用户名: 密码: 验证码:
多毛番茄GGPS基因对提高番茄中番茄红素含量的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄红素(Lycopene)含量是评价番茄果实品质的重要指标。番茄红素含量越高,果实越鲜艳,品质越好。医学研究表明:番茄红素具有预防并降低人类患多种疾病的保健功能。
     虽然类胡萝卜素合成的基因工程研究已经取得了显著的进展,但是哪些基因对于果实中的番茄红素积累具有关键作用尚不是很清楚。本课题组在前期的研究中发现,将载有GGPS基因的多毛番茄第4条染色体片段导入到普通番茄中,能显著提高果实中番茄红素含量。进一步的研究表明,多毛番茄中的GGPS基因与普通番茄中的GGPS基因存在23个碱基差异。因此,推测多毛番茄的GGPS基因对于提高番茄果实中番茄红素含量可能具有重要作用。
     本试验拟在此研究基础上,以多毛番茄和普通番茄的GGPS基因为目的基因,构建植物表达载体(分别命名为PBI121-T-GGPS和PBI121-E-GGPS),通过根瘤农杆菌EHA105介导转入到番茄红素含量一般的番茄材料Moneymaker中。通过分析转基因植株中目的基因表达与番茄红素含量的关系,明确两种不同来源的GGPS基因对于番茄果实中番茄红素含量积累的调控功能上的差异。主要研究结果如下:
     1、优化了番茄高效转化再生体系并利用分子生物学方法分析并获得了转基因阳性植株。以MS为基本培养基,筛选并获得了最佳的激素组合和浓度配比:ZT 2 mg·L-1+IAA0.2 mg·L-1;确定卡那霉素筛选阳性植株的最合适浓度为50 mg·L-1。采用叶盘法,通过根瘤农杆菌EHA105介导番茄转化Moneymaker,在卡那霉素的选择压力下筛选并获得再生植株。PCR检测初步证明目的基因已插入到受体材料基因组内;Southern印迹杂交从阳性转基因株系中筛选出一部分单拷贝的转基因植株;RT-PCR分析表明插入的GGPS基因已在转基因番茄体内正常转录表达。上述分子生物学方法检测结果表明:GGPS基因已经插入到植物基因组中并且能够转录及表达;T0代获得了转T-GGPS基因的阳性植株15株,转E-GGPS基因的阳性植株17株,转空载体的阳性植株4株。
     2、分析了T1代转基因植株番茄红素含量等生理指标。利用高效液相色谱法(HPLC)测定T1代转基因番茄果实中番茄红素含量:转T-GGPS基因的阳性植株与转E-GGPS基因的阳性植株相比,番茄红素含量存在极显著差异,前者番茄红素含量在104.1-110.9 mg?Kg-1之间,后者番茄红素含量在70.8-78.0 mg?Kg-1之间。转基因植株与对照相比,β-胡萝卜素含量和叶绿素含量没有差异性。
     3、转T-GGPS基因植株与阴性对照相比,GGPS基因在不同器官中的表达量增加。以β-actin基因为内标基因,对转T-GGPS基因植株和野生番茄植株的叶、花以及四个不同时期(膨大期、绿熟期、转色期和完熟期)的果实中所含的GGPS基因进行半定量研究。结果表明:转基因植株与阴性对照相比,除转色期的果实中变化不明显外,在不同器官中GGPS基因的表达量在转录水平上显著增加。
Lycopene content is an important indicator of tomato fruit quality. The higher content of lycopene in tomato fruit, the more colorful and the better quality they are. Medical researches show that lycopene has the health care functions of preventing and reducing the risk of many diseases.
     Although genetic engineering researches related to carotenoid synthesis has made significant progress, but it is not still clear which genes have a key role in the accumulation of lycopene in the fruit. Our previous studies have proved that fruit lycopene content could be significantly increased by importing the end fragments of chromosome 4 which contains the GGPS gene into nomal tomatoes.
     Further researches showed that there were 23 base differences between the GGPS genes cloned from Solanum habrochaites and from common tomato. Therefore, we speculate that the GGPS gene cloned from Solanum habrochaites may have an important role in increasing fruit lycopene content of tomato. Intensive study was carried on in this paper, GGPS genes cloned from Solanum habrochaites and common tomato were used as the target genes. Two plant expression vectors were constructed which were respectively named as PBI121-T-GGPS and PBI121-E-GGPS, and then transformed into Moneymaker via EHA105.By analysis of the relationship between lycopene content and gene expression in transgenic plants, it clarified the functional differences between two different sources of GGPS genes in regulating tomato lycopene accumulation.The major findings are as follows:
     1. An efficient regeneration transformation system of tomato was optimized and the positive transgenic plants were obtained by molecular biology methods.Using MS as the basal medium, the best hormone combination and concentration were obtained, of which Trans-zeatin was 2 mg?L-1+IAA0.2 mg?L-1, and kanamycin was 50 mg?L-1.Using leaf disc method, Moneymaker were transformated via EHA105, and the regeneration plants were obtained under the selection pressure of kanamycin. Through PCR detection, it was initially proved that the target gene had been imported into the genome; a part of transgenic plants of a single copy were selected by Southern blot; RT-PCR analysis showed that the GGPS gene imported in was transcribed normally in transgenic tomato. Results showed that GGPS gene had been inserted into the plant genome and it was normally transcribed and expressed. 15 positive plants with T-GGPS gene in T0 generation, 17 positive plants with E-GGPS gene and 4 positive plants transferred with empty vector were obtained in this study.
     2. We analyzed lycopene content and other physiological indexes in transgenic tomato of T1 generation. Measuring of lycopene content of T1 transgenic tomato by HPLC, results showed that lycopene contents in T-GGPS positive plants and the positive plants transferred with empty vector have significant differences. The lycopene content of the former varies from 70.8 mg?g-1 to 78 mg?g-1, the latter varies from mg?g-1 to 110.9 mg?g-1. Theβ-carotene content and chlorophyll content in transgenic plants have no difference compared with the control.
     3. By comparing T-GGPS transgenic plants with the negative control, it is proved that expression of GGPS gene was increased in different organs. Theβ-actin gene was chose as the standard gene. Semi-quantitative RT-PCR was used to analyze the expression level of GGPS gene in leaves, flowers, and four different stages of fruits (enlargement period, mature green, turning stage and mature) in transgenic tomato and wild tomato. The results showed that almost in the whole growing stages GGPS gene was expressed more in transgenic plants than in the wild tomato, but the fruit color changed stage is an exception.
引文
1. J.萨姆布鲁克,D.W.拉塞尔著.分子克隆实验指南(第三版).北京:科学出版社,2002.
    2. J.G.Atherton,JRudich编著.番茄(郑光华等译).北京:北京农业大学出版社,1989.
    3.陈玉辉,许向阳,李景富.转基因技术在番茄育种上的应用.分子植物育种,2004,2(1):133-138.
    4.范文静,李林,朱彤彤,郭亚雄,赵丽娟.番茄红素对寰枢椎失稳老年小鼠脑保护作用的研究.中国老年学杂志,2009,29(17):25-26.
    5.国艳梅,杜永臣,王孝宣,高建昌.利用色差仪估测番茄果实番茄红素含量的研究.中国蔬菜,2008,11:10-14.
    6.国艳梅.源于多毛番茄控制果实颜色等性状的QTL定位及相关基因的研究.[博士论文].北京:中国农业科学院研究生院,2006.
    7.惠伯棣,钟粟,朱蕾等.类胡萝卜素生物合成的分子生物学研究.食品工业科学与技术,2003,24(5):106-110.
    8.季静,三村山郎,西原昌宏等.通过转基因提高β‐胡萝卜素生物合成量.中国物化学与分子生物学报,2004,20:440‐444.
    9.姜文候.β-胡萝卜素的应用、市场和天然型产品的发酵法生产.食品与发酵工业,1994,3:65-71.
    10.万群,张兴国,宋明.果实特异性RNAi介导的Lcy基因沉默来增加番茄中番茄红素的含量.生物工程学报,2007,3:429-433.
    11.王孝宣.增强番茄果实颜色基因的精细定位及相关基因的差异表达.[博士论文].北京:中国农业科学院研究生院,2004.
    12.余诞年,吴定华,陈竹君.番茄遗传育种.湖南科学技术出版社,1999:21-49.
    13.张建成,周文静,邓秀新.超表达草生欧文氏菌crtB基因促进转基因番茄类胡萝卜素合成的研究.园艺学报,201037(3):390-396.
    14.张莉,王政军.番茄红素的保健功能综述.中国调味品,2009,9:98-100.
    15.赵文恩,李艳杰,崔艳红等.类胡萝卜素生物合成途径及其控制与遗传操作.西北植物学报,2004,24(5):930-942.
    16.钟秋月,国艳梅等.两个不同来源的番茄GGPS基因克隆和序列分析.华北农学报,2009,24(3):15-22.
    17.钟秋月.GGPS的克隆及其对番茄的遗传转化.[硕士论文].陕西:西北农林科技大学,2008.
    18.朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用.植物生理及分子生物学学报,2004,30(6):609-618.
    19. Agarwal S,Rao A V.Tomato lycopene and its role in human health and chronic diseases.Can Med Assoc J,2000,163(6):739-744.
    20. Aitken S.M,Attucci, S,Ibrahim,R.K.et al.A cDNA encoding geranylgeranyl pyrophosphate synthase from white lupine.Plant Physiol,1995,108(2),837-838.
    21. Bantignies B,Liboz T and Ambid C.Nucleotide sequence of a Catharanthus roseus geranylgeranyl pyrophosphate synthase gene.Plant Physiology,1995,110:336-336.
    22. Barber N.J.,Barber J.Lycopene and prostate cancer.Prostate Cancer Prostatic Dis,2002,5(1):6-12.
    23. Bartley GE,Scolnik PA.cDNA cloning,expression during development and mapping of PSY2,a second tomato gene encoding phytoene synthase.J.Biol Chem,1993,268: 25718-25721.
    24. Bartley GE,Viitanen PV,Pecker I.Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase,an enryme of the carotenoid biosynthesis pathway.Proc Natl Acad Sci USA,1991,88:6532-6536.
    25. Bernacchi D.,Beck-Bunn T.,Eshed Y.,Lopez J.,Petiard V.,Uhlig J.,Zamir D.,Tanksley S.D.Advanced backcross QTL analysis in tomato.I.Identification of QTLs for traits of agromic importance from Lycopersicon hirsutum. Theor Appl Genet,1998:381-397.
    26. Bernacchi D.,Beck-Bunn T.,Eshed Y.,Lopez J.,Petiard V.,Uhlig J.,Zamir D.,Tanksley S.D.Advanced backcross QTL analysis in tomato.I. Identification of QTLs for traits of agromic importance from Lycopersicon hirsutum.Theor Appl Genet, 1998:381-397.
    27. Bernacchi D.,Steven D.Tanksley.An interspecific backcross of Lycopersicon esculentum*L.hirsutum:linkage analysis and a QTL study of sexual compatibility factors and floral traits.Genetics,1997, 147:861-877.
    28. Bird CR,Ray JA,Fletcher JD, et al.Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes.Biotechnology.1991,9:635–639.
    29. Blanc VM,Pichersky E.Nucleotide encoding isopentenyl pyrophosphate sequence of a Clarkia breweri clone of Ipi1, a gene isomerase.Plant physiol,1995,108:855-856.
    30. Block G, Patterson B, Subar A.Fruits,vegetables and cancer prevention:a review of the epidemiological evidence.Nutr Cancer,1992,31:199-203.
    31. Bonk M,Hoffmann B,Von Lintig J.et al.Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly.European Journal of Biochemistry,1997,247(3):942-950.
    32. Chamovitz D,Pecker I,Hirschberg J.The molecular basis of resistance to the herbicide norflurazon.Plant Mol Biol,1991,16:967-974.
    33. Chamovitz D,Sandmann q,Hirschberg J.Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis.Biol Chem,1993,268 (23):17348-17353.
    34. Clinton SK.Lycopene:chemistry,biology,and implications for human health and disease.Nutr Rev,1998,56:35-51.
    35. Craig W.,Hadley,Elizabeth C.Tomatoes,Lycopene, and Prostate cancer: Progress and Promise.ExP Biol Med,2002,227:869-880.
    36. Craig W.Hadley,Elizabeth C.et al.Tomatoes,Lycopene,and Prostate cancer:Progress andPromise.ExP. Biol. Med.2002,227:869-880.
    37. Crispin A H,Barry J P.Carotenoid accumulation and function in seeds and non-green tissues.Plant Cell and Environment,2006,29:435-445.
    38. Davies KM,Grierson D.Identification of cDNA clones for tomato mRNA that accumulate during ripening and leaf in response to ethylene.Planta,1989,179:73-80.
    39. Del Villar-Martínez A,García-Saucedo P A,Carabez-Trejo A,et al.Carotenogenic gene expression and ultrastructural changes during development in marigold.Plant Physiol,2005,162:1046-1056.
    40. Dharmapuri S,Rosati C,Pallara P,et al.Metabolic engineering of xanthophyll content in tomato fruits.FEBS Lett,2002,519:30–34.
    41. Dogbo O,Camara B.Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography.Biochem Biophys Acta,1987,920:140-148.
    42. Enfissi EMA,Fraser PD,Lois LM, Boronat A,Schuch W,BramLey PM.Metabolic for the production of healthpromoting isoprenoids.Plant Biotech J,2005,3:17–27.
    43. Enfissi EMA,Fraser PD,Lois LM, et al.BramLey PM Metabolic for the production of healthpromoting isoprenoids.Plant Biotech J,2005,3:17–27.
    44. Eugenia M. A.Enfissi,Paul D. Fraser, Peter M.BramLey. Genetic engineering of carotenoid formation in tomato.Phytochem Rev,2006,5:59–65.
    45. Faqing Li,Ratnakar Vallabhaneni,et al.PSY3,a New Member of the Phytoene Synthase Gene Family Conserved in the Poaceae and Regulator of Abiotic Stress-induced Root Carotenogenesis.Plant Physiol,2008,146,1333-1345.
    46. Forssberg A,Ligen C,Ernster L,et al.Modification of the X-irradiation syndrome by lycopene.Exp Cell Res,1959,16:7-14.
    47. Franceschi S,Bidoli E,La Vecchia C.Tomatoes and risk of digestive-tract cancers.Int.J Cancer,1994,59:181-184.
    48. Frary A.,Doganlar S.,Frampton A.,Fulton T,Uhlig J.,Yates H.,Tanksley S.D.Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome,2003,46(2):235-43.
    49. Frary A.,Doganlar S.,Frampton A.,Fulton T.,Uhlig J.,Yates H.,Tanksley S.D.Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1.Genome,2003,46(2):235-43.
    50. Fraser P.D.,Bramley P.M.The biosynthesis and nutritional uses of carotenoids.Prog Lipid Res ,2004,43:228-265.
    51. Fraser PD,Kiano JW,Truesdale MR,Sehueh W,BramLey PM.Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit.Plant Mol Biol,1999,40(4):687-698.
    52. Fraser PD,Romer S,Shipton CA, et al.BramLey PMEvaluation of transgenic tomato plantsexpressing an additional phytoene synthase in a fruit-specific manner.Proc Natl Acad Sci,2002, 99:1092–1097.
    53. Fraser PD,Romer S,Shipton CA,Mills PB,Kiano JW,Misawa N,Drake RG,Schuch W,BramLey PM.Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner.Proc Natl Acad Sci,2002,99:1092–1097.
    54. Fraser PD,Schuch W,BramLey PM.Regulation of carotenoid biosynthesis and accumulation in plants.Planta,2002(11):361-369.
    55. Fraser PD,Truesdale MR,Bird CR,et al.Carotenoid biosynthesis during tomato fruit development.Plant Physiol,1994,105:405-413.
    56. Fray R G, Wallace A, Fraser P D,et al.Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway.The palnt journal,1995,8:693-701.
    57. Fuhrman B,Volkova N,Rosenblat M, et al.Lycopene synergistically inhibits LDL oxidation in combination with vitamin E,glabridin,rosmarinic acid,carnosic acid,or garlic.Araiaxidants and Redox Siganling,2000,2(3):491-506.
    58. Fujisawa M,Watanabe M,Choi S K,Teramoto M,Ohyama K,Misawa N.Enrichment of carotenoids in flaxseed(Linum usitatissimum)by metabolic engineering with introduction of bacterial phytoene synthase gene crtB.Journal of Bioscience Bioengineering,2008,105:636–641.
    59. Fulton T.M.,Grandillo S.,Beck-Bunn T.,Fridman E.,Frampton A.,Lopez J.,Petiard V.,Uhlig J.,Zamir D.,Tanksley S.D.Advanced backcross QTL analysis of a Lycopersicon esculentum x L. parviflorum cross.Theor Appl Genet,2003,100:1025-1042.
    60. Fulton T.M.,Grandillo S.,Beck-Bunn T.,Fridman E.,Frampton A.,Lopez J.,Petiard V.,Uhlig J.,Zamir D.,Tanksley S.D.Advanced backcross QTL analysis of a Lycopersicon esculentum x L.parviflorum cross.Theor Appl Genet ,2000,100:1025-1042.
    61. Gallagher C E,Matthews P D,Li F,et al.Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses.Plant Physiol,2004,135:1776-1783.
    62. Ganga Rao Davuluri, Ageeth van Tuinen,Paul D Fraser,et al.Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology,2005,23(7):890-895.
    63. Ganga Rao Davuluri,Ageeth van Tuinen, Paul D Fraser,et al.Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes.Nature Biotechnology,2005,23(7):890-895.
    64. Giovannucci E.Tomatoes, tomato-based products. lycopene and cancer: review of the epidemiologic literature.Natl Cancer Inst,1999,91:317-331.
    65. Giovannucci E.Tomatoes,tomato-based products lycopene and cancer:review of the epidemiologic literature.Natl Cancer Inst,1999, 91:317-331.
    66. Giuliano G,Bartley GE,SeolnikPA.Regulation of Carotenoid biosynthesis during tomatodevelopment.PlantCell,1993,5(4):379-387.
    67. Giuliano G,Tavazza R,Diretto G,Beyer P,Taylor M A.Metabolic engineering of carotenoid biosynthesis in plants.Trends in Biotechnology,2008,26:139–145.
    68. Hothaeh S,sahlnH,WelleR.Isoprenoid biosynthesis in baeteria:two different pathways.FEMS Microbiol Lett,1993,111:135-140.
    69. Hundle B,Alberti M, Nievelstein V,et al.Functional assignment nt of Erwinia herbicola Eho10 carotenoid genes expressed in E.coli.Mol Gen Genet,1994,245(4):406-416.
    70. Isaacson T,Ronen G,Zamir D,Hirschberg J.Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production ofβ-carotene and xanthophylls in plants.Plant Cell,2002,14(2):333-342.
    71. Isopentenyl diphosphate and isoprenoid biosynthesis in higher plants.Physiol plant,1997,101:643-652.
    72. Issaaaon T,Ronen q,Zamir D,et al.Cloning of from tomato reveals a carotenoid isomerase essential for the production of B-carotene and xanthophylls in plants.Plant cell, 2002,14(2):333-342.
    73. Joseph Sehierle.Content and Isometic ratio of lycopene in food and human blood Plasma.Food Technology,1997,59(3):459-465.
    74. Kai Ament,Chris C,Van Schie,Harro J,Bouwmeester,Michel A,Haring,Robert C,Schuurink.Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways.Planta,2006,224:1197–1208.
    75. Kai Ament. Chris C,et al.Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12–trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways.Planta,2006,224:1197–1208.
    76. Kajiwara S,Fraser PD,Kondo K,et al. of an isomerase gene enhances isoprenoid biosynthesis in Escherichid coli.Isopentenyl Biochem J,1997,324:421-426.
    77. Kazunori Okada, Takeshi Saito,Tsuyoshi Nakagawa,et al.Five Geranylgeranyl Diphosphate Synthases Expressed in Different Organs Are Localized into Three Subcellular Compartments in Arabidopsis.Plant Physiology,2000,122:1045-1056.
    78. Kazunori Okada,Takeshi Saito,Tsuyoshi Nakagawa,et al.Five Geranylgeranyl Diphosphate Synthases Expressed in Different Organs Are Localized into Three Subcellular Compartments in Arabidopsis.Plant Physiology,2000,122:1045-1056.
    79. Khachik F.,Carvalho L.,Bernstein P.S.,Muir G.J.,Zhao D.Y.,Katz N.B.,Chemistry,distribution, and metabolism of tomato carotenoids and their impact on human health.Exp Biol Med (Maywood),2002;227(10):845-851.
    80. Liehtenthaler HK,Rollnler M, Sehwender J.Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in high plants.Physiol Plant,1997,101:643-652.
    81. Liehtenthaler HK,Rollnler M,Sehwender J.Two in dependent biochemieal pathways for Isopentenyl diphosphate and isoprenoid biosynthesis in higher plants.Physiol plant,1997,101:643-652.
    82. Lois LM, Rodriguez-concepcion M,Gallego F,et al.Carotenoid biosynthesis during tomato fruit development:regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase.The Plant Journal,2000,22(6):503-511.
    83. Lugasi A., Hovari J.,Biro L.,Brandt S.,Helyes L.Factors influencing lycopene content of foods,and lycopene intake of Hungarian population.Magy Onkol,2004;48(2):131-6.
    84. Lutzow M,Beyer P.The isopentenyl-diphosphate-isomerase and its relation to phytoene synthase complex in daffadil chromoplasts.Biochem Biophys Acta,1988,959:118-126.
    85. Maunders MJ,Holdsworth MJ,Slater A,et al.Ethylene stimulates the accumulation of ripening -related mRNAs in tomatoes.Plant cell environ,1987,10:177-184.
    86. Miura Y,Kondo K,Saito T,et al.Production of the Carotenoids Lycopene,β-Carotene, and Astaxanthin in the Food Yeast Candidautilis.Appl Environ Microbiol,1998,64(4):12-26.
    87. Moehs C P,Tian L,Osteryoung K W,et al.Analysis of carotenoid biosynthetic gene expression during marigold petal development.Plant Mol.Biol,2001,45:281-293.
    88. Monforte A.J.,Friedman E.,Zamir D.Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato:deductions about natural variation and implications for germplasm utilization.Theor Appl Genet,2001,102:572-590.
    89. Nir Z,et al.Lycopene from tomatoes.IFI,1993,6:45-51.
    90. Palaisa K A,Morgante M,Williams M,et al.Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci.Plant Cell,2003,15:1795-1806.
    91. Paolo Di Mascio, Stephan Kaiser and Helmut Sies.Lycopene as the most efficient biological carotenoid singlet oxygen quencher.Archives of Biochemistry and Biophysics,1989,274(2): 532-538.
    92. Park H,Kreunen SS,Cuttriss AJ,DellaPenna D, Pogson BJ.Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis.Plant Cell,2002, 14 (2):321-332.
    93. Paul D.Fraser,Eugenia M.A.Enfissi,Peter M.Bramley.Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Archives of Biochemistry and Biophysics ,2009,483:196-204.
    94. Pecker I,Gabbay R,Francis X,et al. Cloning and characterization of the cDNA for lycopeneβ-cyclase from tomato reveals decrease in its expression during fruit ripening.Plant Mol Biol,1996,30:807-819.
    95. Pecker I,Mol Biol,Gabbay R,et al.Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening.Plant,1996:807-819.
    96. Peerbolte R,Loonhouts K,Hooykaas-van Slogteren,et al.1986. Clones from a shooty tobaccocrown gall tumorlI, irregular T-DNA structures and organization T-DNA,methylation and conditional expression of opine genes.Plant Mol Biol,7:285-299.
    97. Ralf Welsch,Florian Wüst ,et al. A Third Phytoene Synthase Is Devoted to Abiotic Stress-Iduced Absicisic Acid Formation in Rice and Define Functional Diversification of Phytoene Synthase Genes.Plant Physiol,2008,147,367-380.
    98. Rohmer M.The diseovery of a mevalonate-independent Pathway for isoprenoid biosynthesis in bacteria,algae and higher Plants.Nat Prod ReP,1999,16(5):565-574.
    99. Romer S,Fraser P D,Kiano J Wetal.Elevation of the provitamin A content of transgenic tomato plants.Nat Biotechnol,2000,18:666-669.
    100. Romer S,Fraser PD,Kiano J. Elevation of the provitamin A content of transgenictomato plant. Nature Biotechnology,200,18:666-669.
    101. Ronen G,Cohen M,Zamir D,et al.Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsiloncyclase is down-regulated during ripening and is elevated in the mutant delta.The palnt journal,1999,17:341-351.
    102. RonenG,Carmel-GorenL,ZamirD,Hirschberg J.An alternative pathway toβ-carotene formation in plant chromoplasts diseovered by map-based cloning of Beta and old-gold color mutatlon in tomato.Proc Natl Acad sci USA,2000,97(20):11102-11107.
    103. Rosati C,Aquilani R,Dharmapuri Setal. Metabolic engineering of beta-carotene and lycopene content in tomato fruit.The palnt journal,2000, 24:413-420.
    104. Ruther A,Misawa N,Boge P,et al.Production of zeaxanthin in Escherichia coli transformed with different carotenoganic plasmids.Appl Microbiol Biotechnol,1997,48:162-167.
    105. Shewmaker C K,Sheehy J A,Daley M,et al.Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects.The palnt journal,1999,20:401-412.
    106. Shi.J,et al.Lycopene Degradation and Lsomerization in Tomato Dehydration.Food Res.Intl,1999,32:15-21.
    107. Steven K.,Clinton M.D.,Ph.D. Lycopene: Chemistry, Biology, and Implications for Human Health and Disease. Nutrition Reviews,2009,56(2):35-51.
    108. Sun ZR,Cunningham FX Jr,Gantt E,et al.Differential expression of two isopentenyl diphosphate isomerase gene and enhanced carotenoid accumulation in unicellular chlorophyte.Proc Natl Acad Sci USA, 1998,95:11482-11488.
    109. Williamson V M, Ho J Y, Wu F F, et al.A PCR-based marker tightly linked to the nematode resistance gene, Mi,in tomato.Theor Appl Genet,1994,87:757-763.
    110. Williamson V M, Ho J Y, Wu F F, Miller N, Kaloshian I.A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato.Theor Appl Genet,1994,87:757-763.
    111. Yoav sharoni,Miehael Danilenko.Molecular mechanisms for the anticancer activity of the carotenoid lycopene.Drug Development Researeh,1999,53(2):38-45.
    112. Yoshikazu Tanaka.Nobuhiro Sasaki and Akemi Ohmiya.Biosynthesis of plant pigment: anthocyannins,betalains andcarotenoids.The Plant journal,2008,54:733-749.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700