用户名: 密码: 验证码:
“调节型”和“顺从型”寄生蜂对寄主小菜蛾的生理调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以世界性蔬菜重要害虫-小菜蛾Plutella xylostella (Linnaeus)及其两种优势内寄生蜂-菜蛾啮小蜂Oomyzus sokolowskii Kurdjumov和菜蛾盘绒茧蜂Cotesia vestalis(Kurdjumov)为研究对象,通过构建小菜蛾-菜蛾盘绒茧蜂和小菜蛾-菜蛾啮小蜂两个寄生体系,对“调节型”和“顺从型”寄生蜂成功发育的生理基础进行了比较研究。取得以下研究结果:
     一、菜蛾啮小蜂的个体发育
     在室温25±1℃,相对温度60%-80%,光周期L14 : D10,光照强度1000-1500 lux的培养条件下,研究了菜蛾啮小蜂的个体发育过程。该蜂胚胎发育历经44h-48h。孵化后的蜂幼虫经历一次明显的蜕皮,明显存在两个虫龄。整个幼虫期6-8d。老熟幼虫的化蛹过程可以划分为初期、中期和后期3个阶段,蛹期8-9d。羽化出的成虫在不饲喂任何食物的情况下,发育4d后开始死亡。菜蛾啮小蜂从产卵到羽化为成虫历经16-18d。
     二、寄生不同虫龄小菜蛾对菜蛾啮小蜂生物学特性的影响
     寄主昆虫的质量显著影响其体内寄生蜂的生长发育,选择适合的寄主虫龄是成功繁蜂的关键。本研究以小菜蛾重要的幼虫--蛹跨期寄生蜂菜蛾啮小蜂为研究对象,在室内(25±1)℃研究了1龄、2龄、3龄、4龄初和4龄末小菜蛾幼虫被寄生后,对菜蛾啮小蜂生物学物性的影响。结果表明:寄生各个虫龄小菜蛾的啮小蜂从卵到羽化的发育历期、羽化后成蜂寿命没有明显的差异。寄生不同虫龄小菜蛾羽化出的啮小蜂的性比只在3龄末和4龄末之间存在显著性差异,寄生4龄末小菜蛾育出的雄蜂比例最高。菜蛾啮小蜂对各虫龄小菜蛾幼虫产卵寄生没有表现出明显的偏好性,但相比2龄和4龄小菜蛾幼虫,3龄末小菜蛾幼虫仍是较适合的寄主,寄生3龄末小菜蛾幼虫羽化出的啮小蜂个体最大。
     三、离子色谱法测定寄生后小菜蛾血淋巴游离氨基酸
     采用离子色谱法测定了小菜蛾末龄幼虫、预蛹及被菜蛾盘绒茧蜂寄生后,血淋巴中游离氨基酸组成和含量。共检测到17种氨基酸,其中组氨酸、脯氨酸和丙氨酸是主要的种类。随着小菜蛾幼虫的生长,血淋巴中氨基酸总量明显增加,发育到预蛹时,总量下降,表明虫体内氨基酸代谢途径因变态的即将发生而产生了变化。被菜蛾盘绒茧蜂寄生后,小菜蛾幼虫血淋巴中游离氨基酸总量显著增加,导致多数氨基酸种类含量增加,表明该蜂有效地调节了寄主的蛋白质和氨基酸代谢,使之朝着有利于自身发育的方向发展。但是,当蜂幼虫完成在寄主体内的发育时,小菜蛾血淋巴中氨基酸总浓度明显下降,说明该蜂有效地获取了寄主中的氨基酸营养。对这些氨基酸种类的识别将可为今后该蜂大规模的的人工化培养提供极有价值的信息。
     四、小菜蛾两种内寄生蜂种间竞争机制
     通过构建模式系统,阐明寄生蜂种间竞争的内在机制,可以为天敌的正确引种提供理论依据。本文以2龄末小菜蛾幼虫为寄主昆虫,分别选取小菜蛾两种内寄生蜂菜蛾盘绒茧蜂Cotesia vestalis和菜蛾啮小蜂Oomyzus sokolowskii以不同的寄生顺序和时间间隔寄生同一寄主以形成多寄生。在室内25℃下,比较了这两种蜂的种间竞争能力,并对其采取的竞争机制进行了分析。当种间竞争发生后,育出的茧蜂数最多,小蜂数极少。影响这两种蜂种间竞争结果的原因首先取决于它们的物理攻击能力,茧蜂的1龄幼虫有发达的角质上颚,而小蜂缺乏;同时,与这两种寄生蜂各自携带的寄生因子如多分DNA病毒(polydnavirus PDV)、畸形细胞或毒液等对寄主生长发育的调控至关重要。茧蜂的寄主调控能力最强,它拥有的PDV和毒液能显著延长寄主的幼虫期,这样的寄主环境造成小蜂不能发育成功。而且,小蜂先寄生的多寄生寄主死亡率明显升高也是造成小蜂数减少的重要原因。
In the present paper, we compared the phsiological effects of parasitization on diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), the most important crucifer pest worldwide, parasitized by two major endoparasitoids, the“regulator”Cotesia vestalis (Haliday) (Hymenoptera: Braconidae) or the“conformer”Oomyzus sokolowskii Kurdjumov (Hymenoptera: Eulophidae). The major results are summarized as follows.
     1.The ongeny of Oomyzus sokolowskii
     The ongeny of Oomyzus sokolowskii was observed at 25±1℃, RH 60%-80%, photoperiod of 14 h light and 10 h dark with light intensity of 1000-1500lux, under lab conditions. The development period required for the embryo of O. sokolowskii is forty-four to forty-eight hours. After hatching, the larvae undergoes a obviously molting, it has two larval instars. The duration of larval stage was 6-8 d. The final larvae enters pre-pupal stage after ceasing feeding. The whole pupal stage was divided into three phases. The pupal period was 8-9 d. After emergence, the longevity of adult was only 4 days without feeding any food. The developmental time for O. sokolowskii from egg batch to adult emergence was 16-18 days.
     2.The effect of host instar on biological characters of Oomyzus sokolowskii, a larval-pupal parasitoid of Plutella xylostella
     Host insect quality significantly influences the progeny fitness of endoparasitoid wasps. Choosing the suitable host instar and size will be useful for developing augmenting parasitoids as biological control agents. In present paper, we investigated the effects of host different instar and size on biological characters of Oomyzus sokolowskii (Kurdjumov), an important larval-pupal endoparasitoid of Plutella xylostella L. in the laboratory at (25±1)°C. The results showed that parasitoids developing in different host instars did not exhibit significant differences in development time, and adult longevity was almost the same. The proportion of male wasps that emerged from the late fourth instar hosts was significantly higher than for the late third instar larvae. In choice experiment, the wasp did not show any differences to four larval instars, the number of egg laid per host, indicating almost the same host suitability among different larval instars. However, the late third instar larvae was the most suitable host compared with the other instars for parasitoid, because the biggest wasp emerged from them.
     3.Determination of free amino acids in the hemolymph of parasitized Plutella xylostella by ion chromatography
     Changes in free amino acids were analysed in hemolymph of fourth instar larvae, prepupae and parasitized Plutella xylostella larvae by ion chromatography. Seventeen primary amino acids were detected among which histidine, proline and alanine were the predominant free amino acids at all stages. The concentration of total amino acids increased significantly with the age of larvae. However, the amount declined with the larvae entering the prepupal phase. This suggested that changes in amino acid metabolism occurred. After parasitization by Cotesia vestalis, the concentration of total amino acids increased significantly compared with synchronous non-parasitized controls. The parasitism resulted in increased levels of most of the amino acids. This parasitoid strongly redirected host protein and amino acid metabolisms to make the host nutritional environment suitable to its development. At the end of the immature development of this parasitoid, we observed a very significant decline in total amino acid contents. This suggested that C. vestalis used these amino acids effectively to ensure its larval development. The definition of a suitable artificial diet according to our results for in vitro mass production of this parasitoid in the future is necessary and helpful.
     4.The mechanisms of inerspecific competition between two endopatasitoids of diamondback moth
     It can provide important theory basis for introduction of exotic natural enemies to control insect pests by establishing an ideal host-parasitoid model systems to clarify the mechanisms of interspecific competition between endoparasitoids. The interspecific competitive capacity between Oomyzus sokolowskii and Cotesia vestalis was studied using the 2nd instar larvae of Plutella xylostella as the host at 25℃in the laboratory. Different time intervals between parasitism and two parasitoid sequences were chosen. C. vestalis outcompeted O. sokolowskii from the multiparasitized host irrespective of whether it parasitized first or second. The one reason for this result was that C. vestalis can physically attack O. sokolowskii using advanced scleritized mandibles in multiparasitized host. Compared with C. vestlis, O. sokolowskii lack mandibles. The another reason for this result was that these two endoparasitoids regulated the host in different ways. C. vestalis has polydnaviruses, venom and teratocytes, whereas O. sokolowkii only has venom. The braconid has stronger regulatory ability on host than eulophid. In the presence of polydnaviruses and venom of C. vestalis, the duration of host larval stage was prolonged and could not pupate. Under this host physiological state, O. sokolowkii could not successfully develop. Furthermore, the high mortality of host parasitized by O. sokolowkii first lead to great reductions of eulophid.
引文
1.白素芬,程家安,陈学新等.菜蛾盘绒茧蜂主要寄生因子对寄主小菜蛾生长发育的调控.植物保护学报,2005,32(3):235-240.
    2.蔡霞,郝仲萍,施祖华等.寄主龄期对半闭弯尾姬蜂生物学特性的影响.中国生物防治,2006,22(2):92-95.
    3.蔡霞,施祖华,郭玉玲等.半闭弯尾姬蜂的寄主选择性及寄生对寄主发育和取食的影响.中国生物防治,2005, 21(3):146-150.
    4.杭三保,陆自强.二化螟幼虫被二化螟绒蜂寄生后血淋巴的生理生化变化.昆虫学报,1991,34(4):427-432.
    5.何俊华.2004.浙江蜂类志.北京:科学出版社.234,429,667
    6.贾彩娟.1999.菜蛾啮小蜂生物学及其对小菜蛾的控制作用.华南农业大学博士学位论文.
    7.李庆宝,施祖华,刘树生.菜蛾啮小蜂的寄主辨别能力和种间竞争.浙江大学学报, 2004,30(2):164-168.
    8.李晓颖,李贞淑.舟蛾啮小蜂孤雌生殖习性的观察试验.吉林林业科技,1999,(1):25-26.
    9.李欣,崔莉,白素芬等.内寄生蜂对寄主小菜蛾发育的调控能力研究.河南农业大学学报,2005,39(3):308-311.
    10.李元喜,刘树生.寄主龄期对菜蛾绒茧蜂生物学特性的影响.浙江大学学报(农业与生命科学版),2001,27(1):11-14.
    11.李志强,陈国生,王茂先等.昆虫体液免疫的分子生物学.生命的化学,2003,23(5):348-351.
    12.刘树生,施祖华.菜蛾啮小蜂的生物学及温度对其种群增长的影响.昆虫学报, 2000,43(2):159-167.
    13.刘树生,汪信庚.菜蛾啮小蜂对寄主龄期的选择性和适合性.中国生物防治,1999, 15(1):1-4.
    14.刘树生.“非对称交配互作”促进一种烟粉虱的入侵.昆虫知识,2008,45(1):1
    15.罗梅浩,郭线茹,郑晓军,陈智等.烟青虫和棉铃虫在烟草上的生态位及其种间竞争.中国烟草学报,2002,8(4):34-37.
    16.欧阳迎春,王宗舜,关雪辰.注射大肠杆菌对柞蚕滞育蛹血浆中游离氨基酸的影响.农业生物技术学报, 2002,10(1):20-23.
    17.秦启联,王方海,龚和.畸形细胞在协调寄生蜂同其寄主相互关系中的作用.昆虫学报, 1999,42(4):431-438.
    18.施祖华,李庆宝,李欣等.弯尾姬蜂与菜蛾啮小蜂的种问竞争关系.中国生物防治, 2003,19(3):97-102.
    19.施祖华,刘树生.小菜蛾主要寄生性天敌--菜蛾绒茧蜂与菜蛾啮小蜂间的相互作用.应用生态学报,2003,14(6):949-954.
    20.施祖华,Gebremeskel F B,刘树生.颈双缘姬蜂与菜蛾啮小蜂的种间竞争.中国生物防防治,2001,17(3):112-115.
    21.施祖华,李欣,刘树生等.弯尾姬蜂与菜蛾啮小蜂的种间竞争关系.中国生物防治, 2003,19(3):97-102.
    22.施祖华,Mahmood A.,刘树生.寄主龄期、温度对菜蛾盘绒茧蜂与菜蛾啮小蜂种间竞争的影响.浙江大学学报,2003,29(1):24-28.
    23.施祖华,李庆宝,李欣等.半闭弯尾姬蜂与菜蛾盘绒茧蜂寄生菜蛾幼虫时的种间竞争.昆虫学报,2004,47(3):342-348.
    24.施祖华,刘树生.小菜蛾主要寄生性天敌-菜蛾绒茧蜂与菜蛾啮小蜂间的相互作用.应用生态学报,2003,14(6):949-954.
    25.施祖华,刘树生.菜蛾绒茧蜂对寄主龄期的选择性和寄主适合性.浙江农业大学学报,1998,24(4):381-386.
    26.唐柳青,李欣.郑州郊区小菜蛾寄生蜂种类、田间消长动态及防治效果调查.河南农业大学学报,2007,41(42):167-170.
    27.汪信庚,刘树生,何俊华等.杭州地区小菜蛾寄生昆虫调查.植物保护学报,1998,25(1):20-26.
    28.王茂先,邢树文,丁有雄等.棉铃虫感染中华卵索线虫后血淋巴游离氨基酸含量的变化.昆虫学报,2004,47(2):277-280.
    29.吴梅香,尤民生.福州郊区小菜蛾天敌种类调查.华东昆虫学报,2002,11(1):25-28.
    30.肖家浩,钟觉民.棉铃虫地理种群血淋巴游离氨基酸的测定与分析.华中农业大学学报, 1992,11(2):145-149.
    31.许方程,陈小影,吴永汉等.温州郊区十字花科蔬菜害虫寄生蜂调查研究.浙江农业学报, 2003,15(6):353-356.
    32.钟平生,曾玲.小菜蛾寄生性天敌的动态调查与作用分析.江西农业大学学报, 2008,30(3):471-475.
    33. Aiam M.Diamondback Moth and its aatural enemies in Jamaica and some other Caribbean Islands,Diamondback Moth and Other Crueifer Pests[M] In Talekar(ed),Proceedings of theSecond International Workshop,Tainan,Taiwan,1990,233-243.
    34. Alam M M. Cabbage pests and their natural enemies in Bardados,W.I.Proc.18th CFc.Annual meeting in Bardados, 1982,22-28,Auqust,307-309.
    35. Arakawa T,Kitano H. A possible reason for the decrease of the number of teratocytes in the body cavities of Pieris rapae crucivora Boisduval (Lepidoptera: Pieridae) parasitized by Apanteles glomeratus L. Journal of Applied Entomology and Zoology 1989,24:229-231.
    36. Asgari S.Venom proteins from polydnavirus-producting endparasitoids:their role in host-parasite interactions.Archives of Insect Biochemistry and Physiology,2006,61(3):146-156.
    37. Beckage N E. Parasitology.1998,116:857-864.
    38. Bischof C,Ortel J.The effects of parasitism by Glytapanteles liparidis (Braconidae: Hymenoptera) on the hemolymph and total body composition of gypsy moth larvae Lymantria dispar (Lymantriidae: Lepidoptera).Parasitology Research,1996,82(8):687-692.
    39. Boctor I Z.Changes in the free amino acids of the haemolymph of diapause and non-diapause pupae of the cotton bollworm,Heliothis armigera Hbn.(Lepidoptera:Noctuidae).Cellular and Molecular Life Sciences,1981,37(2):125-126.
    40. Bumn I de,Beckage N E.Characterization of a polydnavirus(PDV) and virus-like filamentous particle(VLFP) in the braconid wasp Cotesia congregate (Hymenoptera:Braconidae).J.Invertebr.Pachol.,1992,59:315-327.
    41. Chelliah S,Srinivasan K.Bioecology and management of diamondback moth in India. In:Talekar N S,ed.Diamondback Moth Management-Proceedings of the First International Workshop. Taiwan:AVRDC,1986,63-76.
    42. Cook M J W.The assessment of preference.Journal of Animal Ecology,1978,47:805-816.
    43. Dahlman D L,Vinson S B.Parasites,New York:Academic Press,1993,145-165.
    44. Ehler L E,Hall R W.Evidence for competitive exclusion of introduced natural enemies in biological control. Environ. Entomol.,1982,11:1-4.
    45. Ferronatto E M,Becker M.Abundance and complex of parasites of Plutella xylostella (L.) in Brassica oleracea (L.). Ann.Soc.Ent.Bri., 1984,13: 261-278.
    46. Furlong Michael J,Zalucki Myron P.Integration of endemic natural enemies and Bacillus thuringiensis to manage insect pests of Brassica crops in North KoreaAgriculture,Ecosystems&Environment,2008,125:223-238.
    47. Gichini G,Nyambo B.Can low release numbers lead to establishment and spread of an exotic parasitoid:The case of the diamondback moth parasitoid,Diadegma semiclausum (Hellen), in East Africa,Crop Protection,2008,27:906-914.
    48. Giordana B,Milani A,Grimaldi A,et al.Absorption of sugars and amino acids by the epidermis of Aphidins ervi larvae. Journal of Insect physiology, 2003,49(12):1115-1124.
    49. Guerrero S M A, Lamborot C L, Arretz V P. Parasitic action of three hymenopterous species on larvae and pupae of Plutella xylostella L. in cabbage. Rev. Chil. Ent.,1986,13:17-20.
    50. Hanzal R, Jegorov A. Changes in free amino acid composition in haemolymph of larvae of the wax moth, Galleria mellonella L., during cold acclimation.Comparative Biochemistry and physiology A. Comparative Physiology, 1991,100(4): 957-962.
    51. Jalali S K, Singh S P, Ballal C R, et al., Competitive interaction between Cotesia Kazak and Hyposoter didymator, exotic parasitoids of Heliothis armigera. Entomologia Experimentalis et Applicata,1988,46:221-225.
    52. Kfir R. Origin of the diamondback moth (Lepidoptera: Plutellidae). Annals of the Entomological Society of America,1998,91:164-167..
    53. Kitano H, Wago H,Arakawa T.Possible role of teratocytes of the gregarious parasitoid Cotesia (=Apanteles) glomerata in the suppression of phenoloxidaes activity in the larval host, Pieris rapae crucivora. Archives of Insect Biochemistry and Physiology 1990,13:177-185.
    54. Klowden M J.Physiological Systems in Insects昆虫生理系统(第二版).北京:科学出版社, 2008:368-369.
    55. Lawrence P O.Host-parasitoid hormonal interactions:an overview. Journal of Insect Physiology,1986,32:295-298.
    56. Lawrence P O. The biochemical and physiological effects of insect hosts on the development and ecology of their parasites: an overview. Archives of Insect Biochemistry and Physiology, 1990,13:217-228.
    57. Mushtaque M. Some studies on Tetrastichus sokolowskii Kurd. (Hymenoptera: Eulophidae), a parasitoid of diamondback moth in Pakistan. Pakistan Journal of Zoology, 1990,22:37-43.
    58. Nakamatsu Y, Gyotoku Y, Tanaka T. The endoparasitoid Cotesia kariyai (Ck) regulates thegrowth and metabolic efficiency of Pseudaletia separate larvae by venom and Ck polydnavirus.Journal of Insect Physiology, 2001,47: 573-584.
    59. Nakamura A, Noda T. Effects of host age and size on a clutch size and sex ratio of Oomyzus sokolowskii (Hymenoptera: Eulophidae), a larval-pupal parasitoid of Plutella xylostella (Lepidoptera: Yponopeutidae).Applied Entomology and Zoology,2002,37(2):319-322.
    60. Nakamura A, Noda T. Host-age effects on oviposition behaviour and development of Oomyzus sokolowskii (Hymenoptera: Eulophidae), a larval-pupal parasitoid of Plutella xylostella (Lepidoptera: Yponopeutidae).Applied Entomology and Zoology,2001,36(3): 367-372.
    61. Noda T, Miyai S, Yamada S, et al. Larval and pupal parasitoids of diamondback moth, Plutella xylostella (L.) in cabbage fields in Morioka, Applied Entomology and Zoology, 1996,40:164-167.
    62. Ooi P A C. Laboratory studies on Tetrastichus sokolowskii. Entomophaga, 1988, 33:145-152.
    63. Rahbe Y, Digillio M C, Febvay G, et al. Metabolic and symbiotic interactions in amino acid pools of the pea aphid, Acyrthosiphon pisum, parasitized by the braconid Aphidius ervi. Journal of Insect Physiology, 2002,48(5):507-516.
    64. Riparbelli M G,Stouthamer R,Dallai R,et al.Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor.Developmental Biology,1998,195:89-99.
    65. Roberto J,Jeffrey R,,Thomas P,et al.Kuhar Susceptibility of two diamondback moth parasitoids,Diadegma insulare (Cresson) (Hymenoptera;Ichneumonidae) and Oomyzus sokolowskii(Kurdjumov)(Hymenoptera;Eulophidae),to selected commercial insecticides. Biological Control, 2007,42:48-54.
    66. Rossbach A,Lohr B,VidalS.Interspecific competition between Diadegma semiclausum Hellen and Diadegma mollipla (Holmgren),parasitoids of the diamondback moth,Plutella xylostella (L),feeding on a new host plant.Bulletin of Entomological Research,2008,98(2): 135-143.
    67. Salt G.Competition among insect parasitoids.Symposia of the Society for Experimental Biology,1961,15:96-119.
    68. Salvador G,C?nsoli F L.Changes in the hemolymph and fat body metabolites of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron)(Hymenoptera: Braconidae).Biological Control,2008,45(1):103-110.
    69. Stetter P,Trenczek T,Wyler T,et al.Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis.Journal of Insect Physiology 1998,44:817-831.
    70. Strand M R,Mckenzie D I,Grassl V,et al.Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens.Journal of General Viro1ogy, l992,73:l627-l635.
    71. Strand M R.Insect Parasitoids.New York:Academic Press.1986,97-136.
    72. TalekarN S,Hu W J.Characteristics of parasitism of Plutella xylostella(Lep.,Plutellidae) by Oomyzus sokolowskii(Hym.,Eulophidae).Entomophaga,1996,41:45-52.
    73. Thompson S N, Redak R A, Wang L W. Nutrition interacts with parasitism to influence growth and physiology of the insect Manduca sexta L. The Journal of Experimental Biology,2005,208:611-623.
    74. Uka D, Hiraoka T, Iwabuchi K. Physiological suppression of the larval parasitoid Glyptapanteles pallipes by the polyembryonic parasitoid Copidosoma floridanum. Journal of Insect Physiology,2006,52:1137-1142.
    75. van Harten A. The influence of parasitoids on the mortality of pests in horticultural crops in the Cape Verde Islands. Journal of Applied Entomology, 1991,111: 521-525.
    76. Vinson S B, Hegazi E M. A possible mechanism for the physiological suppression of conspecific eggs and larvae followed superparasitism by solitary endoparasitoids. Journal of Insect Physiology,1998,44:703-712.
    77. VInson S B. Physiological interactions between the host genus Heliothis and its guild of parasitoids.Archives of Insect Biochemistry and Physiology, 1990, 13:63-81.
    78. Wang X G, Bokonon-Ganta A H, Messing R H. Intrinsic inter-specific competition in guild of tephritid fruit fly parasitoids: Effect of co-evolutionary history on competitive superiority.Biological control,2008,44:312-320.
    79. Waterhouse D F, Norris K R.Biological Control-Pacific Prospects.Melbourne:Inkata Press,1987,177-191.
    80. Whitfield J B.Parasitoids,polydnaviruses and endosymbiosis.Parasitology Today,1990,6:381-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700