用户名: 密码: 验证码:
山西省代县碾子沟金红石矿床矿物学及年代学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金红石是一种重要的工业矿物,是提取金属钛的主要矿物原料之一。尽管我国钛资源非常丰富,但98%的钛资源来源于钛铁矿,源于金红石资源的含钛量仅占钛资源总量的2%。因此对于金红石矿产资源的研究,有很重要的实际意义。山西省代县金红石矿是我国一超大型金红石矿,目前探明总资源量达到369.67万吨。山西省代县金红石矿分布于恒山西段,矿体产于走向北西—南东的超基性岩带中,矿带长达11km。目前对于该矿的形成时代、所经历的演化历史、原岩属性等基础研究目前仍为空白。因此,对该区金红石矿的区域地质、矿物特征、年代学及应用前景进行研究,对于了解该金红石矿的形成历史、演化等有重要的理论意义,对于指导该矿的开发与利用具有重要的现实意义。
     山西代县金红石矿床的含矿岩石按岩石中矿物组成可以划分以下几种类型:阳起直闪岩、直闪阳起直闪岩、石榴石阳起直闪岩、十字石阳起直闪岩、阳起黑云直闪岩、阳起直闪岩、蓝晶石直闪岩、滑石阳起直闪岩、绿泥阳起直闪岩等。按金红石的颜色可以划分为两类,即红色金红石矿石、黑色金红石矿石。红色金红石矿一般位于矿体的上部,黑色金红石矿则位于矿体的下部。这两种矿石矿物组合上存在明显的不同,红色金红石矿中矿物组合为:直闪石+斜长石+金红石+镁角闪石+碱性长石,黑色金红石矿的矿物组合为:直闪石+金云母+绿帘石+金红石。根据岩相学观察,认为红色金红石矿中存在如下方向的反应:镁角闪石+碱性长石→直闪石+/-斜长石+/-金云母(?),斜长石很可能只是过渡相,反应最终将形成直闪石+金云母(?)。黑色金红石矿中的矿物组合似乎是进行得更为彻底的上述反应。红色金红石矿中金红石成分均匀,未见有钛铁矿的出溶现象,黑色金红石矿中金红石存在明显的厚度可大于2μm钛铁矿出溶叶片。我们认为正是这种出溶叶片导致上述两种矿石出现颜色差异。目前的资料表明该矿为角闪岩相的变质岩,但要确定该金红石矿的原岩属性还需要更为深入的研究。
     代县金红石矿床的岩石地球化学特征为:高TiO_2含量的样品中SiO_2含量主要位于基性岩区,MgO与TiO_2之间也无明显的相关关系,但当TiO_2含量大于2%时MgO的含量均大于16%。这一化学特征显示了与岩相学观察相一致的结果,即富含金红石的岩石为透闪石含量偏低的直闪岩类。
     从红色和黑色金红石矿中的锆石阴极发光图像来分析,尽管上述三个样品的矿物组合、金红石的颜色、产状及形成P—T条件有所不同,但其中锆石的特征及年龄结果却有惊人的相似,甚至完全相同。按形成的先后顺序至少存在Ⅰ期、Ⅱ期和Ⅲ期等3期锆石。第Ⅰ、Ⅱ期锆石阴极发光强度最暗,但具规则平直的韵律环带,Th/U比值绝大多数大于1.00,具备典型的岩浆锆石所具有的特征。这两期锆石的~(204)Pb校正的~(207)Pb/~(206)Pb年龄值几乎一致,加权平均值位于2.5Ga左右,可解释为金红石矿石的原岩形成年龄或者深熔年龄。第Ⅲ期锆石为边部或以脉状充填于第Ⅰ和和Ⅱ期锆石内的裂隙中,其阴极发光最亮,往往以以互补形态包裹早期锆石并多数以修复原锆石形态后以完好晶体形态出现,其U、Th含量较低,尤其是Th/U比值为最低,明显地低于0.50。加权平均值位于1.8 Ga左右,可解释为金红石矿石的变质年龄。
     另外,~(40)Ar/~(40)Ar阶段升温测年结果显示:红色矿石形成于ca 1.8 Ga,之后几乎没有经历过大于白云母封闭温度(350℃)的热事件;对于红-黑色金红石矿,在金红石矿形成之后ca 1.4 Ga发生过大于白云母封闭温度(350℃)又低于锆石的封闭温度的热事件。可能正是这一热事件导致金红石矿颜色发生变化。
As an important industry mineral, rutile is a major resource for metal titanium. In China, although Ti resource is very rich, Ti resources from rutile, however, take up only 2%, since 98% Ti resources are from ilmenite. Hence, it is very important to study rutile mineral resource. The Daixian rutile deposit, with reservoir of 3.6967 million tons, is one of the largest rutile deposits in China. Located on western part of the Henshan Mountain, the Daixian rutile bodies occur as 11km long belts within NE-strike ultramafic rock belt. Till now, data about forming age, evolution and protolith of the rutile deposit have not acquired. In this investigation, combined studies of petrography, mineralogy and geochronology were conducted on this deposit.
    According to mineral components, ores of the Daixian rutile deposit can be classified into the following types: actinolite- bearing anthothyllitite, actinolite-garnet- bearing anthothyllitite, staurolite- actinolite- bearing anthothyllitite, actinolite-biotite-bearing anthothyllitite, kyanite-bearing anthothyllitite, talc-actinolite- bearing anthothyllitite and chlorite-actinolite-bearing anthothyllitite, etc. According to color of rutile, ores of the Daixian rutile deposit, the second biggest rutile deposit in China, can be classified into two types: red and black ore; the red ore generally occurred at upper part of the deposit, overlying the black ore without distinct border. These two ores have contrasting mineral associations: anthothyllite (Ath) + plagioclase (PI) + rutile (Rut) + magnesiohornblende (Mhb) + alkline fledspar (Afs) for red ore and anthothyllite + phlogopite (Phi) + epsode (Ep) + Rutile for black ore. A chemical reaction was suggested as Mhb + Afs → Ath +/- PI +/- Phi (?) based on petrographical observations in red rutile ore, PI is possibly the transitional phase and complete reactants are Ath + Phi (?). The mineral associations of black ore are thus infeered to be more complete reactants of this reaction. As for rutiles, red rutiles are homogeneous in composition while black ones bear ilmenite exsolution lamellae of up to 2 μm in thickness. It is concluded that existence of the lamellae causes color difference between these two rutiles. The rutile-hosted rocks are metamorphic rocks with amphibolite facie, but more work should be done to discuss features of their protolith.
    Characteristics of zircons revealed by cathodeluminescence images from rutile ores with different colors are incredible similar. There are three stages upon formation sequence of the zircons. Stage-I and stage-ll zircons have oscillating zones with darker luminescence, Th/U ratios are mostly more than 1.00, indicative of igneous zircons. These zircons have nearly the same ~(204)Pb -corrected ~(207)Pb/~(206)Pb ages, with weighted mean age of ca 2.5Ga, interpreted as forming or anatexis age of protolith of the rutile ores. Stage-Ill zircons occur as rims surrounding or as veins crosscutting stage-l or/and II zircons, have lower U, Th and lowest Th/U ratios. They yield a weighted mean age of ca 1.8 Ga, interpreted as metamorphic age of the rutile ores.
    Moreover, step-heating ~(40)Ar/ ~(39)Ar geochronology on these rutile ores shows that the red-color rutile ores are stable without experiences of more than 350°C thermal events since ca 1.8 Ga, whereas the black-color rutile ores had undergone a thermal event of more than 350°C, but less than enclosure temperature of zircon at ca 1.4 Ga after metamorphised. It is inferred that the event at ca 1.4 Ga resulted in color changes of the rutile ores.
引文
[1] 陈光荣.(1995)山西省代县金红石矿资源及开发建议.中国地质,第8期,18-18.
    [2] 张云,管永诗,田玉珍.我国金红石矿资源开发利用现状.矿产保护与利用.2000,5.
    [3] 徐少康.(2001a)我国金红石矿床成因类型及成矿区带.化工矿产地质,3(1),11-17.
    [4] 张银波,吉建华.(1996)河南西峡金红石矿床地质特征及其成矿机制.化工矿产地质,7(3),219-225.
    [5] 黄建平,马东升,刘聪,王辉.(2002)苏北超高压变质带榴辉岩型金红石矿床及其成因.南京大学学报(自然科学),38,514-524.
    [6] 徐少康.(2006)大阜山金红石矿床含矿岩体的形成变化及其与成矿的关系.化工矿产地质,28(2),73-83.
    [7] 董月田,温春贵,郭梅凤.(2002)山西代县羊延寺—张山沟直闪岩矿床特征及其成因浅析.地质找矿论丛,12(4),257-261.
    [8] 雁门关超基性岩普查评价报告.山西省地质局区调队.1971-12。
    [9] 山西省雁门关基性—超基性岩带1/20万地质普查找矿报告.山西省地质局二一一地质队.1975-8.
    [10] 李沛光,赵福庆等.山西省代县碾子沟矿区金红石矿初步勘探报告.山西省地质局二一一地质队.1976-12.
    [11] 赵福庆,杨茂先.山西省代县洪塘、羊廷寺金红石矿区普查地质报告.山西省地质局二一一地质队.1990-12.
    [12] 梁眉龙,杨茂先等.山西代县碾子沟—羊廷寺矿区金红石矿区普查地质报告.山西省地质局二一一地质队.2003a-12.
    [13] 梁眉龙,杨茂先等.山西省代县碾子沟—羊廷寺矿区金红石矿普—详查报告.山西省地勘局二一一地质队.2003b-12.
    [14] 徐少康,刘力生.云连涛.邓小林.周希贤.(2000)碾子沟金红石矿床基本地质特征.化工矿产地质,9(3),139-148.
    [15] 徐少康,刘力生,云连涛,邓小林,周希贤.(2004)碾子沟金红石矿床蚀变作用的基本特征及其与成矿的关系.化工矿产地质.6(2).83-91.
    [16] 徐少康,刘力生,云连涛,邓小林.(2002)碾子沟金红石矿床变质作用特征及其与成矿的关系.化工矿产地质,24(3),48-58.
    [17] 贾绣明,李胜荣,庞尔成,施光海,吴振,李孔亮.(2007)山西代县金红石矿中两类矿石的岩相学及矿物学研究.现代地质,21(增),41-48.
    [18] 庞尔成.(2005)山西省代县金红石矿矿物学特征及选矿研究.硕士论文.中国地质大学(北京).
    [19] 彭大明.(2000)东秦岭钛资源成矿探讨.中国非金属矿工业导刊,18(6),32-34.
    [20] 秦新龙,杜杨松,田世洪等.(2002)安徽铜陵地区含磁黄铁矿-黄铜矿角闪石巨晶的首次发现及其地质意义.自然科学进展,12(8),834-838.
    [21] 叶凯.(2001)大别山-苏鲁超高压变质带的矿物学和岩石学研究进展.矿物岩石地球化学通报,20(3),141-148
    [22] 余金杰,王平安,黄建平,王辉,李晓峰.(2006)苏北高压-超高压变质带中成矿作用.地球科学,31,520-526.
    [23] 王濮等.系统矿物学(上).北京:地质出版社,1982,536-538,463-464.
    [24] 王濮等.系统矿物学(下).北京.地质出版社.1987.
    [25] 王濮等.系统矿物学(中).北京:地质出版社,1984,344-346,441-442,205.
    [26] 汪相,Kienast J.R.(2000)微粒暗色包体中锆石的形态演化及其制约机制.中国科学(D辑),30(2),180-187.
    [27] 王大志,张泽明,沈昆,赵旭东.(2006)南苏鲁超高压变质带东海地区富钛榴辉岩及金红石矿的成因.地质通报,25,839-849
    [28] 武显,董传万,周新民.(1999)平潭和漳州深成杂岩中斜长石捕虏晶与岩浆混合作用.岩石学报,15(2),286-290.
    [29] 徐惠长,龚述清,唐分配等.(2002)骑田岭岩体及其包体的地球化学特征和成矿意义.华南地质与矿产,(1),51-56.
    [30] 杨文采,杨午阳,程振炎.(2005)中国大陆科学钻探孔区深层含金红石榴辉岩矿体.岩石矿物学杂志,24,457-463.
    [31] 温同想.(1976)方城金红石矿.河南省地矿厅地调二队.非金属矿,12,56-57.
    [32] 张银波.(1994)河南西峡金红石矿床成矿特征.化工矿产地质,16(4),227-238.
    [33] 张云,管永诗,田玉珍(2000)我国金红石矿资源开发利用现状.矿产保护与利用,5,27-31.
    [34] 宋明春,严庆利.(2000)胶南地区伟德山超单元中闪长质包体的特征及岩浆成因.山东地质,16(4),16-21.
    [35] 刘源骏.(1996)再论金红石矿床在变质过程中的成矿机制.湖北地质,10(1),26-38.
    [36] 徐少康.(1999)八庙—青山金红石矿床地球化学特征.矿产与地质,13(5),293-298.
    [37] 刘永成,解玉月,林义恒.(2000)东昆仑中段白日其利岩体岩浆混合作用的初步研究.青海地质,9(1),26-32.
    [38] 朱惠娟,赵新奋.(1998)某特殊类型金红石矿工艺矿物学研究,矿产综合利用,6,37-39.
    [39] 周信国.(2000)会东地区的金红石矿.四川地质学报,20(1),62-63.
    [40] 李博昀,钱自强,周建民,徐少康,杨流平.(1998)秦岭东段金红石矿床成矿构造环境分析.化工矿产地质,20(1),17-24.
    [41] 邵济安,韩庆军,李惠民.(2000)华北克拉通早中生代麻粒岩捕虏体的发现.中国科学(D辑),30(增),148-153.
    [42] 邵济安.韩庆军,张履桥,牟保磊.(1999)内蒙古东部早古生代堆积杂岩捕虏体的发现.科学通报,44(5),478-485.
    [43] 邵济安,韩庆军,张履桥等.(1999)陆壳垂向增生的两种方式:以大兴安岭为例.岩石学报,15(4),600-606.
    [44] 邵济安,张任祜,韩庆军,张履桥,乔广生,桑海清.(2000)内蒙古喀喇沁堆晶岩捕虏体和寄主闪长岩的同位素年龄.地球化学,29(4),331-336.
    [45] 李大明,李齐,王瑜.(2001)一种新的K-Ar和~(40)Ar-~(39)Ar等时线:~(40)Ar/~(40)K-~(36)Ar/~(40)K和~(40)Ar/~(39)Ar-~(36)Ar/~(39)Ar等时线.地震地质,23,79-85.
    [46] 徐珏.陈毓川.王登红.余金杰.李纯杰.傅旭杰.陈振宇.(2004)中国大陆科学钻探主孔100~2000米超高压变质岩中的钛矿化.岩石学报,20,119-126.
    [47] 徐少康.(2001b)我国主要金红石矿床金红石自然颗粒产状及粒度特征.化工矿产地质,6(2).101-104
    [48] 徐少康.李博昀.(2002)柏树岗金红石矿床矿石类型及金红石特征.化工矿产地质,24(2),85-95.
    [49] 张银波(1994)河南西峡金红石矿床地质特征.矿物岩石,11(3),79-88
    [50] 岳铁兵,曹进成,魏德州,李迎国,王燕.(2005)细粒金红石矿重选抛尾工艺研究.化工矿物与加工,(1),17-19.
    [51] 张立飞,孙敏,冼伟胜.(1998)新疆西准噶尔发现紫苏花岗岩及其麻粒岩包体.地学前缘,5(3),132.
    [52] 孙凡,孟大维(2005)天然金红石微晶相变与形变的透射电镜研究.电子显微学报,24(4),320~320.
    [53] 李献华,李正祥,周汉文,等.(2002)皖南新元古代花岗岩的SHRIMP锆石U-Pb年代学、元素地球化学和Nd同位素研究.地质论评,48,8-16.
    [54] 刘敦一,耿元生,宋彪.(1997)冀西北地区晚太古代大陆地壳增生和再造—同位素年代学证据.地球学报,18:226-232.
    [55] 刘敦一,简平,张旗,等.(2003)内蒙古图林凯蛇绿岩中埃达克浅色岩SHRIMP U-Pb测年.地质学报,77(3):317~327
    [56] 陈文,李曙光,张彦,等.(2003)苏鲁超高压变质带东海青龙山高压正片麻岩中白云母的~(40)Ar/~(39)Ar年代学研究.地质论评,49(5),537-543.
    [57] 岳铁兵,曹进成,魏德州,李迎国,王燕.(2004)磨矿分级流程对细粒金红石矿选别的影响.化工矿物与加工,8,15-17.
    [58] 陈秀华,张宗华,杨德坤,韩晓熠,戴惠新(1999)会东微细粒金红石矿的矿石可选性研究新技术.云南冶金,28(6),5-8
    [59] 陈振宇,余金杰,徐珏,周剑雄.(2006)榴辉岩中金红石的微量元素电子探针分析,电子显微学报,25(增刊),295-296
    [60] 成中梅,路风香,李昌年等.(2003)河北寿王坟花岗闪长岩中暗色微粒岩石包体的成因.现代地质,17(1),20-26.
    [61] 程寄皋.刘安平.陈泽民.张曾.何先池.冀哲明.(1996)变质型金红石矿中钛铁矿制取人造金红石研究.非金属矿,111(03),15-17.
    [62] 杜杨松,Collerson K D,赵建新等.(1999)两广交界地区S型花岗岩中麻粒岩包体的特征和成因.岩石学报,15(2),309-314.
    [63] 樊华.(1997)东海金红石矿床地质特征及其综合利用研究.19(4),263-267.
    [64] 范洪海,王德滋,刘昌实等.(2001)江西相山潜火山岩中淬冷包体的发现及其成因机制探讨.地质学报,75(1),64-69.
    [65] 韩庆军,邵济安.(2000)内蒙古喀喇沁地区早中生代闪长岩中麻粒岩捕虏体矿物化学及变质温压条件.地球科学,25(1),21-27.
    [66] 何首文.(1994)金红石矿可选性研究.有色金属(选矿部分),05,18-20.
    [67] 江万,莫宣学,赵崇贺等.(1999)青藏高原因底斯带中段花岗岩类及其中铁镁质微粒包体地球化学特征.岩石学报,15(1),89-97.
    [68] 李博昀,钱自强,徐少康,周建民,杨流平.(1997)秦岭东段主要类型金红石矿床的稀土元素地球化学特征.化工矿产地质,19(1),26-31.
    [69] 吕庆田,侯增谦,赵金花等.(2003)深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态.中国科学(D辑),33(5):442-449
    [70] 潘兆橹.结晶学与矿物学(上、下).北京:地质出版社,1994.
    [71] Bromiley, G.D. Hilairet, N. (2005) Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine, 69(3), 345-4-358.
    [72] Bibikova, E. Skiold, T. Bogdanova, S. Gorbatschev, R. Slabunov, A. (2001) Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research, 105, 315-330.
    [73] Zhao, G.C., Cawood, P., Lu, L.Z. (1999) Petrology and P-T history of the Wutai amphibolites: implications for tectonic evolution of the Wutai complex, China. Precambraian Research, 93, 181-199.
    [74] Cherniak, D.J. Watson, E.B. Wark, D.A. (2007) Ti diffusion in quartz. Chemical Geology, 236, 65-74.
    [75] Shi, G.H., Zhu, R.X., Jiang, N., Shao, J.A. (2007) Two contrasting lavas: implications for lithospheric thinning beneath the northeastern North China craton. Geochemical Journal(under review)
    [76] Watson, E.B., Harrison, M.T. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295-304.
    [77] Monie, P., Chopin, C. (1991) ~(40)Ar/~(39)Ar dating in coesite-bearing and associated units of the Dora-Malta Massif, Western Alps. European Journal of Mineralogy, 3,239-262
    [78] Chen, W., Zhang, Y., Ji, Q., et al. (2002) The magmatism and deformation times of the Xidatan rock series, East Kunlun Mountain. Science in China, (B), 45 (Sup), 20-27.
    [79] Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. In McKibben M A, Shank Ⅲ W C, Ridley W I. eds. Application of Microanalytical Technique to Understanding Mineralizing Process. Reviews in Economic Geology, 7, 1-35
    [80] Xiong, X.L. (2006) Trace element evidence for growth of early continental crust by melting of futile-bearing hydrous eclogite. Geology, 34, 945-948.
    [81] Williams, I.S., Buick, I.S., Cartwright, I. (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reylolds Range, central Australia. Journal of Metamorphic Geology, 14, 29-47.
    [82] Xiong, X.L. Adam, T, J. Green, T.H. (2005) Rutile stability and futile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218, 339-359
    [83] Wingate, M.T.D., Compston, W. (2000) Crystal orientation effects during ion microprobe U-Pb analysis of Baddeleyite. Chemical Geology, 168: 75-97.
    [84] Yoder, H.S. and Eugster, H.P. (1954) Phlogopite synthesis and stability range. Geochimica et Cosmochimica Acta, 6, 157-168
    [85] Dunlap, W.J. (1997) Neocrystallization or cooling? ~(40)Ar/~(39)Ar ages of white micas from low-grade mylonites. Chemical Geology, 143, 181-203.
    [86] El-Kammar, A.M. El-Hazik, N. Mahdi, M. Aly, N. (1997) Geochemistry of accessory minerals associated with radioactive mineralisation in the central Eastern Desert, Egypt. Journal of African Earth Sciences, 25, 237-252.
    [87] Li, Q.L., Li, S.G., Zheng, Y.F., Li, H.M., Massorme, H.J., Wang, Q.C. (2003) A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: a new constraint on the cooling history. Chemical Geology, 200,255-265.
    [88] Liu, D.Y., Jian, P, Kroner A. Xu, S.T. (2006) Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters, 250, 650—666.
    [89] Liu, D.Y., Nutman, A. P., Compston, W., et al. (1992) Remnants of>3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20, 339-342.
    [90] Steiger, R.H., Jager, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359-362.
    [91] Stendal, H., Toteu, S.F., Frei, R., Penaye, J., Njel, U.O., Bassahak, J., Nni, J., Kankeu B., Ngako, V. Hell, J.V. (2006) Derivation of detrital rutile in the Yaounde region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). Journal of African Earth Sciences, 44, 443-458.
    [92] Stensrud, H.L. Gresens, R.L. (1973)A model for phlogopite development in low magnesium rocks. Lithos, 91-102
    [93] Wang, R.C. Wang, D.Z. Zhao, G.T. Lu, J.J. Chen, X.M.' Xu, S.J. (2001) Accessory Mineral Record of Magma-Fluid Interaction in the Laoshan I-and A-Type Granitic Complex, Eastern China. Physics and Chemistry of Earth (A), 26, 835-849.
    [94] Wang, L.G, Qiu, Y.M., McNaughton, N.J., Groves, D.I., Luo, Z.K., Huang, J.Z., Miao, L.C., Liu, Y.K. (1998) Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13:275-291.
    [95] Wan, Y.S., Wilde, S.A., Liu, D.Y., Yang, C.X., Song, B, Yin, X.Y. (2006) Further evidence for -1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research, 9, 189-197
    [96] Choukroun, M. O'Reilly, S.Y. Griffin, W.L. Pearson, N.J. Dawson, J.B. (2005) Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology, 33,45-48.
    [97] Collins, W.J., Richards, S.R., Healy, B.E., Ellison, P.I. (2000) Origin of heterogeneous mafic enclaves by two stage hybridization in magma conduits (dykes) below and in granitic magma chambers. Transactions of the Royal Society of Edingburgh: Earth Sciences, 91, 27-45.
    [98] Compston, W., Pidgeon, R.T., Jack, H. (1986) Evidence for more very old detrital zircons in Western Australia. Nature, 321: 766-769.
    [99] Compston, W., Williams, I.S., Kirschvink, J.L., et al. (1992) Zircon U-Pb ages for the Early Cambrian time scale. Journal of Geological Society London, 149, 171 -184.
    
    [100] Compston, W., Williams, I.S., Mayer, C. (1984) U-Pb geochronology of zircons from Lunar Breccia 73217 using a Sensitive High Resolution Ion Microprobe. Proc. XIV Lunar Planetary Science Conference. Journal of Geophysics Research, 89, 525-534.
    [101] Dobrzhinetskaya, L. Bozhilov, K.N. Green, H.W. (1999) The solubility of TiO_2 in olivine: implications for the mantle wedge environment. Chemical Geology, 160, 357-370.
    [102] Froude, D.O., Ireland, T.R., Kinny, P.D., et al. (1983) Ion microprobe identification of 4,100-4,200-Myr-old terrestrial zircons. Nature, 304,616-618.
    [103] Gomez-Pugnaire, M.T. Karsten, L. Lopez Sanchez-Vizcaino, V. (1997) Phase relationships and P-T conditions of coexisting eclogite-blueschists and their transformation to greenschist-facies rocks in the Nerkau Complex (Northern Urals). Tectonophysics, 276, 195-216.
    [104] Grey, I.E. Li, C. Reid, A.F. (1974) A thermodynamic study of iron in reduced rutile. Journal of Solid State Chemistry, 11(2), 120-127
    [105] Kalfoun, F. Ionov, D. Merlet, C. (2002) HFSE residence and Nb/Ta ratios in metasomatised rutile-bearing mantle peridotites. Earth and Planetary Science Letters, 199, 49-65.
    [106] Kinny, P.D. (1986) 3820 Ma zircons from a tonalite Amitsoq gneiss in the Godthab district of southern West Greeland. Earth and Planetary Science Letters, 79, 337-347.
    
    [107] Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.
    [108] Kroner, A., Wilde, S.A., Li, J.H. Wang, K. (2005) Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24, 577-595
    [109] Leake, B.E. et al. (1997) Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82,1019-1037
    [110] Liu, L.G. (1975) High-pressure phase transformations and compressions of ilmenite and rutile, Experimental results. Physics of the Earth and Planetary Interiors, 10, 167-176
    [111] Meng, D.W. Wu, X.L. Meng, X. Han, Y.J. Li, D.X. (2004) Domain structures in rutile in ultrahigh-pressure metamorphic rocks from Dabie Mountains, China. Micron, 35, 441-445.
    [112] Miao, L.C., Qiu, Y.M., McNaughton, N.J. et al. (2002) SHRIMP U-Pb zircon geochronology of granitoids from Dongping Area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geology Reviews, 19, 187-204.
    [113] Muller, W. (2003) Strengthening the link between geochronology, textures and petrology. Earth and Planetary Science Letters, 206,237-251.
    [114] Nutman, A.P., Bennett, V.C., Friend, C.R.L., Norman, M.D. (1999) Meta-igneous (non-gneissic) tonalities and quartz-diorites from an extensive ca. 3800Ma terrain south of the Isua supracrustal belt,southern West Greenland: constraints on early crust formation. Contribution to Mineralogy and Petrology, 137, 364-388.
    [115] Okrusch, M. Hock, R. Schussler, U. Brummer, A. Baier, M. Theisinger, H. (2003) Intergrown niobian rutile phases with Sc- and W-rich ferrocolumbite: An electron-microprobe and Rietveld study. American Mineralogist, 88, 986-995.
    [116] O'Neill, H.S.C. Pownceby, M.I., Wall. V.J. (1988) Ilmenite-rutile-iron and ulvospinel- ilmenite- iron equilibria and the thermochemistry of ilmenite (FeTiO_3) and ulvospinel (Fe_2TiO_4). Geochimica et Cosmochimica Acta, 52, 2065-2072
    [117] Pan, Y.M., Fleet, M.E., MacRae, N.D. (1993) Late alteration in titanite (CaTiSiO_5): Redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochimica et Cosmochimica Acta, 57, 355-367
    
    [118] Rice, C. M. Darke, K. E. Still J. W. (1998) Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia. Mineralogical Magazine, 62(3), 421-429.
    [119] Robert. J.L. (1976) Phlogopite solid solutions in the system K_2O-MgO-Al_2O_3-SiO_2-H_2O. Chemical Geology, 17, 195-212
    [120] Robert. J.L. (1976) Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17,213-227
    [121] Schiotte, L., Compston, W., Bridgwater, D. (1989) Ion Probe U-Th-Pb dating of polymetamorphic or thogneisses for northern Labrador, Canada. Canadian Journal of Earth Sciences, 26, 1533-1556.
    [122] Silva, M.M.V.G, Neiva, A.M.R., Whitehouse, M.J. (2000) Geochemistry of enclaves and host granites from the Nelas area, Central Portugal. Lithos, 50(1-3), 153 -170.
    
    [123] Song, B., Nutman, A.P., Liu, D.Y., Wu, J.H. (1996) 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, Northeast China Precambrain Research, 78, 79-94.
    [124] Treloar, P.J., Rex, D.C., Guise, P.G et al. (1989) K-Ar and ~(40)Ar-~(39)Ar geochronology of the Himalayan Collision in NW Pakistan: constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics, 8, 881-909.
    [125] Vavra, G, Gebauer, D., Schmid, R., William, C. (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contribution to Mineralogy and Petrology, 122, 337-358.
    [126] Vry, J.K. Baker, J.A. (2006) LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70, 1807-1820.
    [127] Waight, T.E., Dean, A.A,, Maas, R., Nicholls, I.A. (2000) Sr and Nd isotopic investigations towards the origin of feldspar megacrysts in microgranular enclaves in two I-type plutons of the Lachlan fold belt, Southeast Australia. Australian Journal of Earth Sciences, 47(6), 1105 - 1112.
    [128] Watson, E.B. Wark, D.A. Thomas, J.B. (2006) Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413-433.
    
    [129] Wilde, S.A., Cawood, P.A., Wang, K.Y., Nemchin, A.A. (2005) Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 245, 97-613
    [130] Wilde, S.A., Youssef, K. (2001) SHRIMP U-Pb dating of detrital zircons from the Hammamat Group at Gebel Umm Tawat, north-eastern desert, Egypt. Gondwana Research, 4, 202-206.
    [131] Yui, T.F. Shen, P. Liu, H.H. (2001) Titanite inclusions in altered biotite from granitoids of Taiwan: microstructures and origins. Journal of Asian Earth Sciences, 19, 165-175.
    [132] Zack, T. Kronz, A. Foley, S.F. Rivers, T. (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184, 97-122.
    
    [133] Zack, T. von Eynatten, H. Kronz, A. (2004) Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171, 37-58.
    [134] Zhang, R.Y., Zhai, S.M., Fei ,Y.W, Liou, J.G (2003)Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet. Earth and Planetary Science Letters, 216, 591 -601.
    [135] Zhang, Z.M. Xu, Z.Q. Xu, H.F. (2000) Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China. Lithos, 52, 35-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700