 10382-10383.
    [57] Santucci R, Ascoli F. The Soret circular dichroism spectrum as a probe for the heme Fe(III)-Met(80) axial bond in horse cytochrome c [J]. J Inorg Biochem 1997; 68 (3): 211-214.
    [58] Moore GR, Pettigrew GW, editors. Cytochrome c: Evolutionary, Structural and Physiological Aspects. Berlin: Springer-Verlag; 1990.
    [59] Miller GT, Zhang B, Hardman JK, Timkovich R. Converting a c-type to a b-type cytochrome: Met61 to His61 mutant of Pseudomonas cytochrome c-551 [J]. Biochemistry 2000; 39 (30): 9010-9017.
    [60] Hay S, Wydrzynski T. Conversion of the Escherichia coli cytochrome b_(562) to an archetype cytochrome b: a mutant with bis-histidine ligation of heme iron [J]. Biochemistry 2005; 44 (1): 431-439.
    [61] Reid LS, Gray HB, Dalvit C, Wright PE, Saltman P. Electron transfer from cytochrome b_5 to iron and copper complexes [J]. Biochemistry 1987; 26 (22): 7102-7107.
    [62] Sligar SG, Egeberg KD, Sage JT, Morikis D, Champion PM. Alteration of heme axial ligands by site-directed mutagenesis: a cytochrome becomes a catalytic demethylase [J]. J Am Chem Soc 1987; 109 (25): 7896-7897.
    [63] Avila L, Huang HW, Rodriguez JC, Moenne-Loccoz P, Rivera M. Oxygen activation by axial ligand mutants of mitochondrial cytochrome b_5: Oxidation of heme to verdoheme and biliverdin [J]. J Am Chem Soc 2000; 122 (31): 7618-7619.
    
    [64] Bren KL, Gray HB. Structurally engineered cytochromes with novel ligand-binding sites: oxy and carbon monoxy derivatives of semisynthetic horse heart Ala80 cytochrome c [J]. J Am Chem Soc 1993; 115: 10382-10383.
    
    [65] Ikeda-Saito M, Hori H, Andersson LA, Prince RC, Pickering IJ, George GN, Sanders CR, 2nd, Lutz RS, McKelvey EJ, Mattera R. Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants [J]. J Biol Chem 1992; 267 (32): 22843-22852.
    
    [66] Rosell FI, Ferrer JC, Mauk AG Proton-linked protein conformational switching: Definition of the alkaline conformational transition of Yeast iso-1-ferricytochrome c [J]. J Am Chem Soc 1998; 120 (44): 11234-11245.
    
    [67] Ioanitescu AI, Dewilde S, Kiger L, Marden MC, Moens L, Van Doorslaer S. Characterization of nonsymbiotic tomato hemoglobin [J]. Biophys J 2005; 89 (4): 2628-2639.
    
    [68] Bamford VA, Angove HC, Seward HE, Thomson AJ, Cole JA, Butt JN, Hemmings AM, Richardson DJ. Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli [J]. Biochemistry 2002; 41 (9): 2921-2931.
    
    [69] More C, Belle V, Asso M, Fournel A, Roger G, Guigliarelli B, Bertrand P. EPR spectroscopy: A powerful technique for the structural and functional investigation of metalloproteins [J]. biospectroscopy 1999; 5 (5): S3-S18.
    
    [70] Rosell FI, Ferrer JC, Mauk AG Proton-Linked Protein Conformational Switching: Definition of the Alkaline Conformational Transition of Yeast Iso-1-ferricytochrome c [J]. J Am Chem Soc 1998; 120: 11234-11245.
    
    [71] Eglinton DG Gadsby PM, Sievers G, Peterson J, Thomson AJ. A comparative study of the low-temperature magnetic circular dichroism spectra of horse heart metmyoglobin and bovine liver catalase derivatives [J]. Biochim Biophys Acta 1983; 742 (3): 648-658.
    
    [72] Hawkins BK, Hilgen-Willis S, Pielak GJ, Dawson JH. Novel axial ligand interchange in cytochrome c: Incorporation of a histidine at position 82 leads to displacement of the wild-type methionine-80 ligand [J]. J Am Chem Soc 1994; 116 (7): 3111-3112.
    [73] Nelson DP, Kiesow LA. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H_2O_2 solutions in the UV) [J]. Anal Biochem 1972; 49 (2): 474-478.
    [74] Baldwin DA, Marques HM, Pratt JM. Hemes and hemoproteins. 5: Kinetics of the peroxidatic activity of microperoxidase-8: model for the peroxidase enzymes [J]. J Inorg Biochem 1987; 30 (3): 203-217.
    [75] DePiilis GD, Sishta BP, Mauk AG, Ortiz de Montellano PR. Small substrates and cytochrome c are oxidized at different sites of cytochrome c peroxidase [J]. J Biol Chem 1991; 266 (29): 19334-19341.
    [76] Maehly AC, Chance B. The assay of catalases and peroxidases. In: Glick D, editor. Methods of Biochemical Analysis [M]. Volume 1. New York: Interscience; 1954. p 357-408.
    [77] 王镜岩,朱圣庚,徐长法主编.第9章 酶促反应动力学.见:生物化学(上册)第三版[M].北京:高等教育出版社;2002.p351-383.
    [78] Diederix RE, Fittipaldi M, Worrall JA, Huber M, Ubbink M, Canters GW. Kinetic stability of the peroxidase activity of unfolded cytochrome c: heme degradation and catalyst inactivation by hydrogen peroxide [J]. Inorg Chem 2003; 42 (22): 7249-7257.
    [79] Rosei MA, Blarzino C, Coccia R, Foppoli C, Mosca L, Cini C. Production of melanin pigments by cytochrome c/H_2O_2 system [J]. Int J Biochem Cell Biol 1998; 30 (4): 457-463.
    [80] Sato H, Hayashi T, Ando T, Hisaeda Y, Ueno T, Watanabe Y. Hybridization of modified-heme reconstitution and distal histidine mutation to functionalize sperm whale myoglobin [J]. J Am Chem Soc 2004; 126 (2): 436-437.
    [81] Savenkova MI, Newmyer SL, Montellano PR. Rescue of His-42→Ala horseradish peroxidase by a Phe-41→His mutation. Engineering of a surrogate catalytic histidine [J]. J Biol Chem 1996; 271 (40): 24598-24603.
    [82] Dunford HB. Peroxidase in chemistry and biology. In: Everse KE, Grisham MB, editors. J Everse [M]. Volume Ⅱ. Boca Raton: CRC Press; 1991. p 1-24.
    [83] Mulligan-Pullyblank P, Spitzer JS, Gilden BM, Fetrow JS. Loop replacement and random mutagenesis of omega-loop D, residues 70-84, in iso-l-cytochrome c [J]. J Biol Chem 1996; 271 (15): 8633-8645.
    [84] Ramdas L, Sherman F, Nall BT. Guanidine hydrochloride induced equilibrium unfolding of mutant forms of iso-1-cytochrome c with replacement of proline-71 [J]. Biochemistry 1986; 25 (22): 6952-6958.
    [85] Moore GR, Pettigrew GW. Cytochromes c: Evolutionary, Structural and Physicochemical Aspects [M]. Berlin: Springer-Verlag; 1990.
    [86] Schejter A, Taler G, Navon G, Liu XJ, Margoliash E. Oxidation state-induced change of iron ligand in the phenylalanine-82 to histidine mutant of yeast iso-1-cytochrome c [J]. J Am Chem Soc 1996; 118 (2): 477-478.
    [87] Feinberg BA, Liu X, Ryan MD, Schejter A, Zhang C, Margoliash E. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c [J]. Biochemistry 1998; 37 (38): 13091-13101.
    [88] Zheng J, Ye S, Lu T, Cotton TM, Chumanov G. Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant [J]. Biopolymers 2000; 57 (2): 77-84.
    [89] Vojtechovsky J, Chu K, Berendzen J, Sweet RM, Schlichting I. Crystal structures of myoglobin-ligand complexes at near-atomic resolution [J]. Biophys J 1999; 77 (4): 2153-2174.
    [1] Berghuis AM, Brayer GD. Oxidation state-dependent conformational changes in cytochrome c [J]. J Mol Biol 1992; 223 (4): 959-976.
    [2] Hildebrand DP, Burk DL, Maurus R, Ferrer JC, Brayer GD, Mauk AG. The proximal ligand variant His93Tyr of horse heart myoglobin [J]. Biochemistry 1995; 34 (6): 1997-2005.
    [3] Dawson JH, Bracete AM, Huff AM, Kadkhodayan S, Zeitler CM, Sono M, Chang CK, Loewen PC. The active site structure of E. coli HPII catalase. Evidence favoring coordination of a tyrosinate proximal ligand to the chlorin iron [J]. FEBS Lett 1991; 295 (1-3): 123-126.
    [4] Luntz TL, Schejter A, Garber EA, Margoliash E. Structural significance of an internal water molecule studied by site-directed mutagenesis of tyrosine-67 in rat cytochrome c [J]. Proc Natl Acad Sci USA 1989; 86 (10): 3524-3528.
    [5] Frauenhoff MM, Scott RA. The role of tyrosine 67 in the cytochrome c heme crevice structure studied by semisynthesis [J]. Proteins 1992; 14 (2): 202-212.
    [6] Hiner AN, Raven EL, Thorneley RN, Gareia-Canovas F, Rodriguez-Lopez JN. Mechanisms of compound Ⅰ formation in heme peroxidases [J]. J Inorg Biochem 2002; 91 (1): 27-34.
    [7] Ozaki S, Matsui T, Roach MP, Watanabe Y. Rational molecular design of a catalytic site: engineering of catalytic functions to the myoglobin active site framework [J]. Coord Chem Rev 2000; 198 (1): 39-59.
    [8] [美]J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译.第13章 诱变.见:分子克隆实验指南,第3版[M].北京:科学出版社;2002.p 1080-1171.
    [9] Takano T, Dickerson RE. Conformation change of cytochrome c. Ⅱ. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure [J]. J Mol Biol 1981; 153 (1): 95-115.
    [10] Fee JA, Todaro TR, Luna E, Sanders D, Hunsicker-Wang LM, Patel KM, Bren KL, Gomez-Moran E, Hill MG, Ai J, Loehr TM, Oertling WA, Williams PA, Stout CD, McRee D, Pastuszyn A. Cytochrome rC552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme [J]. Biochemistry 2004; 43 (38): 12162-12176.
    [11] Metcalfe CL, Ott M, Patel N, Singh K, Mistry SC, Goff HM, Raven EL. Autocatalytic formation of green heme: Evidence for H_2O_2-dependent formation of a covalent methionine-heme linkage in ascorbate peroxidase [J]. J Am Chem Soc 2004; 126 (49): 16242-16248.
    [12] Vollaard NB, Reeder BJ, Shearman JP, Menu P, Wilson MT, Cooper CE. A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo [J]. Free Radic Biol Med 2005; 39 (9): 1216-1228.
    [13] Berry EA, Trumpower BL. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra [J]. Anal Biochem 1987; 161 (1): 1-15.
    [14] Silkstone GG, Cooper CE, Svistunenko D, Wilson MT. EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition [J]. J Am Chem Soc 2005; 127 (1): 92-99.
    [15] Margoliash E, Frohwirt N. Spectrum of horse-heart cytochrome c [J]. Biochem J 1959; 71 (3): 570-572.
    [16] Kaminsky LS, Miller VJ, Davison AJ. Thermodynamic studies of the opening of the heme crevice of ferricytochrome c [J]. Biochemistry 1973; 12 (12): 2215-2221.
    [17] Dickerson RE, Timkovich R. In: Boyer PD, editor. The Enzymes 3 ed [M]. Volume 11. New York: Academic Press, Inc.; 1975. p 397-547.
    [18] Schejter A, Plotkin B. The binding characteristics of the cytochrome c iron [J]. Biochem J 1988; 255 (1): 353-356.
    [19] Looze Y, Polastro E, Deconinck M, Leonis J. Alkaline isomerization of horse and yeast cytochromes c. Spectrophotometric and circular dichroism studies [J]. Int J Pept Protein Res 1978; 12 (5): 233-236.
    [20] Santucci R, Ascoli F. The Soret circular dichroism spectrum as a probe for the heme Fe(III)-Met(80) axial bond in horse cytochrome c [J]. J Inorg Biochem 1997; 68 (3): 211-214.
    [21] Stellwagen E, Cass R. Alkaline isomerization of ferricytochrome c from Euglena gracilis [J]. Biochem Biophys Res Commun 1974; 60 (1): 371-375.
    [22] Sligar SG, Egeberg KD, Sage JT, Morikis D, Champion PM. Alteration of heme axial ligands by site-directed mutagenesis: a cytochrome becomes a catalytic demethylase [J]. J Am Chem Soc 1987; 109 (25): 7896-7897.
    [23] Avila L, Huang HW, Rodriguez JC, Moenne-Loccoz P, Rivera M. Oxygen activation by axial ligand mutants of mitochondrial cytochrome b_5: Oxidation of heme to verdoheme and biliverdin [J]. J Am Chem Soc 2000; 122 (31): 7618-7619.
    [24] Nelson DP, Kiesow LA. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H_2O_2 solutions in the UV) [J]. Anal Biochem 1972; 49 (2): 474-478.
    [25] Paul KG, Ohlsson PI, Jonsson NA. The assay of peroxidases by means of dicarboxidine on enzyme-linked immunosorbent assay level [J]. Anal Biochem 1982; 124(1): 102-107.
    
    [26] Baldwin DA, Marques HM, Pratt JM. Hemes and hemoproteins. 5: Kinetics of the peroxidatic activity of microperoxidase-8: model for the peroxidase enzymes [J]. J Inorg Biochem 1987; 30 (3): 203-217.
    [27] DePillis GD, Sishta BP, Mauk AG, Ortiz de Montellano PR. Small substrates and cytochrome c are oxidized at different sites of cytochrome c peroxidase [J]. J Biol Chem 1991; 266 (29): 19334-19341.
    [28] Maehly AC, Chance B. The assay of catalases and peroxidases. In: Glick D, editor. Methods of Biochemical Analysis [M]. Volume 1. New York: Interscience; 1954. p 357-408.
    [29] Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z. Classical force field parameters for the heme prosthetic group of cytochrome c [J]. J Comput Chem 2004; 25 (13): 1613-1622.
    [30] MacKerell ADJ, Bashford D, Bellott RL, Dunbrack RL, Jr., Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins [J]. J Phys Chem B 1998 102 (18): 3586-3616.
    [31] Mackerell AD, Jr., Feig M, Brooks CL, 3rd. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations [J]. J Comput Chem 2004; 25 (11): 1400-1415.
    [32] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics [J]. J Mol Graph 1996; 14 (1): 33-38, 27-38.
    [33] Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K. NAMD2: Greater Scalability for Parallel Molecular Dynamics [J]. J Comput Phys 1999; 151(1): 283-312.
    [34] Diederix RE, Ubbink M, Canters GW. The peroxidase activity of cytochrome c-550 from Paracoccus versutus [J]. Eur J Biochem 2001; 268 (15): 4207-4216.
    [35] Diederix RE, Fittipaldi M, Worrall JA, Huber M, Ubbink M, Canters GW. Kinetic stability of the peroxidase activity of unfolded cytochrome c: heme degradation and catalyst inactivation by hydrogen peroxide [J]. Inorg Chem 2003; 42 (22): 7249-7257.
    [36] Vazquez-Duhalt R. Cytochrome c as a biocatalyst [J]. J Mol Catal B: Enzym 1999; 7: 241-249.
    [37] Rosei MA, Blarzino C, Coccia R, Foppoli C, Mosca L, Cini C. Production of melanin pigments by cytochrome c/H_2O_2 system [J]. Int J Biochem Cell Biol 1998; 30 (4): 457-463.
    [38] Savenkova MI, Newmyer SL, Montellano PR. Rescue of His-42→Ala horseradish peroxidase by a Phe-41→His mutation. Engineering of a surrogate catalytic histidine [J]. J Biol Chem 1996; 271 (40): 24598-24603.
    [39] Savenkova MI, Kuo JM, Ortiz de Montellano PR. Improvement of peroxygenase activity by relocation of a catalytic histidine within the active site of horseradish peroxidase [J]. Biochemistry 1998; 37 (30): 10828-10836.
    [40] Sato H, Hayashi T, Ando T, Hisaeda Y, Ueno T, Watanabe Y. Hybridization of modified-heine reconstitution and distal histidine mutation to functionalize sperm whale myoglobin [J]. J Am Chem Soc 2004; 126 (2): 436-437.
    [41] Redaelli C, Monzani E, Santagostini L, Casella L, Sanangelantoni AM, Pierattelli R, Banci L. Characterization and peroxidase activity of a myoglobin mutant containing a distal arginine [J]. Chembiochem 2002; 3 (2-3): 226-233.
    [42] 王镜岩,朱圣庚,徐长法主编.第9章 酶促反应动力学.见:生物化学(上册)第三版[M].北京:高等教育出版社;2002.p 351-383.
    [43] Berglund GI, Carlsson GH, Smith AT, Szoke H, Henriksen A, Hajdu J. The catalytic pathway of horseradish peroxidase at high resolution [J]. Nature 2002; 417 (6887): 463-468.
    [44] Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme [J]. Phytochemistry 2004; 65 (3): 249-259.
    [45] Poulos TL, Kraut J. The stereochemistry of peroxidase catalysis [J]. J Biol Chem 1980; 255 (17): 8199-8205.
    [46] Matsui T, Ozaki S, Liong E, Phillips GN, Jr., Watanabe Y. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide [J]. J Biol Chem 1999; 274 (5): 2838-2844.
    [47] Schuller DJ, Ban N, Huystee RB, McPherson A, Poulos TL. The crystal structure of peanut peroxidase [J]. Structure 1996; 4 (3): 311-321.
    [48] Patterson WR, Poulos TL. Crystal structure of recombinant pea Cytosolic ascorbate peroxidase [J]. Biochemistry 1995; 34 (13): 4331-4341.
    [49] Mulligan-Pullyblank P, Spitzer JS, Gilden BM, Fetrow JS. Loop replacement and random mutagenesis of omega-loop D, residues 70-84, in iso-1-cytochrome c [J]. J Biol Chem 1996; 271 (15): 8633-8645.
    [50] Tappel AL. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds [J]. Arch Biochem Biophys 1953; 44 (2): 378-395.
    [51] Radi R, Thomson L, Rubbo H, Prodanov E. Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide [J]. Arch Biochem Biophys 1991; 288(1): 112-117.
    [52] Akasaka R, Mashino T, Hirobe M. Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c [J]. Arch Biochem Biophys 1993; 301 (2): 355-360.
    [53] Foppoli C, Marco CD, Blarzino C, Coccia R, Mosca L, Rosei MA. Dimers formation by cytochrome c-catalyzed oxidation of tyrosine and enkephalins [J]. Amino Acids 1997; 13: 273-280.
    
    
    [54] Diederix RE, Ubbink M, Canters GW. Effect of the protein matrix of cytochrome c in puppressing the inherent peroxidase activity of its heme prosthetic group [J]. ChemBioChem 2002; 3:110-112.
    [55] Diederix RE, Ubbink M, Canters GW. Peroxidase activity as a tool for studying the folding of c-type cytochromes [J]. Biochemistry 2002; 41 (43): 13067-13077.
    [56] Worrall JA, Diederix RE, Prudencio M, Lowe CE, Ciofi-Baffoni S, Ubbink M, Canters GW. The effects of ligand exchange and mobility on the peroxidase activity of a bacterial cytochrome c upon unfolding [J]. Chembiochem 2005; 6 (4): 747-758.
    [57] Villegas JA, Mauk AG, Vazquez-Duhalt R. A cytochrome c variant resistant to heme degradation by hydrogen peroxide [J]. Chem Biol 2000; 7 (4): 237-244.
    [58] Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z, Liu XJ. Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis [J]. Proc Natl Acad Sci U S A 2006; 103 (24): 8965-8970.
    [59] De Jesus-Bonilla W, Cruz A, Lewis A, Cerda J, Bacelo DE, Cadilla CL, Lopez-Garriga J. Hydrogen-bonding conformations of tyrosine B10 tailor the hemeprotein reactivity of ferryl species [J]. J Biol Inorg Chem 2006; 11 (3): 334-342.
    [60] Hayashi T, Hitomi Y, Ando T, Mizutani T, Hisaeda Y, Kitagawa S, Ogoshi H. Peroxidase activity of myoglobin is enhanced by chemical mutation of heme-propionates [J]. J Am Chem Soc 1999; 121 (34): 7747-7750.
    [61] Lemberg R, Barrett J. Cytochromes [M]. New York: Academic Press; 1973.
    [62] Moore GR, Pettigrew GW. Cytochromes c: Evolutionary, Structural and Physicochemical Aspects [M]. Berlin: Springer-Verlag; 1990.
    [63] Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL. Crystal structure of horseradish peroxidase C at 2.15 A resolution [J]. Nat Struct Biol 1997; 4 (12): 1032-1038.
    [64] Poulos TL, Freer ST, Alden RA, Xuong NH, Edwards SL, Hamlin RC, Kraut J. Crystallographic determination of the heme orientation and location of the cyanide binding site in yeast cytochrome c peroxidase [J]. J Biol Chem 1978; 253 (10): 3730-3735.
    [1] Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL. Crystal structure of horseradish peroxidase C at 2.15 A resolution [J]. Nat Struct Biol 1997; 4 (12): 1032-1038.
    [2] Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme [J]. Phytochemistry 2004; 65 (3): 249-259.
    [3] Hiner AN, Raven EL, Thomeley RN, Garcia-Canovas F, Rodriguez-Lopez JN. Mechanisms of compound Ⅰ formation in heme peroxidases [J]. J Inorg Biochem 2002; 91 (1): 27-34.
    [4] Poulos TL, Freer ST, Alden RA, Xuong NH, Edwards SL, Hamlin RC, Kraut J. Crystallographic determination of the heme orientation and location of the cyanide binding site in yeast cytochrome c peroxidase [J]. J Biol Chem 1978; 253 (10): 3730-3735.
    [5] Finzel BC, Poulos TL, Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution [J]. J Biol Chem 1984; 259 (21): 13027-13036.
    [6] Berglund GI, Carlsson GH, Smith AT, Szoke H, Henriksen A, Hajdu J. The catalytic pathway of horseradish peroxidase at high resolution [J]. Nature 2002; 417 (6887): 463-468.
    [7] Berghuis AM, Brayer GD. Oxidation state-dependent conformational changes in cytochrome c [J]. J Mol Biol 1992; 223 (4): 959-976.
    [8] [美]J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译.第13章 诱变.见:分子克隆实验指南,第3版[M].北京:科学出版社;2002.p1080-1171.
    [9] Fee JA, Todaro TR, Luna E, Sanders D, Hunsicker-Wang LM, Patel KM, Bren KL, Gomez-Moran E, Hill MG, Ai J, Loehr TM, Oertling WA, Williams PA, Stout CD, McRee D, Pastuszyn A. Cytochrome rC552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme [J]. Biochemistry 2004; 43 (38): 12162-12176.
    [10] Metcalfe CL, Ott M, Patel N, Singh K, Mistry SC, Goff HM, Raven EL. Autocatalytic formation of green heine: Evidence for H_2O_2-dependent formation of a covalent methionine-heme linkage in ascorbate peroxidase [J]. J Am Chem Soc 2004; 126 (49): 16242-16248.
    [11] Vollaard NB, Reeder BJ, Shearman JP. Menu P. Wilson MT, Cooper CE. A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo [J]. Free Radic Biol Med 2005; 39 (9): 1216-1228.
    [12] Berry EA, Trumpower BL. Simultaneous determination of heroes a, b, and c from pyridine hemochrome spectra [J]. Anal Biochem 1987; 161 (1): 1-15.
    [13] Silkstone GG, Cooper CE, Svistunenko D, Wilson MT. EPR and optical spectroscopic studies of MetSOX mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition [J]. J Am Chem Soc 2005; 127 (1): 92-99.
    [14] Margoliash E, Frohwirt N. Spectrum of horse-heart cytochrome c [J]. Biochem J 1959; 71 (3): 570-572.
    [15] Kaminsky LS, Miller VJ, Davison AJ. Thermodynamic studies of the opening of the heine crevice of ferricytochrome c [J]. Biochemistry 1973; 12 (12): 2215-2221.
    [16] Moore GR, Pettigrew GW. Cytochromes c: Evolutionary, Structural and Physicochemical Aspects [M]. Berlin: Springer-Verlag; 1990.
    [17] Looze Y, Polastro E, Deconinck M, Leonis J. Alkaline isomerization of horse and yeast cytochromes c. Spectrophotometric and circular dichroism studies [J]. Int J Pept Protein Res 1978; 12 (5): 233-236.
    [18] Santucci R, Ascoli F. The Soret circular dichroism spectrum as a probe for the heine Fe(Ⅲ)-Met(80) axial bond in horse cytochrome c [J]. J Inorg Biochem 1997; 68 (3): 211-214.
    [19] Stellwagen E, Cass R. Alkaline isomerization of ferricytochrome c from Euglena gracilis [J]. Biochem Biophys Res Commun 1974; 60 (1): 371-375.
    [20] 王镜岩,朱圣庚,徐长法主编.第3章氨基酸.见:生物化学(上册)第3版[M].北京:高等教育出版社;2002.p123-156.
    [21] Nelson DP, Kiesow LA. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H_2O_2 solutions in the UV) [J]. Anal Biochern 1972; 49 (2): 474-478.
    [22] Baldwin DA, Marques HM, Pratt JM. Hemes and hemoproteins. 5: Kinetics of the peroxidatic activity of microperoxidase-8: model for the peroxidase enzymes [J]. J Inorg Biochem 1987; 30 (3): 203-217.
    [23] DePillis GD, Sishta BP, Mauk AG, Ortiz de Montellano PR. Small substrates and cytochrome c are oxidized at different sites of cytochrome c peroxidase [J]. J Biol Chem 1991; 266 (29): 19334-19341.
    [24] Maehly AC, Chance B. The assay of catalases and peroxidases. In: Glick D, editor. Methods of Biochemical Analysis [M]. Volume 1. New York: Interscience; 1954. p 357-408.
    [25] Diederix RE, Ubbink M, Canters GW. The peroxidase activity of cytochrome c-550 from Paracoccus versutus [J]. Eur J Biochem 2001; 268 (15): 4207-4216.
    [26] 王镜岩,朱圣庚,徐长法主编.第9章酶促反应动力学.见:生物化学(上册)第三版[M].北京:高等教育出版社;2002.p 351-383.
    [27] Sato H, Hayashi T, Ando T, Hisaeda Y, Ueno T, Watanabe Y. Hybridization of modified-heme reconstitution and distal histidine mutation to functionalize sperm whale myoglobin [J]. J Am Chem Soc 2004; 126 (2): 436-437.
    [28] Schuller DJ, Ban N, Huystee RB, McPherson A, Poulos TL. The crystal structure of peanut peroxidase [J]. Structure 1996; 4 (3): 311-321.
    [29] Patterson WR, Poulos TL. Crystal structure of recombinant pea cytosolic ascorbate peroxidase [J]. Biochemistry 1995; 34 (13): 4331-4341.
    [30] Poulos TL, Kraut J. The stereochemistry of peroxidase catalysis [J]. J Biol Chem 1980; 255 (17): 8199-8205.
    [31] Dawson JH. Probing structure-function relations in heme-containing oxygenases and peroxidases [J]. Science 1988; 240 (4851): 433-439.
    [32] Redaelli C, Monzani E, Santagostini L, Casella L, Sanangelantoni AM, Pierattelli R, Banci L. Characterization and peroxidase activity of a myoglobin mutant containing a distal arginine [J]. Chembiochem 2002; 3 (2-3): 226-233.
    [33] Villegas JA, Mauk AG, Vazquez-Duhait R. A cytochrome c variant resistant to heme degradation by hydrogen peroxide [J]. Chem Biol 2000; 7(4): 237-244.
    [34] Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z, Liu XJ. Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis [J]. Proc Natl Acad Sci U S A 2006; 103 (24): 8965-8970.
    [35] Rodriguez-Lopez JN, Smith AT, Thorneley RN. Recombinant horseradish peroxidase isoenzyme C: the effect of distal haem cavity mutantions (His42 → Leu and Arg38 → Leu) on compound 1 formation and substrate binding [J]. J Biol Inorg Chem 1996; 1: 136-142.
    [36] English AM, Tsaprailis G. Catalytic structrure-function relationships in heme peroxidases [J]. Adv Inorg Chem 1995; 43: 79-125.
    [37] Smith AT, Veitch NC. Substrate binding and catalysis in heme peroxidases [J]. Curr Opin Chem Biol 1998; 2 (2): 269-278.
    [38] Tanaka M, Ishimori K, Mukai M, Kitagawa T, Morishima I. Catalytic activities and structural properties of horseradish peroxidase distal His42 → Glu or Gin mutant [J]. Biochemistry 1997; 36 (32): 9889-9898.
    [39] Mulligan-Pullyblank P, Spitzer JS, Gilden BM, Fetrow JS. Loop replacement and random mutagenesis of omega-loop D, residues 70-84, in iso-1-cytochrome c [J]. J Biol Chem 1996; 271 (15): 8633-8645.
    [40] Tappel AL. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds [J]. Arch Biochem Biophys 1953; 44 (2): 378-395.
    
    [41] Radi R, Thomson L, Rubbo H, Prodanov E. Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide [J]. Arch Biochem Biophys 1991; 288(1): 112-117.
    [42] Akasaka R, Mashino T, Hirobe M. Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c [J]. Arch Biochem Biophys 1993; 301 (2): 355-360.
    [43] Foppoli C, Marco CD, Blarzino C, Coccia R, Mosca L, Rosei MA. Dimers formation by cytochrome c-catalyzed oxidation of tyrosine and enkephalins [J]. Amino Acids 1997; 13: 273-280.
    [44] Vazquez-Duhalt R. Cytochrome c as a biocatalyst [J]. J Mol Catal B: Enzym 1999; 7: 241-249.
    [45] Diederix RE, Ubbink M, Canters GW. Effect of the protein matrix of cytochrome c in puppressing the inherent peroxidase activity of its heme prosthetic group [J]. ChemBioChem 2002; 3: 110-112.
    [46] Diederix RE, Ubbink M, Canters GW. Peroxidase activity as a tool for studying the folding of c-type cytochromes [J]. Biochemistry 2002; 41 (43): 13067-13077.
    [47] Worrall JA, Diederix RE, Prudencio M, Lowe CE, Ciofi-Baffoni S, Ubbink M, Canters GW. The effects of ligand exchange and mobility on the peroxidase activity of a bacterial cytochrome c upon unfolding [J]. Chembiochem 2005; 6 (4): 747-758.
    
    [48] Lemberg R, Barrett J. Cytochromes [M]. New York: Academic Press; 1973.
    
    [49] Cornish-Bowden A. Fundamentals of Enzyme Kinetics [M]. London, UK: Portland Press; 1995.
    [1] Hawkins BK, Hilgen-Willis S, Pielak GJ, Dawson JH. Novel axial ligand interchange in cytochrome c: Incorporation ofa histidine at position 82 leads to displacement of the wild-type methionine-80 ligand [J]. J Am Chem Soc 1994; 116 (7): 3111-3112.
    [2] Schejter A, Taler G, Navon G, Liu XJ, Margoliash E. Oxidation state-induced change of iron ligand in the phenylalanine-82 to histidine mutant of yeast iso-1-cytochrome c [J]. J Am Chem Soc 1996; 118 (2): 477-478.
    [3] Zheng J, Ye S, Lu T, Cotton TM, Chumanov G. Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant [J]. Biopolymers 2000; 57 (2): 77-84.
    [4] Feinberg BA, Liu X, Ryan MD, Schejter A, Zhang C, Margoliash E. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c [J]. Biochemistry 1998; 37 (38): 13091-13101.
    [5] Pielak GJ, Oikawa K, Mauk AG, Smith M, Kay CM. Elimination of the negative Soret cotton effect of cytochrome c by replacement of the Invariant phenylalanine using site-directed mutagenesis [J]. J Am Chem Soc 1986 108 (10): 2724-2727.
    [6] [美] J.萨姆布鲁克.D.W.拉塞尔著,黄培堂等泽.第13章 诱变.见:分子克隆实验指南,第3版[M].北京:科学出版社;2002.P1080-1171.
    
    [7] Berry EA, Trumpower BL. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra [J]. Anal Biochem 1987; 161 (1): 1-15.
    [8] Silkstone GG, Cooper CE, Svistunenko D, Wilson MT. EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition [J]. J Am Chem Soc 2005; 127 (1): 92-99.
    [9] Margoliash E, Frohwirt N. Spectrum of horse-heart cytochrome c [J]. Biochem J 1959; 71 (3): 570-572.
    [10] Sligar SG, Egeberg KD, Sage JT, Morikis D, Champion PM. Alteration of heme axial ligands by site-directed mutagenesis: a cytochrome becomes a catalytic demethylase [J]. J Am Chem Soc 1987; 109 (25): 7896-7897.
    [11] Avila L, Huang HW, Rodriguez JC, Moenne-Loccoz P, Rivera M. Oxygen activation by axial ligand mutants of mitochondrial cytochrome b_5: Oxidation of heme to verdoheme and biliverdin [J]. J Am Chem Soc 2000; 122 (31): 7618-7619.
    [12] Kaminsky LS, Miller VJ, Davison AJ. Thermodynamic studies of the opening of the heme crevice of ferricytochrome c [J]. Biochemistry 1973; 12 (12): 2215-2221.
    [13] Moore GR, Pettigrew GW. Cytochromes c: Evolutionary, Structural and Physicochemical Aspects [M]. Berlin: Springer-Verlag; 1990.
    [14] Dickerson RE, Timkovich R. In: Boyer PD, editor. The Enzymes 3 ed [M]. Volume 11. New York: Academic Press, Inc.; 1975. p 397-547.
    [15] Schejter A, Plotkin B. The binding characteristics of the cytochrome c iron [J]. Biochem J 1988; 255 (1): 353-356.
    [16] Allen JW, Ferguson SJ. Variation of the axial haem ligands and haem-binding motif as a probe of the Escherichia coli c-type cytochrome maturation (Ccm) system [J]. Biochem J 2003; 375 (Pt 3): 721-728.
    [17] Obataya I, Kotaki T, Sakamoto S, Ueno A, Mihara H. Design, synthesis and peroxidase-like activity of 3 alpha-helix proteins covalently bound to heme [J]. Bioorg Med Chem Lett 2000; 10 (24): 2719-2722.
    [18] Looze Y, Polastro E, Deconinck M, Leonis J. Alkaline isomerization of horse and yeast cytochromes c. Spectrophotometric and circular dichroism studies [J]. Int JPept Protein Res 1978; 12 (5): 233-236.
    [19] Santucci R, Ascoli F. The Soret circular dichroism spectrum as a probe for the heme Fe(III)-Met(80) axial bond in horse cytochrome c [J]. J Inorg Biochem 1997; 68 (3): 211-214.
    [20] Stellwagen E, Cass R. Alkaline isomerization of ferricytochrome c from Euglena gracilis [J]. Biochem Biophys Res Commun 1974; 60 (1): 371-375.
    [21] Raphael AL, Gray HB. Axial ligand replacement in horse heart cytochrome c by semisynthesis [J]. Proteins 1989; 6 (3): 338-340.
    [22] Hu S, Morris IK, Singh JP, Smith KM, Spiro TG. Complete assignment of cytochrome c resonance Raman spectra via enzymatic reconstitution with isotopically labeled hemes [J]. J Am Chem Soc 1993; 115 (26): 12446-12458.
    [23] Othman S, Le Lirzin A, Desbois A. Resonance Raman investigation of imidazole and imidazolate complexes of microperoxidase: characterization of the bis(histidine) axial ligation in c-type cytochromes [J]. Biochemistry 1994; 33 (51): 15437-15448.
    [24] Desbois A. Resonance Raman spectroscopy of c-type cytochromes [J]. Biochimie 1994; 76 (7): 693-707.
    [25] Kitagawa T, Kyogoku Y, Iizuka T, Ikeda-Saito M, Yamanaka T. Resonance Raman scattering from hemoproteins. Effects of ligands upon the Raman spectra of various c-type cytochromes [J]. J Biochem (Tokyo) 1975; 78 (4): 719-728.
    [26] Kitagawa T, Ozaki Y, Teraoka J, Kyogoku Y, Yamanaka T. The pH dependence of the resonance raman spectra and structural alterations at heme moieties of various c-type cytochromes [J]. Biochim Biophys Acta 1977; 494 (1): 100-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700