用户名: 密码: 验证码:
邻近施工对天津既有地铁隧道的影响及保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对邻近运营地铁线路施工中所涉及到的基坑开挖、地表荷载、承压含水层减压降水扰动方式,对既有地铁结构的影响机理及保护问题,采用现场实测与数值模拟相结合的研究方法,进行研究。本文的主要内容及结论如下:
     (1)结合西青道下沉隧道基坑超近距离上跨运营地铁1号线既有隧道箱体结构的工程实例,分析基坑开挖对下卧隧道箱体变形的影响,对其过大的箱体结构隆沉与变形缝处的差异变形,有针对性地提出在隧道箱体两侧的土体加固、浇筑底板与抗浮桩形成“保护箍”以及分块开挖分块堆载回压的变形控制措施,并对相应的施工参数进行优化,为施工设计提供依据。根据现场实测,对实际基坑开挖过程进行动态模拟,并在此基础上,通过数值模拟对比分析,评价各项既要箱体变形控制措施的合理性与有效性。
     (2)对地铁1号线西站站车站与隧道连接部在地表荷载作用下产生的沉降进行现场监测与有限元分析,由于变形缝的存在,结构沉降表现为非连续性。在此基础上分析地表荷载位置、大小、面积、结构埋深以及是否进行变形缝处土体预加固因素对于存在变形缝的非连续性结构变形的影响,研究表明:变形缝削弱结构刚度,加剧结构沉降及结构间的差异变形,不同荷载位置下结构的沉降特点也各不相同。
     (3)通过某抽水试验的模拟,反演土体参数。在保证参数可行的基础上进行承压含水层降水对既有盾构隧道影响的仿真模拟,分析隧道周围土体应力场、隧道自身变形、横断面内力与纵向变形,研究其影响机理,指出:隧道周围土体在减压降水时,竖向总应力几乎不变,水平向总应力减小,相当于在隧道原有荷载基础上,隧道两侧受到附加拉力,导致隧道压扁加剧,对管片横断面受力不利。并对既有隧道相对承压含水层位置、隧道与减压井净距、承压含水层埋深、承压含水层不同程度截断因素的影响进行参数分析,表明:当隧道部分或全部位于承压含水层中时,减压降水对隧道横断面内力与纵向变形影响较大;当隧道位于隔水层中时,减压降水对隧道横截面内力影响较小,隧道横断面有扭转趋势,但当隧道位于上部隔水层中时,隧道随地层产生较大沉降,对隧道纵向变形不利。当既有隧道与减压井净距较小时,不能由于两者间被地下连续墙截断而忽略减压降水对隧道纵向变形的影响。
This dissertation researched the influence mechanism of some related disturbance types, e.g. excavation, ground loading and dewatering of confined aquifer on the existing metro structure and corresponding protective measures. The main works and conclusions are summarized as follows:
     (1) According to the practice project that the open cut of Xiqing Road Tunnel was constructed closely upon the existing tunnel of the operating Metro Line1, ABAQUS is applied to analyze the effect of excavation on the existing underlying metro tunnel. In order to control the excessive upheave of the tunnel and differential displacements at the deformation joints, some deformation control measures were proposed specially, including soil improvement alongside the existing tunnel, formation of protection hoop by slab and anti-floating piles, excavation in sections and timely suppression by heaped load, and the corresponding construction parameters were optimized. These results can provide evidence for the optimization of the construction design. The practical construction procedure was simulated dynamically based on the field monitoring data. Further on, the reasonability and the effectiveness of the deformation control measures mentioned above were analyzed by contrast analysis using numerical simulations.
     (2) The settlement induced by ground loading was monitored in the West Railway Station subway station of the Metro Line1. Besides, the deformation characteristics of structure were analyzed by field measurements and finite element method. The results show that the settlement curve is discontinuous at the structural deformation joint. Furthermore, the effects of many factors, e.g. the loading location, magnitude, area, buried depth of the structure and weather to pre-reinforce the soil around the deformation joints on the deformation of discontinuous metro station boxes were studied. It is found that the structural deformation joint can weaken the structure stiffness and increase the settlement and differential settlement of the structure.
     (3) Based on a certain pumping test, the soil parameters were derived by inverse analysis. On the basis of ensuring the feasibility of parameters, simulation was performed to find out the effect of dewatering of confined aquifer on the existing shield tunnel, and afterwards, the stress field of soil around the tunnel, the sectional distortion and internal forces and the longitudinal deformation of the tunnel were analyzed to study their influencing mechanisms. The results show that during the process of depressurization dewatering, the vertical total stress is almost constant whereas the horizontal total stress decreases. This phenomenon has the same effect with that both sides of the tunnel are subjected to tensile force, and leads to the aggravated flattening of tunnel, which has adverse effects on the load carrying capacity of tunnel section segments. On this basis, the research investigated the influence factors such as the position of the existing tunnel related to the artesian aquifer, the distance between tunnel and well, buried depth of the artesian aquifer and insertion depth of water-stop curtain in the artesian aquifer. It is indicated that dewatering has higher impact on the force of cross section and the longitudinal deformation of tunnel while the tunnel is located in the confined aquifer partly or completely. And dewatering has lower impact on the force of cross section but can cause the cross section have the tendency of twisting, while the tunnel is located in the aquiclude. However, the tunnel has a greater settlement along with the stratum while the tunnel is located in the upper aquiclude, which is adverse for the longitudinal deformation of tunnel. It should be pointed out that when the tunnel is close to the dewatering well, even there is a diaphragm wall cutting off the confined aquifer, the influence of dewatering on the longitudinal deformation cannot be neglected.
引文
[1] D. Burford. Heave of tunnels beneath the Shell Centre, London,1956-1986[J].Geotechnique,1986,38(1):155-157.
    [2] J. B. Burlan, J. R. Standing, F. M. Jardine. Building response to tunneling, casestudies from construction of the Jubilee Line Extension, London, and Vol. I:Projects and Methods [M]. London, Thomas Telford Publishing,2001.
    [3]戴宏伟,陈仁朋,陈云敏.地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J].岩土工程学报,2006,28(3):312-316.
    [4]小玉正文,杉田文隆,下田勝彦.シールドトンネルに近接した大深度ソイルセメント壁の施工[A].土木学会第57回年次学術講演会(平成14年9月)[C]:261-262.
    [5]既設トンネル近接施工对策マニユアル.铁道综合技术研究所.平成8年9月.
    [6]俞鑫风,王健.地铁隧道近接施工相互影响研究现状及其思考[J].北京建筑工程学院学报,2008,24(3):30-34.
    [7] C. Y. Ou, J. T. Liao.Building response and ground movements induced by a deepexcavation [J]. Geotechnique,2000:209-220.
    [8]吉茂杰,刘国彬.开挖卸荷引起地铁隧道位移预测方法[J].同济大学学报,2001,29(5):531-535.
    [9]李志高,刘浩,刘国彬等.基坑开挖引起下卧隧道位移的实测分析[J].地下空间与工程学报,2005,1(4):619-623.
    [10]黄爱军.基坑下方运营隧道卸载回弹的力学机理分析[D].上海:上海交通大学,2008.
    [11] A.J. Huang, D.Y. Wang, Z. X. Wang. Rebound effects of running tunnelsunderneath an excavation [J]. Tunneling and Underground Space Technology,2006,21(3-4):399-405.
    [12] L. T. Chen, H. G. Poulos, N. Loganathan. Pile responses caused by tunneling [J].Joumal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(3):207-215.
    [13]林永国.地铁隧道纵向变形结构性能研究[D].上海:同济大学,2001.
    [14]徐凌.软土盾构隧道纵向沉降研究[D].上海:同济大学,2005.
    [15]陈郁.基坑开挖引起下卧隧道隆起的研究分析[D].上海:同济大学,2005.
    [16]刘浩.地下建构筑物上方卸荷的影响研究[D].上海:同济大学,2005.
    [17]张治国,黄茂松,王卫东.邻近开挖对既有软土隧道的影响[J].岩土力学,2009,30(5):1373-1380.
    [18] R. Mindlin Force at a point in the interior of a semi-infinite soil [J]. Physies,1936,7(5):195-202.
    [19]郑刚.高等基础工程学[M].北京,机械工业出版社,2007.
    [20] A. Klar, T. E. B. Vorster, K. Soga, et al. Soil-pipe interaction due to tunnelling:comparison between Winkler and elastic continuum solutions [J]. Geotechnique,2005,55(6):461-466.
    [21] T. E. B. Vorster, A. Klar, K. Soga, et al. Estimating the effects of tunnelling onexisting pipelines [J]. Journal of Geotechnical and GeoenvironmentalEngineering,2005,131(11):1399-1410.
    [22]青二春.地铁隧道上方大面积卸载下的变形及控制模式研究[D].上海:同济大学,2007.
    [23]杨栋.地下工程开挖对临近隧道变形的影响分析[D].上海:同济大学,2008.
    [24]张强.开挖卸荷下既有地铁隧道的竖向变形及其控制研究[D].北京:北京交通大学,2008.
    [25] J. F. Zhang, J. J. Chen, J. H. Wang et al. Prediction of tunnel displacementinduced by adjacent excavation in soft soil [J]. Tunnelling and UndergroundSpace Technology,2013,36(6):24-33.
    [26] A. P. S. Selvadurai. Elastic Analysis of soil-foundation Interaction [M]. NewYork: Elsevier Scientific Publishing Co,1979
    [27] O. Kusakabe, T. Kimura, N. Takagi, et al. Centrifuge model tests on theinfluence of axisymmetric excavation on buried pipes [A]. Ground Movementsand Structures, Proceedings of the3rd International Conference [C],1985,133-128.
    [28] T. E. B. Vorster. The effects of Tunnelling on buried pipes [D]. UK: Universityof Cambridge,2005.
    [29] T. E. B. Vorster, R. J. Mair, K. SOGA, et al. Centrifuge modeling of the effect oftunneling on buried pipelines: mechanisms observed [A]. Proceedings of5thInternational Symposium on Geotechnical Aspects of Underground Constructionin Soft Ground [C], Amsterdam, Netherlands:2005:131-136.
    [30] A. M. Marshall, R. J. Mair. Centrifuge modeling to investigate soil–structureinteraction mechanisms resulting from tunnel construction beneath buriedpipelines [A]. The6th International Symposium TC28, Geotechnical Aspects ofUnderground Construction in Soft Ground [C], Shanghai, China,2008:547-55.
    [31] G. W. Byun, D. G. Kim, S. D. Lee. Behavior of the ground in rectangularlycrossed area due to tunnel excavation under the existing tunnel [J]. Tunnellingand Underground Space Technology,2006,21(1):1-6.
    [32] G. Zheng, S. W. Wei, C.W.W. Ng, et al. Centrifuge modeling of the influence ofbasement excavation on existing tunnel [A].7th International Conference onPhysical Modeling in geotechnics [C], Zurich, Switzerland,2010:523-527.
    [33] K. T. Kavanagh, R. W. Clough. Finite element application in the characterizationof elastic solid [J]. International Journal of Solids and Structures,1972,7(1):11~23.
    [34] H. A. D. Kirsten. Determination of rock mass elastic modules by back analysisof deformation measurement [A]. Proceedings of Symposium on Exploration forRock Eng [C], Johannesburg,1976:1154~1160.
    [35] G. Maier, L. Jurina, K. Podolak. On model identification problem in rockmechanics [A]. Proceedings of Symposium on the Geotechnics of StructurallyComplex Formations [C], Capri,1977:257~261.
    [36] K. Kovari, Ch. Amstad, P. Fritz. Integrated measuring technique for rockpressure determination [A]. Proceedings International Symposium on FieldMeasurements in Rock Mechanics [C], Zurich,1977,1:533~538.
    [37] K. Y. Lo, J. A. Ramsay. The effect of construction on existing subway tunnels-acase study from Toronto [J]. Tunnels and Deep Space,1991,6(3):287-297.
    [38] J. N. Shirlaw, S. K. Tham-Lee, F. K. Wong et al. Planning the monitoringrequired to confirm the movement and rotation of tunnels and trackwork due toexcavation and tunneling [A]. Proceedings of the International Conference onTunnelsand Underground Structures [C], SingaPore,2000:489-494.
    [39] J. S. Sharma, A. M. Hefny, J. Zhao, C. W. Chan. Effect of large excavation ondeformation of adjacent MRT tunnels [J]. Tunnelling and Underground SpaceTechnology,2001,16(2):93-98.
    [40] C. T. Chang, C. W. Sun, S.W. Duann, R. N. Hwang. Response of a Taipei rapidtransit system (TRTS) tunnel to adjacent excavation [J]. Tunnelling andUnderground Space Technology,2001,16(3):151-158.
    [41]前田勝幸,櫟田正人,野澤健二,栗山廣志.近接工事による都市トンネルの変位特性に関する一考察[A].土木学会第59回年次学術講演会(平成16年9月)[C]:345-346.
    [42]岡田龍二.都市部近接施工とその対策:シールドトンネル直上での開削工事―副都心線新宿三丁目駅―[J].基礎工,2009,37(2):80-84.
    [43]况龙川.深基坑施工对地铁隧道的影响[J].岩土工程学报,2000,22(3):284-287.
    [44] Z. F. Hu, Z. Q. Yue, J. Zhou, et al. Design and construction of a deepexcavation in soft soils adjacent to the Shanghai Metro tunnels [J]. CanadianGeotechnical Journal,2003,40(5):933-948.
    [45]王卫东,吴江斌,翁其平.基坑开挖卸荷对地铁区间隧道影响的数值分析[J].岩土力学,2004,25(S2):251-255.
    [46] J. Jia. Study of controlling measures on the deflection of metro tunnels due tooverlying excavation [A]. Underground Construction and Ground Movement-Proceedings of the GeoShanghai Conference [C], Shanghai,2006,155:158-163.
    [47]刘小建,贾坚.地铁隧道上方基坑卸荷回弹及控制的试验和探讨[J].地下工程与隧道,2008,2:41-44.
    [48]汪小兵,贾坚.深基坑开挖对既有地铁隧道的影响分析及控制措施[J].施工技术,2009,5:52-57.
    [49]沈辉,罗先启,李野等.深基坑施工对地铁车站影响的数值仿真分析[J].地下空间与工程学报,2011,7(5):1018-1023.
    [50] Y. Tsui, Y. M. Cheng A fundamental study of braced excavation construction [J].Computers and Geotechnics,1989,8(1):39-64.
    [51] G. Oettl, R. F. Stark, G. Hofstetter. A comparison of elastic–plastic soil modelsfor2D FE analyses of tunnelling [J]. Computers and Geotechnics,1998,23(1):19-38.
    [52] Marta Dolezalova. Tunnel complex unloaded by a deep excavation [J].Computers and Geotechnics,2001,28(6):469-493.
    [53] M. Abdel-Meguid, R. K. Rowe, K. Y. Lo.3D effects of surface construction overexisting subway tunnels [J]. The International Journal of Geomechanics,2(4):447-469.
    [54] G. Zheng, S. W. Wei. Numerical analyses of influence of overlying pitexcavation on existing tunnels [J]. Journal of Central South University ofTechnology,2008,15(S2):69-75.
    [55]高盟,高广运,冯世进,等.基坑开挖引起紧贴运营地铁车站的变形控制研究[J].岩土工程学报,2008,30(6):818-823.
    [56] X. L. Yu, Q. S. Yan, W. F. Wang. Analysis and study of safety influence offoundation pit excavation on adjacent existing subway structure [A].10thInternational Conference of Chinese Transportation Professionals-IntegratedTransportation Systems: Green, Intelligent, Reliable [C], ICCTP, Beijing,2010,382:2829-2838.
    [57] H. L. Liu, P. Li, J. Y. Liu. Numerical investigation of underlying tunnel heaveduring a new tunnel construction [J]. Tunnelling and Underground SpaceTechnology,2011,26(2):276-283.
    [58]黄宏伟,黄栩, Schweiger F. Helmut.基坑开挖对下卧运营盾构隧道影响的数值模拟研究[J].土木工程学报,2012,45(3):182-189.
    [59] Xu Huang, F. H. Schweiger. Study on influence of deep excavations on existingtunnels using PLAXIS-GiD [J]. Plaxis bulletin,2010,4:6-9.
    [60] X. Huang, H. F. Schweiger, H. W. Huang. Numerical study on influence of deepexcavations on existing shield tunnels[A]. Proceedings of the2nd InternationalConference on Computational Methods in Tunnelling[C], Bochum, Germany,2009:241-248.
    [61]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,17(3):239-247.
    [62]房营光,陈尤雯,黄文兴.地面超载条件下浅埋双圆形隧道围岩的粘弹性分析[J].世界隧道,1999,2:8-13.
    [63]戴宏伟,陈仁朋,陈云敏.地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J].岩土工程学报,2006,28(3):312-316.
    [64]王涛,李浩,徐日庆.上方大面积加(卸)载引起盾构隧道的变形分析[J].现代交通技术,2008,5(3):29-31.
    [65] Shu-cai Li, Ming-bin Wang. Elastic analysis of stress–displacement field for alined circular tunnel at great depth due to ground loads and internal pressure [J].Tunnelling and Underground Space Technology,2008,23(6):609–617.
    [66]张银屏,顾超瑜.地面车辆荷载对浅埋隧道影响的分析方法[J].中国市政工程,2008, S1:76-77.
    [67]刘明,黄茂松,柳艳华.车振荷载引起的软土越江隧道长期沉降分析[J].岩土工程学报,2009,31(11):1703-1709.
    [68]符金库,梁发云,李彦初.基于布西奈斯克解的堆载土体水平位移解答[J].结构工程师,2012,28(2):106-110.
    [69]陆文超.地面荷载下浅埋隧道围岩应力的复变函数解法[J].江南大学学报(自然科学版),2012,28(2):409-413.
    [70] S. W. Lee, G. J. Bae, C. S. Choi, et al. Reduced-scale model tests for cut andcover tunnels subjected to eccentric load [J]. Tunnelling and Underground SpaceTechnology,2004,19(4):481.
    [71]杨果.偏心荷载作用下明挖隧道缩尺模型测试研究[J].四川建筑,2012,32(3):115-117.
    [72]吴庆.地面堆载对既有盾构隧道结构的影响研究[D].上海:上海交通大学,2012.
    [73] J. Mecsi. Ground deformations resulting from shield tunneling in Budapest [A].Geotechnical engineering in soft ground [C], Shanghai,2001:138-141.
    [74] H. Mashimo, T. Ishimura. Evaluation ofthe load on shield tunnel lining in gravel[J]. Tunnelling and Underground Space Technology,2003,18(2):233-241.
    [75]肖洪钧.某矿石场主电缆隧道裂缝分析及处理[J].工业建筑,1995,25(1):51-53.
    [76]戴宏伟,陈仁朋,陈云敏.地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J].岩土工程学报,2006,28(3):312-316.
    [77]吴健,王屹峰,刘开富等.大面积堆载下地下构筑物性状研究[J].岩土工程学报,2008,30(9):1343-1348.
    [78] X. L. Sun, H. Z. Wang.3D FEM analysis of horizontal jet grouting prelining in atunnel under asymmetric loads [J]. Tunnelling and Underground SpaceTechnology,2006,21(3):366-367.
    [79]吴健,王屹峰,刘开富等.大面积堆载下地下构筑物性状研究[J].岩土工程学报,2008,30(9):1343-1348.
    [80]杨赳,庄丽,宫全美.铁路列车荷载对下穿盾构隧道结构的影响[J].城市轨道交通研究.2010,(3):23-27.
    [81]张宇旭,占鹦.某地铁区间隧道在地面超载作用下的沉降分析[J].黄石理工学院学报,2011,27(3):37-40.
    [82] DGJ08-109-2004.城市轨道交通设计规范[S].2004.
    [83] K. Terzaghi. Theoretical soil mechanics [M]. New York: Wiley,1943.
    [84] M. A. Biot. Theory of stability and consolidation of a porous medium underinitial stress [J]. Journal Mathematical Mechanics,1963,12:521-541.
    [85] D. C. Helm. One-dimensional simulation of aquifer system compaction nearPixel, California-1: constant parameters [J].Water Resources Research,1975,11(3):465-478.
    [86] D. C. Helm. Three-dimensional Consolidation Theory in Terms of the Velocityof Solids [J]. Geoteclmique,1987,37(3):369-392.
    [87] C. Chen, S. Pei, J. Jiao Land subsidence caused bygroundwater exploitation inSuzhou City [J]. Hydrogeology Journal,2003,11:275-287.
    [88]薛禹群,张云,叶淑君,等.中国地面沉降及其需要解决的几个问题[J].第四纪研究,2003,23(6):587-593.
    [89]仵彦卿,张建山,李哲.基坑抽水引起周围地面沉降机理及防治措施[J].岩土力学,2005,26(10):1582-1586.
    [90]李文广.邻近基坑降水对运营地铁隧道纵向变形的影响研究[D].上海:同济大学,2008.
    [91]陈伟.紧邻多条地铁隧道的超深基坑承压水降水技术分析[J].结构工程师,2010,26(4):85-90.
    [92] J. F. Lu, Y. Y. Jia, G. Y. Cui. Influence of Newly Built Tunnel of High-SpeedRailway Dewatering Excavation on Existing Tunnel [A]. ICTE [C],2011:1549-1554.
    [93]贾媛媛,路军富,魏龙海等.隧道降水施工对既有市政管线隧道影响研究[J].水文地质工程地质,2010,37(6):43-49.
    [94]瞿成松.邻近多条地铁的基坑降水技术[J].探矿工程,2011,38(2):29-35.
    [95]罗富荣,刘赪炜,韩煊.地下水水位上升对地铁隧道结构的影响分析[J].中国铁道科学,2011,32(1):81-85.
    [96]吴怀娜,许烨霜,沈水龙等.软土地区基坑降水对下方越江隧道的影响[J].上海交通大学学报,2012,46(1):53-57.
    [97]吕少伟.上海地铁车站施工周围土体位移场预测及控制技术研究[D].上海:同济大学,2001.
    [98]丁勇春.软土地区深基坑施工引起的变形及控制研究[D].上海:上海交通大学,2009.
    [99]顾晓鲁,等.地基与基础[M].北京:中国建筑工业出版社,2003.
    [100]陈孟乔,杨广武.新建地铁车站近距离穿越既有地铁隧道的变形控制[J].中国铁道科学,2011,32(4):53-59.
    [101]郑刚,裴颖洁.天津地铁既有线改造工程中的控制差异沉降研究[J].岩土力学,2007,28(4):728-732.
    [102]关继发.新建地铁隧道穿越既有地铁安全风险及其控制技术的研究[D].西安:西安建筑科技大学,2008.
    [103]刘国彬,王卫东.基坑工程手册(第二版)[M].北京:中国建筑工业出版社,2009.
    [104]沈细中.深基坑工程基本过程数值模拟及实时优化研究[D].武汉,武汉大学,2004.
    [105]孙铭心.高压旋喷桩工程特性研究[D].大连:大连理工大学,2000.
    [106]斯碧峰.三轴水泥土搅拌加固地基的应用与控制[J].上海地质,2009,(4):4-7.
    [107]朱廷忠,郑刚,李志国.天津市浅部典型土层水泥土力学性能试验研究[J].地下空间与工程学报,2005,1(5):728-732.
    [108]龚晓南.地基处理手册[M].北京:中国建筑工业出版社,2008.
    [109]中国建筑科学研究院.JGJ79―2002建筑地基处理技术规范[S].北京:中国建筑工业出版社,2002.
    [110]黄鹤,张俐,杨晓强.水泥土材料力学性能的试验研究[J].太原理工大学学报,2000,31(6):705-709.
    [111]朱大宇.水泥土力学性能的试验分析[J].建筑材料学报,2006,9(3):291-296.
    [112]李建军,梁仁旺.水泥土抗压强度和变形模量试验研究[J].岩土力学,2009,30(2):473-477.
    [113]张成平,张顶立,王梦恕.大断面隧道施工引起的上覆地铁隧道结构变形分析[J].岩土工程学报,2009,31(5):805-810.
    [114]上海市市政工程管理局.上海市地铁沿线建筑施工保护地铁技术管理暂行规定[Z].沪市政法(94)第854号,1994.
    [115] GB50157-2003地铁设计规范[S]
    [116][日]土木学会.隧道标准规范(盾构篇)及解说[M].朱伟,译.北京:中国建筑工业出版社,2001.
    [117]郑刚,焦莹.深基坑工程设计理论及工程应用[M].北京:中国建筑工业出版社,2010.
    [118]姚天强,石振华.基坑降水手册[M].北京:中国建筑工业出版社,2006.
    [119]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [120]余占奎.软土盾构隧道纵向设计方法研究[M].上海:同济大学,2007.
    [121]小泉淳,村上博智,西野健三.ツールドトホルの轴方向特性のモテルィヒにっぃて[A].土木学会论文集[C],1988,6:79-88.
    [122]小泉淳,村上博智,石田智朗,等.急曲线施工用セタヌトの设计法にっぃて[A].土木学会论文集[C],1992,6:111-120.
    [123]志波由纪夫,川岛一彦.シールドトソホルの而震解析に用ぃろ长手方向覆土刚性の评价法[A].土木学会论文集[C],1988:319-327.
    [124]志波由纪夫,川岛一彦.答变位法によろシールドトソホルの地震时断面力の算定法[A].土木学会论文集[C],1988:385-394.
    [125]黄宏伟,徐凌,严佳梁.盾构隧道横向刚度有效率研究[J].岩土工程学报,2006,28(1):11-18.
    [126] K. M. Lee, X. Y. Hou, X. W. Ge, et al. An analytical solution for a jointedshield-driven tunnel lining [J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2001,25(4):365-390.
    [127] K. M. Lee, X. W. Ge. The equivalence of a jointed shielddriven tunnel lining toa continuous ring structure [J]. Journal of Canadian Geotechnical Engineering,2001,38:461-483.
    [128] R. J Mair, R. N. Taylor. Bored Tunnelling in the urban environment [A]Proceedings of The Fourteenth International Conference on Soil Mechanics andFoundation Engineering[C],1997:2353-2380.
    [129]西野健三,吉田和夫,小泉淳.ツ-ルドトネル纵断方向の现场载荷试验とその考察[A].土木学会论文集[C],1986:131-140.
    [130]钟小春,张金荣,秦建设.盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J].岩土力学,2011,32(1):132-136.
    [131] Akaqi, Komiya. Finite element analyses of interaction of a pair of shield tunnel
    [A]. Proceedings of the Fourteenth International Conference on Soil Mechanicsand Foundation Engineering[C],1997,13:1449-1452.
    [132] W. H. Hansmire. Example analysis of circular tunnel lining [J]. Tunnelling inSoil and Rock, Proceedings of teo sessions at Geotech’84(edited by K. Y. Lo),Atlanta, Georgia,1984:30-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700