用户名: 密码: 验证码:
菜粉蝶蛹质量对蝶蛹金小蜂产卵决策的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寄生蜂是检验行为生态学和进化生态学假说的理想模式生物。寄生蜂对寄主的选择是寄主质量和寄主价值共同作用的过程,寄主日龄和寄主体型大小是决定寄主质量的两个主要变量,在一定程度上决定寄生蜂后代数量、性比及后代适合度。迄今,“寄主大小-质量”假说在抑性寄生蜂(产卵后寄主停止发育)中获得了大量研究的支持,但寄主日龄也可能影响这一模型的预测,因为寄主日龄越高,营养越差。本论文研究以群集寄生性蝶蛹金小蜂Pteromalus puparum及其寄主菜粉蝶Pieris rapae蛹为对象,为了克服检验“寄主大小-质量”模型的传统方法(用体型大小不同的异种寄主)的缺陷—难以避免寄主种间遗传差异的干扰,用饥饿方法获得体型大小差异较大的同种寄主蛹,观察寄生蜂的产卵行为及其后代发育适合度表现,以求更精确地检验该模型;另外,还观察了寄生蜂不同日龄、不同蛹龄等变量对产卵策略及其后代适合度的影响。研究获得以下主要结果。
     1.菜粉蝶蛹体型大小对蝶蛹金小蜂产卵策略的影响
     为检验“寄主大小-质量”假说,采取饥饿方法处理菜粉蝶Pieris rapae高龄幼虫,以获得体型大小(用重量表示)差异大于同一自然地理种群内个体间差异的寄主蛹,然后供群集蝶蛹金小蜂寄生,观察寄生蜂在不同大小寄主蛹内的后代窝卵数、性比以及体型大小。结果表明,蝶蛹金小蜂1次攻击产出的后代窝卵数随寄主蛹重量增加而显著增多,蛹中平均出蜂314.97头·g-1。蝶蛹金小蜂后代的雌性比例随寄主蛹重量的增大而显著提高,后代雌蜂和雄蜂的体型大小(后足胫节长度)均随寄主蛹重量的增大而显著增大。可见,蝶蛹金小蜂母蜂能够根据寄主蛹重量来调整后代窝卵大小和性比,以使后代适应度最大化。研究结果支持“寄主大小-质量”假说。
     2.寄生蜂日龄对蝶蛹金小蜂产卵策略的影响
     为摸清寄生蜂日龄对产卵策略的影响,采取饥饿的方法处理菜粉蝶Pieris rapae高龄幼虫,以获得体型大小(用体质量表示)差异显著大于同一自然地理种群内个体间差异程度的寄主蛹,然后供不同日龄(5d、10d、20d和30d)群集蝶蛹金小蜂寄生,观察在不同大小寄主蛹内的后代窝卵数、性比及其体型大小(用后足胫节长度表示)。结果表明,蝶蛹金小蜂日龄显著影响其产卵决策。随着蜂日龄的增加,(ⅰ)后代窝卵数呈明显下降趋势,5d寄生蜂后代平均数量为49.14头,而30d寄生蜂后代平均数量仅为10.84头;(ⅱ)后代雌性比例上升,5d寄生蜂后代平均雌性比例为0.91,而30d寄生蜂为0.95;(ⅲ)后代体型大小总体上呈上升趋势,5d寄生蜂后代雌蜂的平均后足胫节长度为0.68mm,雄蜂后代平均为0.56mm,而30d寄生蜂后代雌蜂的后足胫节长度为0.76mm,雄蜂后代平均为0.61mm。由此推测,蝶蛹金小蜂雌蜂能够通过调整后代窝卵大小和性比,获得最大适应度。
     3.菜粉蝶蛹日龄对蝶蛹金小蜂产卵策略的影响
     为了探明寄主菜粉蝶蛹日龄对蝶蛹金小蜂产卵决策的影响,采用饥饿法处理菜粉蝶末龄幼虫来获得不同大小的菜粉蝶蛹,然后将不同大小的菜粉蝶蛹随机分组,置于25℃、RH60%~80%、L:D=10:14 h光照培养箱中放置以获得不同日龄的菜粉蝶蛹,供群集蝶蛹金小蜂寄生。研究结果表明,(ⅰ)一次攻击产生的平均后代窝卵数总体上随寄主蛹日龄的增大而显著降低;(ⅱ)后代平均雌性比例随寄主蛹龄的增大而呈下降趋势;(ⅲ)蝶蛹金小蜂后代平均个体大小(用后足胫节长度表示)在前5个日龄(1d、2d、3d、4d和5d)之间变化不明显,而寄生6d蛹的后代蜂后足胫节长度明显变小,而且出蜂率明显降低,仅40%。由此推断,寄主蛹龄是影响蝶蛹金小蜂产卵决策的重要变量之一,所以,用“寄主大小-质量”假说解释抑性寄生蜂产卵策略时,须同时考虑寄主日龄的影响。
     4.结论
     本论文研究表明,除了寄主蛹体型大小外,寄主蛹日龄以及寄生蜂日龄也显著影响蝶蛹金小蜂的产卵决策。其他潜在因素(如抱卵量、身体营养状态、被捕食和寄生蜂风险等)对蝶蛹金小蜂产卵决策的影响仍有待于进一步研究。
Parasiotids are ideal model systems for testing behavioral and evolutionary hypotheses. Host choice is realized from interaction between host quality and host value in parasitoids. Host age and body size are the two main variables that constitute host quality, as manifested by fitness correlates of offspring parasitoids including clutch size, sex ratio, and body size. As of this time, the "host size-quality" hypothesis has been substantiated by numerous empirical studies of idiobiontic parasitoids. However, host age can influence the prediction of the hypothesis in idiobionts, as host quality may covary with host age. This thesis study, by using gregarious parasitoid Pteromalus puparum and host pupa of Pieris rapae as a model system, was intended to test the host size-quality hypothesis by manipulating host pupa size through starvation of larvae, host age, and parasitoid age as may affect oviposition decision in clutch size and sex ratio. The main results are as followed below.
     1. Influence of host pupa weight on oviposition strategy of Pteromalus puparum
     To test the "host size-quality"hypothesis, larvae of P. rapae were manipulated by starvation regime to obtain a wide range of body sizeofhost pupa, and then these puae were individually exposed to parasitism by the gregarious parasitoid.After a single attack the pupae were observed for emergence of offspring parasitoids. The results showed that the offspring production was linearly increased with increasing host pupa mass at oviposition, being 314.97 individuals per gram of pupa mass on average. The proportion of offspring females and the body size (hind tibia length) of offspring males and females also increased with increasing host pupa mass. The results suggest that P. puparum can allocate its offspring number and sex ratio, so as to maximize its fitness, basing on assessment of pupaquality. The reproductive strategy of P. puparum and related factors were discussed.
     2. Effects of parasitoid age on oviposition strategy of Pteromalus puparum
     To investigate how parasitoid age affects oviposition decision as predicted by the host size-quality hypothesis, parasitoids at either of 5-day,10-day,20-day, or 30-day old were provided with host pupae of different body sizes as obtained by the larval starvation. The results shown that parasitoid age significantly affect oviposition decision in P. puparum. With increase of parasitoid age, (ⅰ) clutch size obviously declined, with 49.14 (mean±se) from 5-day old mother wasps and 10.84from the 30-day old; (ⅱ) female increased in offspring, with 0.91 from 5-day old mother wasps and 0.95from the 30-day old; (ⅲ) body size enlarged slightly with 0.68mm in hind tibia length of females and 0.56mm of males from 5-day old mother wasps, and with 0.76mm of females and 0.61mm of males from 30-day old mother wasps. It is suggested that P. puparum might adjust oviposition decision in response to its own age.
     3. Effects of host pupa age on oviposition strategy of Pteromalus puparum
     To investigate effects of host pupa age on oviposition decision and offspring developmental performances of the parasitoid, host pupae at age of either 1-day,2-day, 3-day,4-day,5-day, and 6-day old were individually exposed to parasitism. The results shown that (ⅰ) clutch size decreased with host age; (2) female proportion declined with host age; (ⅲ) body size was not affected by host age from 1-day through to 5-day, but reduced from attacking 6-day old pupa with much reduced survival by 40%. It is suggested that host pupa age is an important variable in oviposition strategy of Pteromalus puparum, and therefore may confound predictions of the host-size-quality hypothesis.
     4. Conclusions
     The thesis study indicates that host pupa size is a main variable that measures host quality by gregarious Pteromalus puparum, but host age and mother wasp age are also important variables that affect host quality as perceived by the parasitoid as well. In addition to these variables, other potential traites, such as egg load, nutrition state, risks of predation and parasitism, etc may influence ovipisiton strategy, which are remained for further studies before fully understanding of oviposition strategy.
引文
1. 丁德诚,潘务耀等.1994.松突圆蚜花角蚜小蜂对寄主的选择.昆虫学研究集刊,11:35-42.
    2. 董胜张,郭建洋,叶恭银,胡萃.2008.成虫营养和交配对蝶蛹金小蜂卵巢发育与卵黄发生的影响.植物保护学报,35(3):193-198.
    3. 甘明,苗雪霞,丁德诚.2003.日本柄瘤蚜茧蜂与其寄主豆蚜的相互作用:寄主龄期选择及其对发育的影响.昆虫学报,46(5):598-604.
    4. 何继龙,王柏生,李秀美.1983.上海菜粉蝶寄生性天敌昆虫考查及生物学特性初步研究.上海交通大学学报(农业科学版),1:10-15-25.
    5. 胡萃,万兴生.1988.蝶蛹金小蜂性比的研究.昆虫学报,3:106-109.
    6. 蒋学建,周祖基.2005.替代寄主蛹龄对川硬皮肿腿蜂取食和产卵的影响.广西林业科学,4:179-180.
    7. 李国清.2006.拟寄生蜂的寄主标记研究进展.昆虫学报,49(03):504-512.
    8. 李建成,张青文,刘小侠,潘文亮.2005.中红侧沟茧蜂成虫日龄及粘虫幼虫龄期对寄生效果的影响.中国生物防治,21(1):14-17.
    9. 李元喜,刘树生.2001.寄主龄期对菜蛾绒茧蜂生物学特性的影响.浙江大学学报,27(1):11-14.
    10.刘树生,汪信庚,施祖华,郭世俭.2000.菜蛾啮小蜂的生物学及温度对其种群增长的影响.昆虫学报,43(2):159-167.
    11.刘小侠,张青文,李建成,徐静.2004.寄主大小对中红侧沟茧蜂产卵和发育的影响.中国生物防治,20(2):110-113.
    12.明珂,古德就,韦国栋,张维球.2005.不同龄期菜蚜茧蜂对蚜虫宽缘金小蜂发育的影响.华南农业大学学报,26(1):60-63.
    13.唐超,澎正强,沈有孝,吕宝乾,符悦冠,万方浩.2006.椰甲截椰甲截脉姬小蜂对寄主龄期的选择性和适合性.热带作物学报,27(2):78-80.
    14.汪信庚,刘树生,程晓波.1997.小菜蛾主要天敌颈双缘姬蜂对寄主蛹龄的选择性和适合性.中国生物防治,3:7-11.
    15.王欢,王洪祥,刘怀,叶恭银.2006.蝶蛹金小蜂后足胫节长用于评判其繁殖能力的探讨.浙江柑桔,23(02):25-26.
    16.王深柱.2001.寄主大小与棉铃虫齿唇姬蜂产卵和发育的关系.中国生物防治,17(3):107-111.
    17.王问学.1991.麦蛾茧蜂性比与寄主的关系.生物防治通报,7(1):16-18.
    18.徐颖,洪健,胡萃.2000.蝶蛹金小蜂触角感觉器的超微结构研究.浙江大学学报(农业与生命科学版),(04):51-55.
    19.徐清华.2007.可疑柄瘤蚜茧蜂对不同龄期和体型大小黑豆蚜的选择性及其适合度表现.南京农业大学.
    20.严静君,刘后平.1991.绒茧蜂研究进展.生物防治通报,7(13):127-13.
    21.余虹,周勤,宋毓.2004.桑螟绒茧蜂的生物学特性.浙江大学学报,30(5):557-560.
    22.苑士涛,万方浩.2004.连代饲养、雌蜂日龄和交配方式对棉铃虫齿唇姬蜂后代性比的影响.中国生物防治,20(1):27-30.
    23.曾爱平,王奎武,蒋杰贤,季香云,游兰韶.2005.淡足侧沟茧蜂生物学特性研究.湖南农业大学学报,31(5):502-505.
    24.张李香,吴珍泉.2005.寄主日龄对啊氏啮小蜂寄生后代的影响.福建农林大学学报,34(4):438-440.
    25.张晓岚,孟玲,李保平.2009.菜粉蝶蛹体型大小对蝶蛹金小蜂后代数量、性比及体型大小的影响.生态学杂志,28(4):677-680.
    26.张忠,史卫峰,叶恭银,胡萃,于爱莲.2008.丽蝇蛹集金小蜂雌蜂的寄主选择性.中国病原生物学杂志,11:818-820.
    27.张忠,叶恭银,胡萃.2004.两种金小蜂毒液对菜粉蝶蛹血细胞延展、存活及包囊作用的影响.昆虫学报,47(05):551--561.
    28. Blumberg D, DeBach P.1981. Effects of temperature and host age upon the encapsulation of Metaphycus stanleyi and Metaphycus helvolus eggs by brown soft scale Coccus hesperidium. Journal of Invertebrate Pathology,37:73-79.
    29. Bocchino FJ, Sullivan DJ.1981. Effects of venoms from two aphid hyperparasitoids, Asaphes lucens and Dendrocerus carpenteri (Hymenoptera:Pteromalidae and Megas-pilidae), on larvae of Aphidius smithi (Hymenoptera:Aphidiidae). Canadian Entomologist,113:887-889.
    30. Bouletreau M.1971. Crossance larvaire et utilisation de l'hote chez Pteromalus puparum:Influence de la densite de population. Annales de Zoologie Ecologique Animale,3:305-318.
    31. Casas J, Nisbet RM, Swarbrick S, Murdoch, WW.2000. Egg load dynamics and ovipositon rate in a wild population of a parasitic wasp. Journal of Animal Ecology,69:1-11.
    32. Chabora PC, Pimentel D.1977. Effect of host (Musca domestica Linnaeus) age on the pteromalid parasite Nasonia vitripennis. Canadian Entomologist,98:1226-1231.
    33. Charnov EL, Los-den-HartoghR L, Jones WT, Van Den Assem J.1981. Sex ratio evolution in a variable environment. Nature,289:27-33.
    34. Cloutier C, Duperron J, Tertuliano M, McNeil JN.2000. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomologia Experimentalis et Applicata 97:29-40.
    35. da Costa Lima A.1928. Notas sobre a biologia de Telenomus fariai Lima parasito dosovos de Triatoma. Memorias do Institutio Oswaldo Cruz,21:201-218.
    36. Driessen PB, Hemerik L.1992. The time and egg budget of Leptopilina clavipes, a parasitoid of larval Drosophila. Ecological Entomology,17:17-27.
    37. Ellers J, Sevenster JG, Driessen G.2000. Egg load evolution in parasitoids. American Naturalist, 156:650-665.
    38. Ellers J, van Alphen JJM, Sevenster JG.1998. A field study of size-fitness relationships in the parasitoid Asobara tabida. Journal of Animal Ecology,67:318-324.
    39. Ellers J, van Alphen JJM.1997. Life history evolution in Asobara tabida:plasticity in allocation of fat reserves to survival and reproduction. Journal of Evolutionary Biology,10:771-785.
    40. Ellers J, van Alphen JJM.2002. A trade-off between diapause duration and fitness in female parasitoids. Ecol.Entomol.27:84-279.
    41. Ellers J.1996. Fat and eggs:an alternative method to measure the trade-of between reproduction and survival in insect parasitoids. Netherlands Journal of Zoology,46:227-235.
    42. Fritz RS.1982. Selection for host modification by insect parasitoids. Evolution,36:83-288.
    43. Godfray HCJ.1994. Parasitoids:Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey:Princeton University Press.
    44. Harvey JA, Bezemer TM, Elzinga JA, Strand MR.2004a. Development of the solitary endo-parasitoid Microplitis demolitor:host quality does not increase with host age and size. Ecological Entomology,29:35-43.
    45. Harvey JA, Jervis MA, Gols GJZ, Jiang N, Vet LEM.1999. Development of the parasitoid:Cotesia rubecula (Hymenoptera:Braconidae) in Pieris rapae and P.brassicae (Lepidoptera:Pryalidae): evidence for host regulation. Journal of Insect Physiology,45:173-182.
    46. Harvey JA, Strand MR.2002. The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology,83:2349-2451.
    47. Harvey JA, van Dam NM, Gols R.2003. Interactions over four trophic levels:foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. Journal of Animal Ecology.72:529-531.
    48. Harvey JA, Vet LEM, Jiang NQ, Gols R.1998. Nutritional ecology of the interaction between larvae of the gregarious ectoparasitoid, Muscidifurax raptorellus (Hymenoptera:Pteromalidae), and their pupal host, Musca domestica (Diptera:Muscidae). Physiological Entomology,23:113-120.
    49. Harvey JA, Vet LEM, Witjes LMA, Bezemer TM.2005a. Remarkable similarity in body mass of a secondary hyperparasitoid Lysibia nana and its primary parasitoid host Cotesia glomerata emerging from cocoons of a comparable size. Archives of Insect Biochemistry and Physiology in press.
    50. Harvey JA, Witjes LMA, Wagenaar R.2004b. Development of hyperparasitoid wasp Lysibia nana (Hymenoptera:Ichneumonidae) in a multitrophic framework. Environmental Entomology,33: 1488-1496.
    51. Harvey JA, Strand MR.2002. The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology,83:2439-2451.
    52. Heimpel GE, Rosenheim JA.1998. Egg limitation in parasitoids:a review of the evidence and a case study. Biol. Cont,11:160-168.
    53. Honda JY, RF Luck,2001. Interactions between host attributes and wasp size:a laboratoryevalution of Trichogramma platneri as an augmentative biological control agent for two avocado pests. Entomologia Experimentalis et Applicata,100 (1):1-13.
    54. Jervis MA, Heimpel GE, Ferns PN, et al.2001. Life-history strategies in parasitoid wasps:a comparative analysis of'ovigeny'. Journal of Animal Ecology,70:442-458.
    55. King BH.2002. Offspring sex ratio and number in response to proportion of host sizes and ages in the parasitoid wasp Spalangia camerone. Environmental Entomology,31:505-508.
    56. King BH.1993. Sex ratio manipulation by parasitoid wasps. In:Wrensch DL, Ebert MA (eds) Evolution and diversity of sex ratio in insect and mites. Chapman and Hall, New York, pp 418-441.
    57. King BH.1987. Offspring sex ratios in parasitoid wasps. Quarterly Review of Biology,62:367-396.
    58. King BH.1990. Sex ratio manipulation by the parasitoid wasp Spalangia cameroni in response to host age:A test of the host-size model. Evolutionary Ecology,4:149-156.
    59. Kishi Y.1970. Difference in the sex ratio of the pine bark weevil parasite, Dolichomitus sp. (Hymenoptera:Ichneumonidae), emerging from different host species. Applied Entomology and Zoology,5:126-132.
    60. Kitana H.1986. The role of Apanteles glomeratus venom in the defensive response of its host, Pieris rapae crucivora. Journal of Insect Physiology,32:369-375.
    61. Klomp H, Teerink BJ.1967. The significance of oviposition rate in the egg parasite, Trichogramma embryophagum Htg. Archives Neerlandaises de Zoologie,17:350-375.
    62. Kochetova, NI.1978. Factors determining the sex ratio in some entomophagous hymenoptera. Entomological Review,57:1-5.
    63. Kouame KL, Mackauer M.1991. Influence of aphid size, age and behavior on host choice by the parasitoid wasp Ephedrus californicus:A test of host-size models. Oecologia,88:197-203.
    64. Li B, Mills N.2004. The influence of temperature on size as an indicator of host qulity for the development of a solitary koinobiont parasitoid. Entomologia Experimentalis et Applicata,110: 249-256.
    65. Mackauer M, Michaud JP, VOlkl W.1996. Host choice by Aphidiid parasitoids (Hymenoptera: Aphidiidae):Host recognition, host quality, and host value. The Canadian Entomologist,128: 959-980.
    66. Mackauer M, Sequeira R, Otte M.1997. Growth and development in parasitoid wasps:adaptation to variable host resources. In:Detter et all. (eds) Vertical food web interactions. Springer-Verlag, Berlin, pp 191-203.
    67. Mangel M, Heimpel GE.1998. Reproductive senescence and dynamic oviposition behaviour in insects. Evolutionary Ecology,12:871-879.
    68. Mangel M.1987. Oviposition site selection and clutch size in insects. Journal of Mathematical Biology,2:157-172.
    69. Mark A, Jervis, Jacintha Ellers, Jeffrey A, Harvey.2008. Resource acquisition, allocation, and Utilization in parasitoid reproductive strategies. Annu.Rev.Entomol,53:361-385.
    70. Mayhew PJ, Godfray HCJ.1997. Mixed sex allocation strategies in a parasitoid wasp. Oecologia, 110:218-221.
    71. Mickle CE.1924. An analysis of bimodal variation in size of the parasite Dasymutilla bioculata Cresson. Entomological News,35:236-242.
    72. Nakamatsu Y, Tanaka T.2004. Food resource use of hyperparasitoid Trichomalopsis apanteloctena (Hymenoptera:Pteromalidae), an idiobiotic ectoparasitoid. Annals of the Entomological Society of America,97:994-999.
    73. Nufio CR, papaj DR.2001. Host marking behavior in phytophagous insets and parasitoids. Entomologia Experimental et Applicata,99:273-293.
    74. Olson DM, Andow DA.1998. Larval crowding andadult nutrition effects on longevity and fecundity of female Trichogramma nubilale Ertle & Davis (Hymenoptera:Tricho-grammatidae). Environmental Entomology,27:508-514.
    75. Olson DM, Fadamiro H, Lundgren JG, Heimpel GE.2000. Effects of sugar-feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiological Entomology,25:17-26.
    76. Papaj DR.2000. Ovarian dynamics and host use. Annu. Rev. Entomol,45:423-448.
    77. Pennacchio F, Strand MR.2006. Evolution of developmental strategies in parasitoid Hymenoptera. Annual Review of Entomology,51:233-258.
    78. Price PW.1973. Reproductive strategies in parasitoid wasps. American Naturalist,107:684-693.
    79. Rivero A, West SA.2005. The costs and benefits of host feeding in parasitoids. Anim. Behav,69: 301-1293.
    80. Rivero A, West SA.2002. The physiological costs of being small in a parasitic wasp. Evolutionary
    Ecology Research,4:407-420.
    81. Salt G.1941. The effects of hosts upon their insect parasites. Biological Reviews,16:239-264.
    82. Salt G.1968. The resistance of insect parasitoids to the defence reactions of their hosts. Biology Review,43:200-232.
    83. Salt G.1961. Competition among insect parasitoids. Mechanisms in biological competition, Symposium of the Society for Experimental Biology,15:96-119.
    84. Salt G.1937. Experimental studies in insect Parasitism.V.Thesense used by Trichogramma todistinguish between parasitized and unparasitized hosts. Proc. Roy. Soc. London, B 122:57-75.
    85. Sandlan KP.1979. Host-feeding and its effects on the physiology and behavior of the ichneumonid parasitoid, Coccygomimus turionellae. Physiol. Entomol,4:383-92.
    86. Schmidt JM, Smith JJB.1987. Short interval time measurement by a parasitoid wasp. Science, 237:903-905.
    87. Sevenster JG, Ellers J, Driessen G.1998. An evolutionary argument for time limitation. Evolution, 52:1241-1244.
    88. Smilowitz Z.1974. Relationships between the parasitoid Hyposoter exiguae (Viereck) and cabbage looper, Trichoplusia ni (Hiibner):Evidence for endocrine involvement in successful parasitism. Annals of the Entomological SocietyAmerica,67:317-320.
    89. Stephens DW, Krebs JR.1986. Foraging theory. Princeton University Press, Princeton, N.J.
    90. Strand MR, Vinson SB.1985. In vitro culture of Trichogramma pretiosum on an artificial medium. Entomologia Experimentalis etApplicata,39:203-209.
    91. Strand MR.1986. The physiological interactions of parasiotoids with their hosts and their influence on reproductive strategies. In JK Wagge and D Greathead, eds, Insect Parasitoids, Academic Press, London, pp.97-136.
    92. Takagi M.1981. Ecology of Pteromalus puparum (Linne) (Hymenoptera:Pteromalidae), with particular reference to its effectiveness as a natural enemy of Papilio xuthus Linne (Lepidoptera: Papilionidae).Ph D thesis, Kyushu University.
    93. Takagi M.1985. The reproductive strategy of the gregarious parasitoid, Pteromalus puparum 1.Optimal number of eggs in a single host. Oecologia (Berlin),68:1-6.
    94. Takagi M.1986. The reproductive strategy of the gregarious parasitoid, Pteromalus puparum (Hymenoptera:Pteromalidae) 2.Host size discrimination and regulation of the number and sex ratio of progeny in a single host. Oecologia,70:321-325.
    95. Takashi O, Ceryngier P.2000. Host discrimination in Dinocampus coccinellae (Hymenoptera: Braconidae), a solitary parasitoid of coccinellid beetles. Applied Entomology and zoology, 35(4):535-540.
    96. Teder T, Tammmaru T, Pedmanson P.1999. Patterns of host use in solitary parasitoids (Hymenoptera:Ichneumonidae):field evidence from a homogeneous habitat. Ecography,22: 79-86.
    97. Traynor RE, Mayhew PJ.2005. A comparative study of body size and clutch size across the parasitoid Hymenoptera. Oikos,109:305-316.
    98. Trivers, RL, Willard DE.1973. Natural selection of parental ability to vary the sex ratio of offspring. Science,179:90-92.
    99. Ueno T.1997. Host age preference and sex allocation in the pupal parasitoid Itoplectis naranyae (Hymenoptera:Ichneumonidae). Annual of Entomological Society of America,87:592-598.
    100. Wagge JK, Godfray HCJ.1985. Reproductive strategies and population ecology of insect parasitoids. In R. M. Silbly and R. H. Smith, eds., Behavioural Ecology. (British Ecological Society Symposium 25), Oxford:Blackwell Scientific,449-470.
    101. Werren JH, Simbolotti G.1989. Combined effects of host quality and local mate competition on sex allocation in Lariophagus distinguendus. Evolutionary Ecology,3:203-213.
    102. West SA, Flanagan KE, Godfray HCJ.2001. Variable host quality, life-history invariants, and the reproductive strategy of a parasitoid wasp that produces single sex clutches. Behavioral Ecology,12: 577-583.
    103. West SA, Flanagan KE, Godfray HCJ.1996. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera:Eulophidae). Journal of Animal Ecology,65:631-639.
    104. Xu Q, Meng L, Li B, et al.2008. Influence of host-size variation on the development of a koinbiont aphid parasitoid, Lysiphlebus ambiguus Haliday (Braconidae, Hymeno-ptera). Bulletin of Entomological Research,98:389-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700