用户名: 密码: 验证码:
多孔气敏性氧化物纳米材料的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体氧化物气体传感器发展至今已有很长历史,提高敏感性能一直是其研究所追求的目标。特别是灵敏度和选择性,它们是制约传感器实际应用的两个重要因素。如何从根本上改善气体传感器的灵敏度以及提高选择性,实现对待测物的低检测限和定性识别依然是目前传感器研究的热点之一。纳米材料的出现以及纳米科技的发展为传感器敏感性能的改善提供了新的契机。近年来,半导体氧化物纳米材料的气敏性研究越来越受到人们重视,其中多孔结构的纳米材料因具有更大的活性表面积而倍受关注。合成具有多孔结构的半导体氧化物纳米材料来制作气敏元件,对提高传感器敏感性能具有非常重要的意义。
     本论文主要是在合成多孔氧化物纳米材料的基础上,进一步考察了它们的气敏特性及其它相关性质。此外,以多孔氧化物为气敏材料设计制作了一种结构新颖的传感器件,通过与气相色谱分离柱联用,探索并提出了弥补气体传感器在实际检测中存在选择性不足的新方法。主要内容如下:
     一、水热法合成了类碱式碳酸镉化合物纳米线;以其为前驱体,在空气中高温煅烧首次制备了多孔氧化镉纳米线。详细研究了前驱体形貌及组分随煅烧温度的变化,提出了氧化镉纳米线多孔结构的形成机制。此外,气敏性研究表明:由多孔氧化镉纳米线制作的传感器对低浓度的氮氧化物(NO_x)表现出良好的气敏性能。检测限低,对1 ppm的NO_x仍然有明显的敏感响应;拥有高的信噪比;同时具有良好的选择性,对有机体还原性气体几乎没有明显的响应;且功耗低,工作温度仅约为100℃。光学性质研究发现:多孔氧化镉纳米线的PL谱呈现出发射波长随激发波长的增加而红移;对于UV-vis吸收光谱,在505nm处有一个较宽的吸收峰。
     二、合成了单分散、粒径大小可控的碳质纳米粒子。以碳质纳米粒子为模板,成功地制备了多孔结构的氧化铟纳米空心球。表征结果显示:In_2O_3纳米球大小约为200 nm;壳层厚约30 nm,由粒径大小约为6-13 nm的In_2O_3纳米晶和纳米孔组成。与实心纳米球相比,独特的空心和多孔结构的In_2O_3纳米球有利气体分子的扩散,同时应具有较大的活性表面积。气敏性研究表明:它们对乙醇、甲醇、丙酮和乙醚等有机挥发性气体表现出良好的气敏响应特性,如高灵敏度、低检测限和可逆性,充分体现了多孔纳米材料在提高传感器气敏性能中的作用。此外,为了理解多孔In_2O_3纳米空心球的良好气敏性能,提出了其气敏响应模型。光学性质研究发现:在309 nm处多孔In_2O_3纳米空心球有一个强的紫外吸收峰;同时,与已报道的In_2O_3纳米材料类似,在室温下也表现出荧光性质。
     三、为间接实现气体传感器在混合样品检测中的选择性(即对待测物定性识别),提出了气相色谱柱和气体传感器联用技术。以多孔气敏性氧化物为敏感材料,设计制作了一种结构新颖的传感器件应用为气相色谱检测器。通过对甲醇、乙醇、异丙醇以及它们混合样品的测试,成功地证实了气相色谱柱和气体传感器联用技术的可行性以及独特优点。基于不同浓度甲醇、乙醇、异丙醇以及它们混合样品的测试,初步探讨气体传感器对各组分响应的灵敏度与浓度关系。结果表明气体传感器用作气相色谱检测器对样品的定量分析也具有一定的参考价值。通过研究柱前压和柱温等因素对气相色谱分离以及传感器检测的影响,发现整个检测过程遵循气相色谱仪的工作原理。此外,该联用技术的实现同时也为发展便携式气相色谱仪提供了新的思路。
Improving gas-sensing properties has been being a pursuing goal, in spite of the development of gas sensors based on semiconductor oxides with a long history. Especially for sensitivity and selectivity, they are two important factors, which could affect the application of gas sensors. In order to realize low detection limit and the qualitative identification, the topic about how to improve the sensitivity and selectivity is still a critical issue about the research of gas sensors. Recently nanomaterials and nanotechnology provide new opportunities for improving the performance of gas sensors. In the past several decades, the sensing properties of semiconductor metal oxide nanomaterials have been widely investigated. Owing to the existence of the large activated surface areas, it could cause the detected gas samples to easily diffuse and interact with sensing materials, especially for porous nanomaterials. Therefore, the syntheses of porous nanomaterials would be of importance for improving gas sensing properties.
     In this dissertation, many porous semiconductor oxide nanomaterials have been prepared. Their sensing and other properties have also been investigated. Furthermore, based on as-prepared hollow and porous In_2O_3 nanospheres, a novel structure sensor device has been fabricated. In order to improve the selectivity of gas sensors, the gas chromatography was employed to separate the mixture sample, combining with gas sensors used to as a detector. The main conclusions are summarized as follows:
     1. Highly porous (CdO) nanowires have been prepared by calcining the hydroxy and carbonate-containing cadmium compound precursor nanowires in air, which have been synthesized through hydrothermal method. In order to illustrate the formation mechanism of porous structures, the morphology and composition evolvements of precursor nanowires were further investigated under different stages of the calcining process. Gas sensing properties have been explored for the sensor device fabricated with highly porous CdO nanowires. The results demonstrate that it has good response (even for 1 ppm concentration) owing to its special structure, great selectivity to NO_x (no response to reducing organic gases), high signal-to-noise ratio, and low power. Furthermore, the UV-visible absorption spectrum of the porous CdO nanowires presents a broad absorption peak at 505 nm; and the photoluminescence band shifts as excitation wavelength changes.
     2. Monodisperse and diameter controllable carbonaceous nanoparticles have been synthesized. Hollow and porous In_2O_3 nanospheres have been prepared by the hydrolysis of InCl_3 using carbonaceous spheres as templates in combination with calcination. Based on the observation of scanning electronic microscopy (SEM) and transmission electron microscopy (TEM), it has been revealed that the as-prepared In_2O_3 nanospheres have a uniform diameter of around 200 nm and hollow structures with thin shells of about 30 nm consisted of numerous 6-13 nm nanocrystal and nanopores. Owing to the hollow and porous structures, In_2O_3 nanospheres possessing more active surface area exhibit a good response, low detection limit and reversibility to some organic gases such as methanol, alcohol, acetone and ethyl ether. In addition, the response mechanism of hollow and porous In_2O_3 nanospheres to organic gases has been proposed. Furthermore, these prepared In_2O_3 spheres showed a UV-visible absorption peak centered at around 309 nm; and their photoluminescence spectra have also been investigated.
     3. In order to improve the selectivity of gas sensors, the idea of semiconductor sensors combined with the gas chromatography was offered and investigated. Based on as-prepared hollow and porous In_2O_3 nanospheres, a novel structure sensor device has been fabricated, which was used to be a new chromatography detector offering another approach for preparing a portable gas chromatograph. The experimental results show that the above idea is feasible. It could also be helpful for quantitative analysis. Furthermore, the effecting factors, such as the pressure and temperature of column, were also explored.
引文
[1] Seiyama T, Akio K, Kiyoshi F, et al. 1962. New detector for gaseous components using semiconductive thin films. Anal. Chem. 34:1502-1503
    [2] Franke, ME, Koplin TJ, Simon U. 2006. Metal and metal oxide nanoparticles in chemisesistors: does the nanoscale matter? Small. 2:36-50
    [3] Korotcenkov G. 2005. Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens. Actuators B 107:209-232
    [4] Ping Y, Hdjinanayis GC, Sorensen CM, et al. 1990. Magnetic properties of fine cobalt particles prepared by metal atom reduction. J. Appl. Phys. 67:4502
    [5] Vehara, M. Barbara B, Dieny B, Stamp PCE. 1986. Staircase behaviour in the magnetization reversal of a chemically disordered magnet at low temperature. Phys. Lett. A, 114:23
    [6] Ball P, Garwin L. 1992. Science at the atomic scale. Nature 355:761-766
    [7] Hagfeidt A, Gratzel M. 1995. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95:49-68
    [8] Legget AJ, Chakravarty S, Dorsey AT, et al. 1987. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59:1
    [9] Wang J, Chen Q, Zeng C, et al. 2004. Magnetic-field induced growth of single-crystalline Fe_3O_4 nanowires. Adv. Mater. 16:137
    [10] Dai ZR, Gole JL, Stout JD, et al. 2002. Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 106:1274-1279
    
    [11] Choi YC, Kim WS, Park YS, et al. 2000. Catalytic growth of β-Ga_2O_3 nanowires by arc discharge. Adv. Mater. 12:746
    
    [12] Liang C, Meng G, Lei Y, et al. 2001. Catalytic growth of semiconducting In_2O_3 nanofibers. Adv. Mater. 13:1330-1333
    [13] Tang C, Bando Y, Sato T. 2002. Oxide-assisted catalytic growth of MgO nanowires with uniform diameter distribution. J. Phys. Chem. B 106:7449-7452
    [14] Wang X, Gao P, Li J, et al. 2002. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Adv. Mater. 14:1732
    [15] Zhu YC, Bando Y, Uemura Y, et al. 2003. ZnS-Zn nanocables and ZnS nanotubes. Chem. Commun. 836-837
    [16] Tian ZR, Voigt JA, Liu J, et al. 2003. Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 125:12384-12385
    [17]Mayers B,Xia Y.2002.Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds.Adv.Mater.14:279-281
    [18]Zhang J,Zhang L.2002.Intensive green light emission from MgO nanobelts.Chem.Phys.Lett.363:293-297
    [19]Peng XS,Zhang LD,Meng GW,et al.2002.Photoluminescence and infrared properties of α-Al_2O_3 nanowires and nanobelts.J.Phys.Chem.B,106:11163-11167
    [20]An C,Tang K,Shen G,et al.2002.Growth of belt-like SnS crystals from ethylenediamine solution.J.Crystal Growth,244:333-338
    [21]Wang ZL.Nanowires and nanobelts-materials,properties and devices.清华大学出版社,北京,2004.
    [22]Pan ZW,Dai ZR,Wang ZL.2001.Nanobelts of semiconducting oxides.Science,291:1947-1949
    [23]He JH,Hsu JH,Wang CH,Lin HN,Chen LJ,Wang ZL.2006.Pattern and feature designed growth of ZnO nanowire arrays for vertical devices.J.Phys.Chem.B,110:50-53
    [24]Wang XD,Song JH,Summers C J,Ryou JH,Li P,Dupuis RD,Wang ZL.2006.Density-controlled growth of aligned ZnO nanowires sharing a common contact:a simple,low-cost,and mask-free technique for large-scale applications.J.Phys.Chem.B 110:7720-7724
    [25]Zhou J,Gu YD,Fei P,Mai W J,Gao YF,Yang RS,Bao G,Wang ZL.2008.Flexible piezotronic strain sensor.Nano lett.8:3035-3040
    [26]He JH,Hsin CL,Liu J,Chen J,Wang ZL.2007.Piezoelectric gated diode of a single ZnO nanowire.Adv.Mater.19:781-783
    [27]Song JH,Wang XD,Liu J,Liu HB,Li YL,Wang ZL.2008.Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer.Nano lett.8:203-207
    [28]Wang ZL,Song JH.2006.Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science,14:242-246
    [29]Qin Y,wang XD,Wang ZL.2008.Microfibre-nanowire hybrid structure for energy scavenging.451:809-U5
    [30]Bogue R.2008.Nanosensors:a review of recent progress.Sensor.Rev.28:12-17
    [31]Anker JN,Hall WP,Lyandres O,Shah NC,Zhao J,Van Duyne RP.2008.Biosensing with plasmonic nanosensors.Nature Mater.7:442-453
    [32]施利毅 等编著.纳米材料.华东理工大学出版社,上海,2007
    [33]Liao L,Mai HX,Yuan Q,Lu HB,Li JC,Liu C,Yah CH,Shen ZX,Yu T.2008.Single CeO_2nanowire gas sensor supported with Pt nanocrystals:gas sensitivity,surface bond states,and chemical mechamism.J.Phys.Chem.C 112:9061-9065
    [34] Lin HY, Chen HA, Lin HN. 2008. Fabrication of a single metal nanowire connected with dissimilar metal electrodes and its application to chemical sensing. Analy. Chem. 80:1937-1941
    [35] Liao L, Lu HB, Li JC, Liu C, Fu DJ, Liu YL. 2007. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Appl. Phys. Lett. 91:173110
    [36] Hernandez-Ramirez F, Prades JD, Tarancon A, Barth S, Casals O, Jimenez-Diaz R, Pellicer E, Rodriguez J, Morante JR, Juli MA, Mathur S, Romano-Rodriguez A. 2008. Insight into the role of oxygen diffusion in the sensing mechanisms of SnO_2 nanowires. Adv. Funct. Mater. 18:2990-2995
    [37] Rothschild A, Komen Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. 2004. J. Appl. Phys. 95:6347-6380
    [38] Devi GS, Hyodo T, Shimizu Y, Egashira M. 2002. Synthesis of mesoporous TiO_2-based powders and their gas-sensing properties. Sens. Actuators B 87:112-129
    [39] Kim JH, Kim SH, Shiratori S. 2004. Fabrication of nanoporous and hetero-structure thin film via a layer-by-layer self assembly method for a gas sensor. Sens. Actuators B 102:241-247
    [40] Hyodo T, Nishida N, Shimizu Y, Egashira M. 2002. Preparation and gas-sensing properties of thermally stable mesoporous SnO_2. Sens. Actuators B 83:209-215
    [41] Jin ZH, Zhou HJ, Jin ZL, Savinell RF, Liu CC. 1998. Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens. Actuators B 52:188-194
    [42] Hyodo T, Sasahara K, Shimizu Y, Egashira M. 2005. Preparation of macroporous SnO_2 films using PMMA microspheres and their sensing properties to NO_x and H_2. Sens. Actuators B 106:580-590
    [43] Xu C, Tamaki J, Miura N, Yamazoe N. 1991. Grain size effects on gas sensitivity of porous SnO_2-based elements. Sens. Actuators B 3:147-155
    [44] Zhong ZY, Ho J, Teo J, Shen S, Gedanken A. 2007. Synthesis of porous a-Fe_2O_3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO. Chem. Mater. 19:4776-4782
    [45] Zhao QR, Zhang ZG, Dong T, Xie Y. 2006. Facile synthesis and catalytic property of porous tin dioxide nanostructures. J. Phys. Chem. B 110:15152-15156
    [46] Harada T, Ikeda S, Ng YH, Sakata T, Mori H, Torimoto T, Matsumura M. 2008. Rhodium nanoparticle encapsulated in a porous carbon shell as an active heterogeneous catalyst for aromatic hydrogenation. Adv. Fun. Mater. 18:2190-2196
    [47] Ganley JC, Riechmann KL, Seebauer EG, Masel RI. 2004. Porous anodic alumina optimized as a catalyst support for microreactors. J. Cataly. 227:26-32
    [48] Levkin PA, Eeltink S, Stratton TR, Brennen R, Robotti K, Yin H, Killeen K, Svec F, Frechet JMJ. 2008. Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. J. Chromatography A, 1200:55-61
    [49] Teraoka I, Zhou ZM, Langley KH, Karasz FE. 1993. Molecular weight-sensitive separation of a bimodal polymer mixture using nanoscale porous materials. Macromolecules 26:6081-6084
    [50] Nakanishi K, Tanaka N. 2007. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Account of Chem. Res. 40:863-873
    [51] Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ. 2003. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299:2045-2047
    [52] Byrne RS, Deasy PB. 2002. Use of commercial porous ceramic particles for sustained drug delivery. Int. J. Pharm. 246:61-73
    [53] Ma MY, Zhu YJ, Li L, Cao SW. 2008. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. J. Mater. Chem. 18:2722-2727
    [54] Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. 2008. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130:6774-6780
    [55] Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF. 2006. Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater. Res. Bull. 41:2268-2275
    [56] Zhang HG, Zhu QS, Zhang Y, Wang Y, Zhao L, Yu B. 2007. One-pot synthesis and hierarchical assembly of hollow Cu_2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17:2766-2771
    [57] Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR. 2007. Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH_3 gas sensors. Adv. Mater. 19:1641-1643
    [58] Jin ZH, Zhou HJ, Jin ZL, Savinell RF, Liu CC. 1998. Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens. Actuators B 52:188-194
    [59] Tiemann M. 2007. Porous metal oxides as gas sensors. Chem. Eur. J. 13:8376-8388
    [60] Wang YL, Jiang XC, Xia YN. 2003. A solution-phase, precursor route to polycrystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125:16176-16177
    [61] Wagner T, Roggenbuch J, Kohl CD, Froba M, Tiemann M. 2007. Stud. Surf. Sci. Catal. 165:347
    [62] Wagner T, Waitz T, Roggenbuck J, Froba M, Kohl CD, Tiemann M. 2007. Ordered mesoporous ZnO for gas sensing. Thin Solid Films 515:8360-8363
    [63] 刘培生 著. 多孔材料引论. 清华大学出版社, 北京,2004.
    [64] IUPAC: 1972. Manual of symbols and terminology. Pure Appl. Chem. 31:578
    [65] Jiang XC, Wang YL, Herricks T, Xia YN. 2004. Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 14:695-703
    [66] Wang YL, Jiang XC, Xia YN. 2003. A solution-phase, precursor route to polycrystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125:16176-16177
    [67] Pol VG, Langzam Y, Zaban A. 2007. Application of microwave superheating for the synthesis of TiO_2 rods. Langmuir 23:11211 -11216
    [68] Shan CX, Liu Z, Zhang ZZ, Shen DZ, Hark SK. 2006. A simple route to porous ZnO and ZnCdO nanowires. J. Phys. Chem. B 110:11176-11179
    [69] Yu HD, Wang DS, Han MY. 2007. Top-down solid-phase fabrication of nanoporous cadmium oxide architectures. J. Am. Chem. Soc. 129:2333-2337
    [70] Zhang H, Wu JB, Zhai CX, Ma XY, Du N, Tu JB, Yang DR. 2008. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co_3O_4 nanorods for high performance lithium-ion battery electrodes. Nanotechnology 19:035711
    [71] Wu PC, Wang WS, Huang YT, Sheu HS, Lo YW, Tsai TL, Shieh DB, Yeh CS. 2007. Porous iron oxide based nanorods developed as delivery nanocapsules. Chem. Eur. J. 13:3878-3885
    [72] Qi RJ, Zhu YJ, Cheng GF, Huang YH. 2005. Sonochemical synthesis of single-crystalline CeOHCO_3 rods and their thermal conversion to CeO_2 rods. Nanotechnology 16:2502
    [73] Schuth F. 2003. Endo- and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Ed. 42:3604-3622
    [74] Yang HF, Zhao DY. 2005. Synthesis of replica mesostructures by the nanocasting strategy. J. Mater. Chem. 15:1217-1231
    [75] Tian BZ, Liu X, Yang H, et al. 2003. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv. Mater. 15:1370-1372
    [76] Tian BZ, Liu X, Solovyov LA, Liu Z, Yang H, Zhang Z, Xie S, Zhang F, Tu B, Yu C, Terasaki O, Zhao DY. 2004. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J. Am. Chem. Soc. 126:865-875
    [77] Yue B, Tang HL, Kong ZP, Zhu KK, Dickinson C, Zhou WZ, He HY. 2005. Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide. Chem. Phys. Lett. 407:83-86
    [78] Jiao F, Harrison A, Jumas JC, Chadwich AV, Kockelmann W, Bruce PG. 2006. Ordered mesoporous Fe_2O_3 with crystalline walls. J. Am. Chem. Soc. 128:5468-5474
    [79] Jiao K, Zhang B, Yue B, Ren Y, Liu SX, Yan SR, Dickinson C, Zhou WZ, He HY. 2005. Growth of porous single-crystal Cr_2O_3 in a 3-D mesopore system. Chem. Commun. 5618-5620
    [80] Laha SC, Ryoo R. 2003. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem. Commun. 2138-2139
    [81] Dickinson C, Zhou WZ, Hodgkins RP, Shi YF, Zhao DY, He HY. 2006. Formation mechanism of porous single-crystal Cr_2O_3 and Co_3O_4 templated by mesoporous silica. Chem. Mater. 18:3088-3095
    [82] Smart JH, Weidenthaler C, Rosenholm JB, Linden M. 2006. Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem. Mater. 18:1443-1450
    [83] Polarz S, Orlov AV, Schuth F, Lu AH. 2007. Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystlline walls. Chem Eur. J. 13:592-597
    [84] Dong AG, Ren N, Tang Y, Wang YJ, Zhang YH, Hua WM, Gao Z. 2003. General synthesis of mesoporous spheres of metal oxides and phosphates. J. Am. Chem. Soc. 125:4976-4977
    [85] Liu Q, Wang AQ, Wang XD, Zhang T. 2006. Ordered crystalline alumina molecular sieves synthesized via a nanocasting route. Chem. Mater. 18:5153-5155
    [86] Roggenbuck J, Tiemann M. 2005. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon. J. Am. Chem. Soc. 127:1096-1097
    [87] Lai X, Li X, Geng W. Tu J, Li J, Qiu S. 2007. Ordered mesoporous copper oxide with crystalline walls. Angew. Chem. Int. Ed. 46 :738-741
    [88] Lee J, Kim J, Hyeon T. 2006. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18:2073-2094
    [89] Velev, OD, Lenhoff AM. 2000. Colloidal crystals as templates for porous materials. Current Opinion in Colloid & Interface Science 5:56-63
    [90] Caruso F, Caruso RA, Mohwald H. 1998. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111 -1114
    [91] Caruso RA, Susha A, Caruso F. 2001. Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem. Mater. 13:400-409
    [92] Zhong Z, Yin Y, Gates B, Xia YN. 2000. Preparation of mesoscale hollow spheres of TiO_2 and SnO_2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12:206-209
    [93] Su FB, Zhao XS, Wang Y, Wang LK, Lee JY. 2006. Hollow carbon spheres with a controllable shell structure. J. Mater. Chem. 16:4413-4419
    [94] Cheng XJ, Chen M, Wu LM, Gu GX. 2006. Novel and facile method for the preparation of monodispersed titania hollow spheres. Langmuir 22:3858-3863
    [95] Martinez CJ, Hockey B, Montgomery CB, Semancik S. 2005. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21:7937-7944
    [96] Xu HF, Ding SJ, Wei W, Zhang CL, Qu XZ, Liu JQ, Yang ZZ. 2007. Template synthesis of tin-doped indium oxide (ITO)-polymer and the corresponding carbon composite hollow colloids. Colloid. Polym. Sci. 285:1101-1107
    [97] Velasquez C, Rojas F, Ojeda ML, Ortiz A, Campero A. 2005. Structure and texture of self-assembled nanoporous SnO_2. Nanotechnology, 16:1278
    [98] Ghosh S, Reis RL, MonoJF. 2008. Bio-inspired mineral growth on porous spherulitic textured poly(L-lactic acid)/bioactive glass composite scaffolds. Adv. Eng. Mater. 10:B18-B22
    [99] Rothschild A, Komen Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. 2004. J. Appl. Phys. 95:6374-6380
    [100] Martinez CJ, Hochey B, Montgomery CB, Semancih S. 2005. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21:7937-7944
    [101] Qin LP, Xu JQ, Dong XW, et al. 2008. The template-free synthesis of square-shaped SnO_2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19:185705
    [102] Choi, YJ, Hwang IS, Park JG, Choi KJ, Park HJ, Lee JH. 2008. Novel fabrication of a SnO_2 nanowire gas sensor with high sensitivity. Nanotechnology 19:095508
    [103] Kuang Q, Lao CS, Wang ZL, Xie ZX, Zheng LS. 2007. High-sensitivity humidity sensor based on a single SnO_2 nanowire. J. Am. Chem. Soc. 129:6070-6071
    
    [104] Wang B, Zhu LF, Yang YH, Xu NS, Yang GW. 2008. Fabrication of a SnO_2 nanowire gas sensor and sensor performance for hydrogen. J. Chem. Phys. C 112:6643-6647
    [105] Kolmakov A, Zhang YX, Cheng GS, Moskovits M. 2003. Detection of CO and O_2 using tin oxide nanowire sensors. Adv. Mater. 15:997-1000
    [106] Wang GX, Park JS, Park MS, Gou XL. 2008. Synthesis and high gas sensitivity of tin oxide nanotubes. Sensors and Actuators B 131:313-317
    [107] Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL. 2002. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81:1869
    [108] Law M, Kind H, Messer BJ, Kim FL, Yang PD. 2002. Photochemical sensing of NO_2 with SnO_2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 41:2405-2408
    [109] Pinna N, Neri G, Antonietti M, Niederberger M. 2004. Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. Angew. Chem. Int. Ed. 43:4345-4349
    [110] Chiu HC, Yeh CS. 2007. Hydrothermal synthesis of SnO_2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. C111:7256-7259
    [111] Tan ETH, Ho GW, Wong ASW, Kawi S, Wee ATS. 2008. Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology 19:255706
    [112] Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL. 2004. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84:3654
    [113] Hsueh TJ, Hsu CL, Chang SJ, Chen IC. 2007. Laterally grown ZnO nanowire ethanol gas sensors. Sensors and Actuators B 126:473-477
    [114] Chang SJ, Hsueh TJ, Chen IC, Huang BR. 2008. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology 19:175502
    [115] Rout CS, Krishna SH, Vivekchand SRC, Govindaraj A, Rao CNR. 2005. Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem. Phys. Lett. 418:586-590
    [116] Law JBK, Thong JTL. 2008. Improving the NH_3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration. Nanotechnology 19:205502
    [117] Liao L, Lu HB, Li JC, He H, Wang DF, Fu DJ, Liu C, Zhang WF. 2007. Size dependence of gas sensitivity of ZnO nanorods. J. Chem. Phys. C 111:1900-1903
    [118] Zhang YS, Yu K, Jiang DS, Zhu ZQ, Geng HR, Luo LQ. 2005. Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242:212-217
    [119] Zhang N, Yu K, et al. 2008. Room-termperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance. J. Appl. Phys. 103:104304
    [120] Ryu KM, Zhang DH, Zhou CW. 2008. High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates. Appl. Phys. Lett. 92:093111
    [121] Chu XF, Wang CH, Jiang DL, Zheng CM. 2004. Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chem. Phys. Lett. 399:461-464
    [122] Xu JQ, Chen YP, Pan QY, Xiang Q, Cheng ZX, Dong XW. 2007. A new route for preparing corundum-type In_2O_3 nanorods used as gas-sensing materials. Nanotechnology 18:115615
    [123] Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR. 2007. Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH_3 gas sensors. Adv. Mater. 19:1641-1643
    [124] Gou XI, Wang GX, Kong XY, Wexler D, Horvat J, Yang J, Park JS. 2008. Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterization and application for gas-sensing. Chem. Eur. J. 14:5996-6002
    [125]Hu XL,Yu JM,Gong JM,Li Q,Li GS.2007.a-Fe_2O_3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties.Adv.Mater.19:2324-2329
    [126]黄行九.2004.SnO_2气体传感器动态测试原理及其与SPME联用技术研究:博士.合肥:中国科学技术大学.
    [127]Radecka M,Przewoznik J,Zakrzewska K.2001.Microstructure and gas-sensing properties of(Sn,Ti)O_2 thin films deposited by RGTO technique.Thin Solid Films 391:247-254.
    [128]Katsuki A,Fukui K.1998.H_2 selective gas sensors based on SnO_2.Sensors and Actuators B,52:30-37
    [129]Advani GN,Komem Y,Hasenkopf J,Jordan AG.198I.Improved performance of SnO_2thin-film gas sensors due to gold diffusion.Sensors and Actuators,2:139-147
    [130]Takao Y,Miyazaki K,Shimizu Y,Egashira M.1994.High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes.J.Electrochem.Soc.141:1028-1034
    [131]Tan OK,Zhu W,Yah Q,Kong LB.2000.Size effect and gas sensing characteristics of nanocrystalline xSnO_2-(1-x)Fe_2O_3 ethanol sensors.Sensors and Actuators B,65:361-365
    [132]Tamaki J,Maekawa T,Matsushima S,Miura N,Yamazoe N.1990.Ethanol gas sensing properties of Pd-La_2O_3-In_2O_3 thick film element.Chem.Lett.19:447-450
    [133]Ivanovskaya M,Bogdanov P,Faglia G,Nelli P.2001.On the role of catalytic additives in gas-sensitivity of SnO_2-Mo based thin film sensors.Sensors and Actuators B,77:268-274
    [134]Williams G,Coles GSV.1993.NO_x response of tin dioxide based on gas sensors.Sensors and Actuators B,16:349-353
    [135]Sberveglieri G,Groppelli S,Nelli P.1991.Highly sensitive and selective NO_x and NO_2sensor based on Cd-doped SnO_2 thin films.Sensors and Actuators B,4:457-461
    [136]Wiegleb G,Heitbaum J.1994.Semiconductor gas-sensor for detecting NO and CO traces in ambient air of road traffic.Sensors and Actuators B,17:93-99
    [137]Torrela H,Pijolet C,Laiouze R.1991.Dual response of tin dioxide gas sensors characteristic of gaseous carbon tetrachloride.Sensors and Actuators B,4:445-450
    [138]Kim DH,Lee SH,Kim KH.2001.Comparison of CO-gas sensing characteristic between mono-and multi-layer Pt/SnO_2 thin films.Sensors and Actuators B,77:427-431
    [139]Yu JH,Choi GM.1999.Electrical and CO gas-sensing properties of ZnO/SnO_2hetero-contact.Sensors and Actuators B,61:59-67
    [140]Comini E,Ferroni M,Guidi V,Martinelli G,Sberveglieri G.2003.CO sensing properties of W-Mo and tin dioxide RGTO multiple layers structures.Sensors and Actuators B,95:157-161
    [141]Quaranta F,Rella R,Siciliano P,et al.1999.A novel gas sensors based on SnO_2/Os thin film for the detection of methane at low temperature.Sensors and Actuators B,58:350-355
    [142]Gourari H,Lumbreras M,Landschoot RV,Schoonman J.1998.Elaboration and characterization of SnO_2-Mn_2O_3 thin layer prepared by electrostatic spray depositon.Sensors and Actuators B,47:189-193
    [143]Mizuna N,Roshioka T,Kazo K,Iwamato M.1993.CO_2-sensing characteristics of SnO_2element modified by La_2O_3.Sensors and Actuators B,13:473-475
    [144]Zhou XH,Cao QX,Hu Y,Gao JX,Xu YL.2001.Sensing behavior and mechanism of La_2CuO_4-SnO_2 gas sensors.Sensors and Actuators B,77:443-446
    [145]Li JP,Wang Y,Gao XG,Ma Q,Wang L,Han JH.2000.H_2S sensing properties of the SnO_2-based thin films.Sensors and Actuators B,65:111-113
    [146]Vasiliev RB,Rumyantseva,MN,Yakovlev MV,Gaskov AM.1998.CuO/SnO_2 thin film heterostructures as chemical sensors to H_2S.Sensors and Actuators B,50:186-192
    [147]Huang XJ,Sun YF,Meng FL,Liu JH.2004.New approach for the detection of organophosphorus pesticide in cabbage using SPME/SnO_2 gas sensor:principle and preliminary experiment.Sensors and Actuators B,102:235-240
    [148]Huang XJ,Liu JH,Pi ZX,Yu ZL.2004.Qualitative and quantitative analysis of organophosphorus pesticide residues using temperature modulated SnO_2 gas sensor.Talanta 64:538-545
    [149]Huang XJ,Wang LC,Sun YF,Meng FL,Liu JH.2004.Quantitative analysis of pesticide residue based on the dynamic response of a single SnO_2 gas sensor.Sensors and Actuators B 99:330-335
    [150]Huang XJ,Meng FL,Pi ZX,Xu WH,Liu JH.2004.Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation.Sensors and Actuators B 99:444-450
    [151]Huang XJ,Liu JH,Shao DL,Pi ZX,Yu ZL.2003.Rectangular mode of operation for detecting pesticide residue by using a single SnO_2-based gas sensor.Sensors and Actuators B 96:630-635
    [152]Albert KJ,Lewis NS,et al.2000.Cross-reactive chemical sensors arrays.Chem.Rev.100:2595-2626
    [153]Persaud KC,Dodd G.1982.Analysis of the mammalian olfactory systems using a model nose.Nature,299:352-354
    [154]许国旺 等编著.现代实用气相色谱法.化学工业出版社,北京,2004.
    [155]武杰,庞增义,等编著.气相色谱仪器系统.化学工业出版社,北京,2007.
    [1]杨华明,宋晓岚,金胜明.新型无机材料.化学工业出版社,2005,p250-315.
    [2]Gurumurugan K,Mangalaraj D,Narayandass SK,Sekar K,et al.1994.Characterization of transparent conducting CdO films deposited by spray pyrolysis.Semiconductor Science and Technology 9:1827-1832
    [3]Ferro R,Rodriguez JA,Vigil O,Morales-Acevedo A.2001.Chemical composition and electrical conduction mechanism for CdO:F thin films deposited by spray pyrolysis.Materials Science and Engineering B 87:83-86
    [4]Yan M,Lane M,Kannewurf CR,Chang RPH.2001.Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition.Appl.Phys.Lett.78:2342-2344
    [5]Varkey A J,Fort AF.1994.Transparent conducting cadmium oxide thin films prepared by solution growth technique.Thin Solid Films,239:211-213
    [6]Ortega M,Santana G,Morales-Acevedo A.2000.Optoelectronic properties of CdO/Si photodetectors.Solid State Electronics,44:1765-1769
    [7]Sravani C,Reddy KTR,Reddy PJ.1994.Preparation and properties of CdO/CdTe thin film solar cells.Journal of Alloys and compounds,215:239-243
    [8]Ginley DS,Bright C.2000.Transparent conduction oxide.MRS Bull.25:15
    [9]Benko FA,Koffyberg FP.1986.Quantum efficiency and optical transitions of CdO photoanodes.Solid State Commun.57:901-903
    [10]Chu X.2003.High sensitivity chlorine gas sensors using CdIn_2O_4 thick film prepared by co-precipitation method.Mater.Res.Bull.38:1705-1711
    [11]Lou XD,Shi DY,Liu SP,Peng CY.2007.Preparation of CdIn_2O_4 powder by sol-gel method and its Cl_2 sensitivity properties.Sensors and Actuators B.123:114-119
    [12]Wang Q,Li QH,Chen YJ,Wang TH,He XL,Gao XG,Li JP.2004.Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires.Appl.Phys.Lett.84:3085-3087
    [13]Chen NS,Yang XJ,Liu ES,Huang JL.2000.Reducing gas-sensing properties of ferrite compounds MFe_2O_4(M=Cu,Zn,Cd,and Mg).Sensors and Actuators B.66:178-180
    [14]Zhang TS,Hing P,Li Y,Zhang JC.1999.Selectivity detection of ethanol vapor and hydrogen using Cd-doped SnO_2-based sensors.Sensors and Actuators B.60:208-215
    [15]Waghulade RB,Patil PP,Pasricha P.2007.Synthesis and LPG sensing properties of nano-sized cadmium oxide.Talanta 72:594-599
    [16] Liu X, Li C, Han S, Han J, Zhou C. 2003. Synthesis and electronic transport studies of CdO nanoneedles. Appl. Phys. Lett. 82:1950-1952
    [17] Kuo TJ, Huang MH. 2006. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport. J. Phys. Chem. B 110:13717-13721
    [18] Liu X, Li C, Han S, Han J, Zhou C. 2003. Synthesis and electronic transport studies of CdO nanoneedles. Appl. Phys. Lett. 82:1950-1952
    [19] Pan ZW, Dai ZR, Wang ZL. 2001. Nanobelts of semiconducting oxides. Science 291:1947-1949
    [20] Wang QT, Wang GZ, Wang XP. 2007. Ordered semiconductor CdO nanowire arrays: synthesizing by one-step low-temperature electrodeposition and optical properties. Int. J. Nanotechnology 4:110-118
    [21] Varghese N, Panchakarla LS, Hanapi M, Govindaraj A, Rao CNR. 2007. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO. Mater. Res. Bull. 42:2117-2124
    [22] Liu YK, Yin CR, Wang WZ, Zhan YJ, Wang GH. 2002. Synthesis of cadmium oxide nanowires by calcining precursors prepared in a novel inverse microemulsion. J. Mater. Sci. Lett. 21:137-139
    [23] Xu D, Liu ZP, Liang JB, Qian YT. 2005. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J. Phys. Chem. B 109:14344-14349
    [24] Shen GZ, Chen D, Jiang XA, Tang KB, Liu YK, Qian YT. 2003. Rapid synthesis of SnSe nanowires via an ethylenediamine-assisted polyol route. Chem. Lett. 32:426-427
    [25] Chen J, Chen L, Wu LM. 2007. The solventless syntheses of unique PbS nanowires of X-shaped cross sections and the cooperative effects of ethylenediamine and a second salt. Inorg. Chem. 46:8038-8043
    [26] Ma GB, Fischer A, Nieuwendaal R, Ramaswamy K, Hayes SE. 2005. Cd(II)-ethylenediamine mono- and bimetallic complexes-synthesis and characterization by ~(113)Cd NMR spectroscopy and single crystal X-ray diffraction. Inorg. Chim. Acta 358:3165-3173
    [27] Deng ZX, Wang C, Sun XM, Li YD. 2002. Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystailites via solvothermal route. Inorg. Chem. 41:869-873
    [28] Deng ZX, Li LB, Li YD. 2003. Novel inorganic-organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine. Inorg. Chem. 42:2331-2341
    [29] Yu SH, Yoshimura M. 2002. Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH_2CH_2CH_2NH_2)_(0.5). Adv. Mater. 14:296-298
    [30] Heulings HR IV, Huang XY, Li J, Yuen T, Lin CL. 2001. Mn-substituted inorganic-organic hybrid materials based on ZnSe: nanostructures that may lead to magnetic semiconductors with a strong quantum confinement effect. Nano Lett. 10:521-525
    [31] Huang XY, Li J. 2007. From single to multiple atomic layers: a unique approach to the systematic tuning of structures and properties of inorganic-organic hybrid nanostructured semiconductors. J. Am. Chem. Soc. 129:3157-3162
    [32] Du J, Xu L Q, Zou GF, Chai LL, Qian YT. 2006. Solvothermal synthesis of single crystalline ZnTe nanorod bundles in a mixed solvent of ethylenediamine and hydrazine hydrate. J. Cryst. Growth 291:183-186
    [33] Ni YH, Cao XF, et al. 2007. Preparation, conversion, and comparison of the photocatalytic and electrochemical properties of ZnS(EN)_(0.5), ZnS, and ZnO. Cryst. Growth Des. 7:280-285
    [34] Stoilova D, Koleva V, Vassileva V. 2002. Infrared study of some synthetic phases of malachite (Cu_2(OH)_2CO_3)-hydrozincite (Zn_5(OH)_6(CO_3)_2) series. Spectrochim. Acta A 58:2051-2059
    [35] Ogawa M, Kaido H. 2002. Homogeneous precipitation of uniform hydrotalcite particles. Langmiur 18:4240-4242
    [36] Seguatni A, Fakhfakh M, Jouini N. 2005. Elaboration, structural, thermal and vibrational studies of two new cadmium hybrid compounds: [Cd(OH)]_2[O_2C(CH_2)_2CO_2], and [Cd_3(OH)_2][O_2C(CH_2)_2CO_2]_2. Solid State Sci. 7:1272-1279
    [37] Xu R, Zeng HC. 2001. Synthesis of nanosize supported hydrotalcite-like compounds CoAl_x(OH)_(2+2x)(CO_3)_y(NO_3)_(x-2y)·nH_2O on Al_2O_3. Chem. Mater. 13:297-303
    [38] Jiang XC, Wang YL, Herricks T, Xia YN. 2004. Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 14:695-703
    [39] Wang YL, Jiang XC, Xia YN. 2003. A solution-phase, precursor route to polycrystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125:16176-16177
    [40] Yu HD, Wang DS, Han MY. 2007. Top-down solid-phase fabrication of nanoporous cadmium oxide architectures. J. Am. Chem. Soc. 129:2333-2337
    [41] Liu JF, Wang X, Peng Q, Li YD. 2005. Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv. Mater. 17:764-766
    [42] Zhang YC, Wang GL. 2008. Solvothermal synthesis of CdO hollow nanostructures from CdO_2 nanoparticles. Mater. Lett. 62:673-675
    [43] Zou BS, Volkov VV, Wang ZL. 1999. Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution. Chem. Mater. 11:3037-3043
    [44]Ghosh M,Rao CNR.2004.Solvothermal synthesis of CdO and CuO nanocrystals.Chem.Phys.Lett.393:493-497
    [45]Wang QT,Wang GZ,Wang XP.2007.Ordered semiconductor CdO nanowires array:synthesizing by one-step low temperature electrodeposition and optical properties Int.J.Nanotechnology.4:110-118
    [1] Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Bech JS. 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710-712
    
    [2] Qian HS, Lin GF, Zhang YX, Gunawan P, Xu R. 2007. A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation. Nanotechnology 18:355602
    [3] Sun XM, Li YD. 2004. Ga_2O_3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 43:3827-3831
    [4] Sun XM, Liu JF, Li YD. 2006. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 12:2039-2047
    [5] Xiong YJ, Xie Y, Li ZQ, Wu CZ, Zhang R. 2003. A novel approach to carbon hollow spheres and vessels from CC14 at low temperatures. Chem. Commun. 7:904-905
    [6] Xu LQ, Zhang WQ, Yang Q, Ding YW, Yu WC, Qian YT. 2005. A novel route to hollow and solid carbon spheres. Carbon 43:1090-1092
    [7] Sun XM, Li YD. 2005. Hollow carbonaceous capsules from glucose solution. Journal of Colloid and Interface Science 291:7-12
    [8] Liu BY, Jia DC, Meng QC, Rao JC. 2007. A novel method for preparation of hollow carbon spheres under a gas pressure atmosphere. Carbon 45:668-670
    [9] Su FB, Zhao XS, Wang Y, Wang LK, Lee JY. 2006. Hollow carbon spheres with a controllable shell structure. J. Mater. Chem. 16:4413-4419
    [10] Pol VG, Pol SV, Moreno JM, Gedanken A. 2006. High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure at low temperatures. Carbon 44:3285-3292
    
    [11] Jin YZ, Gao C, Hsu WK, et al. 2005. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43:1944-1953
    
    [12] Sun XM, Li YD. 2004. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43:597-601
    [13] Shin YS, Wang LQ, Bae IT, Arey B, Exarhos G. 2008. Hydrothermal Syntheses of Colloidal Carbon Spheres from Cyclodextrins. J. Phys. Chem. C 112:14236-14240
    [1] Ishibashi S, Higuchi Y, Oa Y, Nakamura K. 1990. Low resisitivity indium-tin oxide transparent conductive films. I. Effect of introducing H_2O gas or H_2 gas during direct current magnetron sputtering. J. Vac. Sci. Technol. A 8:1399-1402
    
    [2] Chopara KL, Major S, Pandya DK. 1983. Transparent conductors-A status review. Thin Solid Films, 102:1-46
    [3] Yao JL, Hao S, Wilkinson JS. 1990. Indium tin oxide films by sequential evaporation. Thin Solid Films, 189:227-233
    [4] Jarzebski ZM. 1982. Preparation and physical properties of transparent conducting oxide films. Phys. Status Solidi A 71:13
    [5] Kong XY, Wang ZL. 2003. Structures of indium oxide nanobelts. Solid State Communications, 128:1-4
    [6] Shannon RD. 1996. New high pressure phases having the corundum structure. Solid State Communications, 4:629-630
    [7] Prewitt CT, Shannon RD, Rogers DB, Sleight AW. 1969. C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorg. Chem. 8:1985-1993
    [8] Atou T, Kusaba, K, Fukuoka K, Kikuchi M, Syono Y. 1990. Shock-induced phase transition of M_2O_3 (M=Sc, Y, Sm, Gd, and In)-type compounds. J. Solid State Chem. 89:378-384
    [9] Hamberg I, Granqvist CG. 1986. Evaporated Sn-doped In_2O_3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60:R123-R160
    [10] Li X, Wanlass MW, Gessert TA, Emery KA, Coutts TJ. 1989. High-efficiency indium tin oxide/indium phosphide solar cells. Appl. Phys. Lett. 54:2674-2676
    
    [11] Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M. 2004. Efficiencies of electron injection from excited N_3 dye into nanocrystalline semiconductor (ZrO_2, TiO_2, ZnO, Nb_2O_5, SnO_2, In_2O_3) films. J. Phys. Chem. B 108:4818-4822
    
    [12] Shigesato Y, Takaki S, Haranoh T. 1992. Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys. 71:3356-3364
    [13] Granqvist CG. 1993. Transparent conductive electrodes for electrochromic devices: A review. Appl. Phys. A: Solids Surf. 57:19-24
    [14] Tamaki J, Naruo C, Yamamoto Y, Matsuoka M. 2002. Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation. Sens. Actuators B 83:190-194
    [15] Xu JQ, Chen YP, Pan QY, Xiang Q, Cheng ZX, Dong XW. 2007. A new route for preparing corundum-type In_2O_3 nanorods used as gas-sensing materials. Nanotechnology 18:115615
    [16] Atashbar MZ, Gong B, Sun HT, Wlodarski W, Lamb R. 1999. Investigation on ozone-sensitive In_2O_3 thin films. Thin Solid Films 354:222-226
    [17] Takada T, Hiromasa T, Saito T, Harada K. 1995. Aqueous ozone detector using In_2O_3 thin-film semiconductor gas sensor. Sensors Actuators B 25:548-551
    [18] Gurlo A, Ivanovskaya M, Barsan N, Schweizer-Berberich M, Weimar U, Gopel W, Dieguez A. 1997. Grain size control in nanocrytalline In_2O_3 semiconductor gas sensors. Sensors Actuators B 44:327-333
    [19] Gurlo A, Ivanovskaya M, Pfau A, Weimar U, Gopel W. 1997. Sol-gel prepared In_2O_3 thin films. Thin Solid Films 307:288-293
    [20] Korotcenkov G, Brinzari B, Cerneavschi A, Ivanov M, Golovanov V, Cornet A, Morante J, Cabot A, Arbiol J. 2004. The influence of film structure on In_2O_3 gas response. Thin Solid Films 460:315-323
    [21] Yamaura H, Moriya K, Miura N, Yamazoe N. 2000. Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide. Sensors Actuators B 65:39-41
    [22] Zhang DH, Liu Z, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW. 2004. Detection of NO2 down to ppb levels using individual and multiple In_2O_3 nanowire devices. Nano Lett. 4:1919-1924
    [23] Li C, Zhang DH, Lei B, Han S, Liu XL, Zhou CW. 2003. Surface treatment and doping dependence of In_2O_3 nanowires as ammonia sensors. J. Phys. Chem. B 107:12451-12455
    [24] Zhuang ZB, Peng Q, Liu JF, Wang X, Li YD. 2007. Indium gydroxides, oxyhydroxides, and oxides nanocrystals series. Inorg. Chem. 46:5179-5187
    [25] Epifani M, Comini E, Arbiol J, Pellicer E, Siciliano P, Faglia G, Morante JR. 2007. Nanocrystals as very active interfaces: ultrasensitive room-temperature ozone sensors with In_2O_3 nanocrystals prepared by a low-temperature sol-gel process in a coordinating environment. J.Phys. Chem. C111:13967-13971
    [26] Gurlo A, Barsan N, Weimar U, Ivanovskaya M, Taurino A, Siciliano P. 2003. Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties. Chem. Mater. 15:4377-4383
    [27] Wang CY, Ali M, Kups T, Rohlig CC, Cimalla V, Stauden T, Ambacher O. 2008. NO_x sensing properties of In_2O_3 nanoparticles prepared by metal organic chemical vapor deposition. Sens. Actuators B 130:589-593
    [28] Soulantica K, Erades L, Sauvan M, Senocq F, Maisonnat A, Chaudret B. 2003. Synthesis of indium and indium oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing. Adv. Funct. Mater. 13:553-557
    [29] Chu DW, Zeng YP, Jiang DL, Xu JQ. 2007. Tuning the phase and morphology of In_2O_3 nanocrystals via simple solution routes. Nanotechnology 18:435605
    [30] Vomiero A, Bianchi S, Comini E, Faglia G, Ferroni M, Sberveglieri G. 2007. Controlled growth and sensing properties of In_2O_3 nanowires. Cryst. Growth Des. 7:2500-2504
    [31] Chu XF, Wang CH, Jiang DL, Zheng CM. 2004. Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chem. Phys. Lett. 399:461-464
    [32] Ryu KM, Zhang DH, Zhou CW. 2008. High-performance metal oxide nanowires chemical sensors with integrated micromachined hotplates. Appl. Phys. Lett. 92:093111
    [33] Xu JQ, Wang XH, Wang GQ, Han JJ, Sun YA. 2006. Solvothermal synthesis of In_2O_3 nanocrystal and its ethanol sensing mechanism. Electrochemical and Solid-State Letters. 9:H103-H107
    [34] Xu JQ, Wang XH, Shen JN. 2006. Hydrothermal synthesis of In_2O_3 for detecting H_2S in air. Sens. Actuators B 115:642-646
    [35] Prim A, Pellicer E, Rossinyol E, Peiro F, Cornet A, Morante JR. 2007. A novel mesoporous CaO-loaded In_2O_3 material for CO_2 sensing. Adv. Funct. Mater. 17:2957-2963
    [36] Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR. 2007. Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH_3 gas sensors. Adv. Mater. 19:1641
    [37] Zhang HG, Zhu QS, Zhang Y, Wang Y, Zhao L, Yu B. 2007. One-pot synthesis and hierarchical assembly of hollow Cu_2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17:2766-2771
    [38] Tiemann M. 2007. Porous metal oxides as gas sensors. Chem. Eur. J. 13:8376-8388
    [39] Li XL, Lou TJ, Sun XM, Li YD. 2004. Highly sensitive WO_3 hollow-sphere gas sensors. Inorg. Chem. 43:5442-5449
    [40] Xu HF, Ding SJ, Wei W, Zhang CL, Qu XZ, Liu JQ Yang ZZ. 2007. Template synthesis of tin-doped indium oxide (ITO)/polymer and the corresponding carbon composite hollow colloids. Colloid Polym. Sci. 285:1101-1107
    [41] Sun XM, Li YD. 2004. Ga_2O_3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 43:3827-3831
    [42] Wang CH, Chu XF, Wu MM. 2007. Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens. Actuators B 120:508-513
    [43]Titirici MM,Antonietti M,Thomas A.2001.A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach.Chem.Mater.18:3808-3812
    [44]Gopel W,Schierbaum KD.1995.SnO_2 sensors:Current status and future prospects.Sens.Actuators B 26:1-12
    [45]Huang X J,Sun YF,Meng FL,Liu JH.2004.New approach for the detection of organophosphorus pesticide in cabbage using SPME/SnO_2 gas sensor:principle and preliminary experiment.Sensors and Actuators B 102:235-240
    [46]Huang X J,Liu JH,Pi ZX,Yu ZL.2004.Qualitative and quantitative analysis of organophosphorus pesticide residues using temperature modulated SnO_2 gas sensor.Talanta 64:538-545
    [47]Huang XJ,Wang LC,Sun YF,Meng FL,Liu JH.2004.Quantitative analysis of pesticide residue based on the dynamic response of a single SnO_2 gas sensor.Sensors and Actuators B 99:330-335
    [48]Huang XJ,Meng FL,Pi ZX,Xu WH,Liu JH.2004.Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation.Sensors and Actuators B 99:444-450
    [49]Huang X J,Liu JH,Shao DL,Pi ZX,Yu ZL.2003.Rectangular mode of operation for detecting pesticide residue by using a single SnO_2-based gas sensor.Sensors and Actuators B 96:630-635
    [50]黄行九.2004.SnO_2气体传感器动态测试原理及其与SPME联用技术研究:博士.合肥:中国科学技术大学.
    [51]Liu QS,Lu WG,Ma AH,Tang JK,Lin J,Fang JY.2005.Study of quasi-monodisperse In2O3nanocrystals:Synthesis and optical determination.J.Am.Chem.Soc.127:5276-5277
    [52]Lee CH,Kim M,Kim T,Kirn A,Pack J,Lee JW,Choi SY,Kim K,Park JB,Lee K.2006.Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes.J.Am.Chem.Soc.128:9326-9327
    [53]Wen SJ,Campet G,Portier J,Couturier G,Goodenough,JB.1992.Correlations between the electronic properties of doped indium oxide ceramics and the nature of the doping element.Mater.Sci.Eng.B 14:115-119
    [54]Hamberg I,Granqvist CG.1986.Theoretical model for the optical properties of In_2O_3:Sn films in the 0.3-50μm range.Sol.Energy Mater.14:241
    [55]Bigioni TP,Lin XM,Nguyen TT,Corwin EI,Witten TA,Jaeger HM.2006.Kinetically driven self assembly of highly ordered nanoparticle monolayers.Nat.Mater.5:265-270
    [56]Wang CQ,Chen DR,Jiao XL,Chen CL.2007.Lotus-root-like In_2O_3 nanostructures:Fabrication,characterization,and photoluminescence properties.J.Phys.Chem.C 111:13398-13403
    [57] Ohhata Y, Shinoki F, Yoshida S. 1979. Optical properties of r.f. reactive sputtered tin-doped In_2O_3 films. Thin Solid Films 59:255-261
    [58] Liu Q, Lu W, Ma A, Tang J, Lin J, Fang J. 2005. Study of quasi-monodisperse In_2O_3 nanocrystal: synthesis and optical determination. J. Am. Chem. Soc. 127:5276-5277
    [59] Seo, WS, Jo HH, Lee K, Park JT. 2003. Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv. Mater. 15:795-797
    [60] Zhao PT, Huang T, Huang KX. 2007. Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes. J. Phys. Chem. C111:12890-12897
    [61] Zeng FH, Zhang X, Wang J, Wang LS, Zhang LN. 2004. Large-scale growth of In_2O_3 nanowires and their optical properties. Nanotechnology 15:596
    [62] Zou BS, Volkov VV, Wang ZL. 1999. Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution. Chem. Mater. 11:3037-3043
    [63] Ghosh M, Rao CNR. 2004. Solvothermal synthesis of CdO and CuO nanocrystals. Chem. Phys. Lett. 393:493-497
    [64] Wang QT, Wang GZ, Wang XP. 2007. Ordered semiconductor CdO nanowire arrays: synthesising by one-step low-temperature electrodeposition and optical properties. Int. J. Nanotechnology 4:110-118
    [1]Hofmann T,Schieberle P,Krummel C,Freiling A,Bock J,Heinert L,Kohl D.1997.High resolution gas chromatography/selective odorant measurement by mulitsensor array (HRGC/SOMSA):a useful approach to standardize multisensor arrays for use in the detection of key food odorants.Sens.Actuator B 41:81-87
    [2]Kohl D,Eberheim A,Schieberle P.2005.Detection mechanisms of smoke compounds on homogenous semiconductor sensor films.Thin Solid Film 490:1-6
    [3]Kohl D,Heinert L,Bock J,Hofmann Th,Schieberle P.2000.Systematic studies on responses of metal-oxide sensor surfaces to straight chain alkanes,alcohols,aldehydes,ketones,acids and esters using the SOMMSA approach.Sens.Actuator B 70:43-50
    [4]Kohl D,Heinert L,Bock J,Hofmann Th,Schieberle P.2001.Gas sensors for food aroma during baking and roasting processes based on selective odorant measurements by an array (HRGC/SOMMSA).Thin Solid Film 391:303-307
    [5]Eberheim A,Dieter K,Schieberle P.2003.Tin oxide sensor element for the detection of organic compounds with hydroxy groups.Phys.Chem.Chem.Phys.5:5203-5206
    [6]Hanada M,Koda H,Onaga K,Tanaka K,Okabayashi T,Itoh T,Miyazaki H.2003.Portable oral malodor analyzer using highly sensitive In_2O_3 gas sensor combined with a simple gas chromatography system.Analytica Chimica Acta.475:27-35
    [7]Ragazzo-Sanchez JA,Chalier P,Ghommidh C.2005.Coupling gas chromatography and electronic nose for dehydration and desalcoholization of alcoholized beverages:Application to off-flavour detection in wine.Sens.Actuator B 106:253-257
    [8]张西咸.2006.便携式现场快速分析技术的研究:博士.合肥:中国科学院光学精密机械研究所.
    [9]Aygun S,Cann D.2005.Response Kinetics of Doped CuO/ZnO Heterocontacts.J.Phys.Chem.B 109:7878-7882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700