用户名: 密码: 验证码:
氧化沟优化运行的CFD模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化沟工艺由于出水水质较好和抗冲击负荷能力较强等优势,在我国污水处理系统中得到了广泛的应用。然而,氧化沟运行过程中存在能耗过大所造成高处理成本等问题,导致一些污水处理厂面临“建得起、用不起”的窘境。氧化沟内的流场和溶解氧分布不仅对处理效果影响显著,而且与能量消耗密切相关。本论文以小试氧化沟的模拟实验装置以及平顶山污水处理厂实际氧化沟工艺为对象,进行基于流场和溶解氧分布的计算流体力学(Computational Fluid Dynamics,简称CFD)的数值模拟技术研究,同时开展了流场分布及溶解氧分布的监测校验研究,提出保证出水水质前提下的氧化沟优化运行模式,对污水处理工艺的节能降耗具有一定参考价值。
     主要开展了以下工作:
     1.以华中科技大学实验室0.73 m~3的小试氧化沟装置为研究对象,采用滑移壁面模型与风扇模型分别对曝气转碟与水下推进器进行建模,对网格划分与参数定义进行优化,模拟并实测校验了小试氧化沟的流场分布,结果表明滑移壁面模型与风扇模型可以较好地模拟曝气转碟和水下推进器开启时的流场分布。
     2.以平顶山污水处理厂50000 m~3的实际氧化沟工艺为研究对象,对实际氧化沟现有运行模式与优化运行模式下的流场分布进行模拟与实测,基于两种运行模式下流场分布的对比分析,对氧化沟运行模式提出能量优化配置建议:弯道入口处的曝气转碟一般情况下不必开启,可用弯道处的水下推进器进行替代;一般情况下,相邻的两个推流装置不必同时开启。
     3.利用单元分析法、氧传输模型及修正BOD-DO水质模型对实际氧化沟典型单沟直沟段的溶解氧分布特性进行了模拟,在典型单沟直沟段的好氧区与缺氧区分别设置测量断面进行了溶解氧浓度实际测量工作,并基于两种运行模式下溶解氧分布特性的对比分析,对氧化沟运行模式提出建议:曝气转碟开启过多不利于形成良好的溶解氧浓度梯度,氧化沟脱氮效应得不到正常发挥;同一沟段的相邻两组曝气转碟不必同时开启,否则造成能量浪费,且导致溶解氧浓度过高,不利于同步硝化反硝化作用。
     4.将现有运行模式与优化运行模式分别在东西两座氧化沟同时连续运行一个月,对比分析两种运行模式下氧化沟出水水质与能耗,优化运行模式下改良型氧化沟的脱氮效应得以正常发挥,并且比现有运行模式每小时节省电能98.43 kWh,约节省28.5%的电能,节能效果较为显著。
     氧化沟内的曝气转碟和水下推进器根据进水水量和水质的变化情况进行合理调节配置,可以使氧化沟内的流场分布均匀且形成良好的溶解氧浓度环境,从而达到节能减排的目的。氧化沟优化运行的动态模拟研究工作有待进一步深入。
Oxidation ditch (OD) has been widely used as a modified activated sludge biological treatment process in China due to its reliability and good effluent quality. However, successful operation of an OD system may still be challenging for many wastewater treatment plants (WWTPs) in China for economical reason mainly caused by large energy consumption. Since the process efficiency depends heavily on the flow field and dissolved oxygen (DO) concentration profiles in an OD, which also have close relationship with energy consumption, it is necessary to study on flow pattern and oxygen mass transfer characteristics in OD systems. In this study, an experimentally-validated model based on computational fluid dynamics (CFD) simulation technology was proposed to predict flow patterns and oxygen mass transfer characteristics in a lab-scale OD and a full-scale OD in Ping Dingshan WWTP. Full-scale demonstration of system performance under two operating conditions (existing and improved) of the full-scale OD in Ping Dingshan WWTP was carried out and effects of these two operating conditions on effluent quality and energy consumption were compared. Based on the results of the research, an improving operating condition of the full-scale OD, which could not only reduce energy consumption but also satisfy effluent standards, was proposed.
     The following research work was carried out in this thesis:
     1. The flow field of the lab-scale OD (0.73 m~3) was simulated and validated for verification and optimization of simulation methods of disc aerators and submerged impellers. The result demonstrated that the flow field of the lab-scale OD with disc aerators and submerged impellers operationg could be simulated well by moving wall model and fan model.
     2. The flow fields of the full-scale OD (50000 m~3) under two operating conditions (existing and improved) were compared and analyzed. Several suggestions for energy saving were proposed as follows: an operating disc aerator in the entrance of the curve bend could be instead by an operating submerged impeller in the curve bend; the adjacent disc aerators could not be in operation simultaneously.
     3. Oxygen mass transfer in the typical straight channel of the full-scale OD was predicted by using a unit analysis method and the oxygen consumption was modeled by using modified BOD-DO Model. DO concentrations were measured at two test locations (in the aerobic zone and the anoxic zone) under the existing and improved operating conditions, respectively. Based on the simulation results and field measurements, the operating condition of surface aerators had a significant impact on the DO concentration profiles in the ditch. Under the existing operating condition, the DO concentrations were relatively high that caused waste of energy and the DO concentration gradients were not obvious; while under the improved operating condition, the DO concentrations showed apparent variations along the ditch and provided a more suitable environment for simultaneous nitrification and denitrification (SND).
     4. A comparison on the performance of two operating conditions was carried out in these two full-scale ODs concurrently for a month. The influent quality and effluent quality were monitored daily and energy consumptions for two operating conditions were calculated. The total energy consumption per hour under the improved operating condition is 98.43 kWh (28.5%) less than that under the existing operating condition.
     Since the influent flow rate, concentration and composition are likely to fluctuate day to day, an optimal operating condition should be derived from a dynamic model updated to accommodate actual process state and perturbations. The development of such a model is currently under investigation.
引文
[1]中华人民共和国环境保护部. 2009年中国环境状况公报
    [2]中华人民共和国环境保护部.国家环境保护“十一五”规划
    [3]中华人民共和国环境保护部. 2008年中国环境统计年报
    [4]杨斌.一体化氧化沟能量供给优化试验研究. [硕士论文].重庆:重庆大学图书馆, 2006
    [5] M. Von Sperling. Comparison among the most frequently used systems for wastewater treatment in developing countries. Water Science and Technology, 1996, 33(3): 59~72
    [6] William F. Owen. Energy in wastewater treatment. Englewood: Prentice hall, inc., 1982
    [7] W.F. Owen著.污水处理能耗与能效.章北平等译.北京:能源出版社, 1989. 12~26
    [8] George M. Wesner et al. Energy conservation in municipal wastewater treatment. MCD-32. EPA 430/9-77-011. Prepared for the U.S. Environmental Protection Agency, Office of Water Program Operations, Washington, D.C. 1978
    [9] Robert M.Hagan and Edwin B. Energy Requirements for Wastewater Treatment. Part2. Water and Sewage Works, 1976, 123(11): 52~57
    [10] Klaus R. Imhoff. Energy optimization in sewage and sludge treatment. Water Science and Technology, 1983, 15: 103~114
    [11] Ingemar Karlsson. Environmental and energy efficiency of different sewage treatment processes. Water Science and Technology, 1996, 34(3-4): 203~211
    [12]丁亚兰.国内外废水处理工程设计实例.北京:化工出版社, 2000
    [13]吕乃熙.城市污水处理厂节能技术及其发展主要趋向.给水排水, 1999, 19(1): 12~17
    [14]孟德良等.污水处理厂的能耗与能量回收利用.给水排水, 2002, 28(4): 18~20
    [15]邓荣森等.新型一体化氧化沟工艺的节能特点.中国给水排水, 2001, 17(10): 44~46
    [16]羊寿生.城市污水厂的能源消耗.给水排水, 1984, 6: 15~19
    [17]金昌权,汪诚文,曾思育.污水处理厂能耗特征分析方法与节能途径研究.给水排水, 2009, 35: 270~274
    [18]杨凌波,曾思育,鞠宇平等.我国城市污水处理厂能耗统计规律的分析与定量识别.给水排水, 2008, 34 (10): 42~45
    [19]王涛.单池分区优化及能量模型的研究: [博士论文].重庆:重庆大学图书馆, 2004
    [20]邓荣森.氧化沟污水处理理论与技术.北京:北京工业出版社, 2006.16 ~ 18
    [21]张自杰,林荣忱,金儒霖.排水工程. (第四版)下册.北京:中国建筑工业出版社, 2000
    [22]赵星明. Carrousel氧化沟污水处理技术研究. [硕士论文].西安:西安建筑科技大学图书馆, 2008
    [23]李圭白,张杰.水质工程学.北京:北京建筑工业出版社, 2006. 433~438
    [24]王振国,王丽萍,苏庆珍.卡罗塞尔氧化沟技术发展研究.内蒙古环境科学, 2008, 20(4): 62~64
    [25] M.Filter, J.Colprim, M.Poch et.al. Enhancing Biological Nitrogen Removal in a Small Wastewater Treatment Plant by Regulating the Air Supply. Water Science and Technology, 2003(11-12): 445~452
    [26] Yanchen Liu, Hanchang Shi, Huiming Shi et al. Study on a discrete-time dynamic control model to enhance nitrogen removal with fluctuation of influent in oxidation ditches. Water research, 2010, 10: 1016~1037
    [27] B. Xie, X.C. Dai, Y.T. Xu. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella—A case study in triple oxidation ditch at a wastewater treatment plant. Journal of Hazardous Materials, 2007, 14(3): 184~191
    [28]王瑞金,张凯,王刚. Fluent技术基础与应用实例.北京:北京清华大学出版社, 2007.1~2
    [29]王福军.计算流体动力学分析——CFD软件原理与应用. (第一版).北京:清华大学出版社, 2004. 1~6
    [30]陶文铨.数值传热学. (第二版).西安:西安交通大学出版社, 2001. 1~17
    [31] Suhas V. Patankar. Numerical heat transfer and fluid flow. (the first edition). New York: McGraw-Hill, 1980. 3 ~ 15
    [32] Stamou A I. Prediction of hydrodynamic characteristics of oxidation ditches using the k-εturbulence model. Water Science and Technology, 1992, 25 (3): 261~271
    [33] Stamou A I. Modeling oxidation ditches using the IAWPRC activated sludge model with hydrodynamic effects. Water Science and Technology, 1994, 30 (2): 185~192
    [34] Stamou A I. Modeling of oxidation ditches using an open channel flow 1-D advection dispersion equation and ASM1 process description. Water Science and Technology, 1997, 36 (5): 269~276
    [35] Stamou A I., Katsiri A., Mantziaras I et al. Modelling of an alternating oxidation ditch system. Water Science and Technology, 1999, 39(4): 169~176
    [36] Stamou A I. Improving the hydraulic efficiency of water process tanks using CFD models. Chemical Engineering and Processing, 2008, 47: 1179~1189
    [37] Lesage N., Sperandio M., Lafforgue C et al. Calibration and application of a 1-D model for oxidation ditches. Trans Institution of Chemical Engineers, 2003, 81, Part A: 1259~1264
    [38] Yann Le Moullec, Olivier Potier, Caroline Gentric et al. Flow field and residence time distribution simulation of a cross-flow gas-liquid wastewater treatment reactor using CFD. Chemical Engineering Science, 2008, 63: 2436~2449
    [39] Pawe? Gancarski. CFD modelling of an oxidation ditch. [MSc Thesis]. England: Library of Cranfield University, 2007
    [40] Helen X. Littleton, Glen T. Daigger, Peter F. Strom. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer. Water Environment Research, 2007, 79(6): 600~612
    [41]范茏,陈大方,王志强等. Carrousel氧化沟的流动特性研究.环境污染治理技术与设备, 2006, 7(12): 36~41
    [42]范笼,陈大方,刘艳臣等. Carrousel氧化沟单个表曝机流态的模拟试验和分析比较.环境科学研究, 2007, 20(4): 97~100
    [43]张宗才,张新申,张铭让.氧化沟的水力学分析及流场计算.中国皮革, 2004, 33(11): 22~25
    [44]罗麟,李伟民,邓荣深等.一体化氧化沟的三维流场模拟与分析.中国给水排水, 2003, 19(12): 15~18
    [45]赵星明,王萱,黄延林.减少氧化沟弯道沉泥的模拟与研究.环境工程, 2007, 25(6): 37~39
    [46]曹瑞玉,付见中.改善和膏流速分布的措施.中国给水排水, 2001, 17(2): 16~18
    [47]许丹宇,张代钧,陈园等.卡鲁塞尔氧化沟液-固两相流动混合物模型与两相水力特性模拟.环境科学学报, 2008, 28(12): 2622~2627
    [48]许丹宇,张代钧,艾海男等.氧化沟反应器流体力学特性的数值模拟与实验研究.环境科学学报, 2007, 1(12): 22~28
    [49]刘广立,种云霄,樊青娟等.氧化沟水力特性对处理效果和能耗的影响.环境科学,2006,27(11): 2323~2326
    [50] Yang, Y., Wu, Y.Y., Yang, X., Zhang, K. and Yang, J.K. Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics. Water Science and Technology, 2010, 62(2): 256~265
    [51] Z. Do-Quang, A. Cockx, A. Line et al. Computational fluid dynamics applied to water and wastewater treatment facility modeling. Environmental Engineering and Policy, 1999, 1: 137~147
    [52] A. Cockx, Z. Do-Quang, J.M. Audic et al. Global and local mass transfer coefficients in waste water treatment process by computational fluid dynamics. Chemical Engineering and Processing, 2001, 40: 187~194
    [53] Yannick Fayolle, Sylvie Gillot, Arnaud Cockx et al. In situ characterization of local hydrodynamic parameters in closed-loop aeration tanks. Chemical Engineering Journal, 2010, 158: 207~212
    [54] Yannick Fayolle, Arnaud Cockx, Sylvie Gillot et al. Oxygen transfer prediction in aeration tanks using CFD. Chemical Engineering Science, 2007, 62: 7163~7171
    [55] Yannick Fayolle. Modeling of hydrodynamics and oxygen transfer in vent channels. [Doctorat Thesis]. France: Library of INSA Toulouse, 2006
    [56] S. Gillot and A. Heduit. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. Water Research, 2000, 34(5): 1756~1762
    [57] S. Gillot., S. Capela. and A. Heduit. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants. Water Research, 2000, 34(2): 678~683
    [58] V. Diamantis, I. Papaspyrou, P. Melidis et al. High aeration rate enhances flow stratification in full-scale oxidation ditch. Bioprocess Biosystem Engineering, 2010, 33: 293~298
    [59] A. Abusam, K.J. Keesman, K. Meinema et al. Oxygen transfer rate estimation in oxidation ditches from clean water measurements. Water Research, 2001, 35(8): 2058~2064
    [60] Gresch M., Armbruster M., Braun D et al. Effects of aeration patterns on the flow field in wastewater aeration tanks. Water Research, 2011,45(2): 810~818
    [61]刘广立,王玉珏,施汉昌等.活性污泥工艺模拟系统软件在氧化沟中的应用.中国环境科学, 2001, 21(4): 359~361
    [62]刘艳臣. Carrousel氧化沟单沟脱氮优化条件及其控制策略研究: [博士论文].北京:清华大学图书馆, 2008
    [63] Yanchen Liu, Hanchang Shi, Lan Xia, et al. Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresource Technology, 2010, 101: 901~906
    [64]许丹宇.卡鲁塞尔氧化沟液固两相湍流与生物反应动力学研究: [博士论文].重庆:重庆大学图书馆, 2008
    [65]陈园.氧化沟液固两相湍流反应动力学仿真系统: [硕士论文].重庆:重庆大学图书馆, 2008
    [66] Zhang D.J., Guo L.S., Xu D.Y. et al. Simulation of Component Distributions in a Full-Scale Carrousel Oxidation Ditch: A Model Coupling Sludge-Wastewater Two-Phase Turbulent Hydrodynamics with Bioreaction Kinetics. Environmental Engineering Science, 2010, 27(2): 159~168
    [67] Huang W.D., Wu C.D. and Xia W.D. Oxygen transfer in high-speed surface aeration tank for wastewater treatment: full-scale test and numerical modeling. Journal of Environmental Engineering, 2009, 135(8): 684~691
    [68]吴莹莹.氧化沟流场和溶解氧CFD模拟研究: [硕士论文].武汉:华中科技大学图书馆, 2009
    [69]李媛. AIRE-O2充氧机性能浅析与Orbal氧化沟流态测试及三维模拟: [硕士论文].重庆:重庆大学图书馆, 2005
    [70]杨华展.单池流态特性研究与模拟及混合能量配置优化: [硕士论文].重庆:重庆大学图书馆, 2006
    [71] Paul E, Plisson Saune S, Mauret M, Cantet J. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO. Water Research Technology, 1998, 38(3): 229~306
    [72] Talvy, S., Cockx, A. and Line, A. Global modelling of a gas–liquid–solid airlift reactor. Chemical Engineering Science, 2005, 60(22): 5991~6003.
    [73]肖波.河流中的BOD模型及其应用.城市坏境与城市生态, 1993, 6(4): 17~20
    [74]杨家宽,肖波,刘年丰等. WASP6预测南水北调后襄樊段的水质.中国给水排水, 2005, 21(9): 103~104
    [75] Wang Jianping, Cheng Shengtong, Jia Haifeng. Water quality changing trends of the Miyun Reservoir. Journal of Southeast University, 2005, 21(2): 215~219
    [76] Rittman, B.E. and Langeland, W.E. Simultaneous denitrification with nitrification in single-channel oxidation ditches. Water Pollution Control Fed, 1985, 57(4): 300~308
    [77]中华人民共和国环境保护部(原国家环境保护总局).城镇污水处理厂污染物排放标准, GB 18918-2002, 2002
    [78]姚远,张丹丹,楚英豪.城市污水处理厂中的能耗及能源综合利用.资源开发与市场,2010, 26(3): 202~205
    [79]陈宏儒.城市污水处理厂能耗评价及节能途径研究: [硕士论文].西安:西安建筑科技大学图书馆, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700