用户名: 密码: 验证码:
OTUB1和OTUB2对细胞抗病毒信号转导的调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞抗病毒天然免疫反应是细胞防御病毒感染产生的自我保护反应。细胞被病毒感染后,模式识别受体(pattern recognition receptor, PRR)识别病原相关分子模式(pathogen-associated molecular pattern, PAMP),启动Ⅰ型干扰素表达。Ⅰ型干扰素通过JAK-STAT信号通路诱导下游抗病毒基因表达,这些蛋白共同参与细胞抗病毒天然免疫。Ⅰ型干扰素的表达依赖多种转录因子的共同参与,其中IRF3 (interferon-regulatory factor 3)和NF-κB尤其重要。
     识别病毒PAMP的PRR包括Toll样受体(Toll-like receptor, TLR)、RIG-I样受体(RIG-I-like receptor, RLR)和DNA受体。TLRs识别病毒组分后,通过MyD88依赖型信号通路或TRIF依赖型信号通路分别激活NF-κB和IRF3,进而诱导Ⅰ型干扰素表达。而RLRs则通过RNA结合结构域识别病毒dsRNA,利用级联激活和招募结构域(caspase activation and recruitment domain, CARD)结合下游接头蛋白VISA (virus-induced signaling adaptor) o VISA通过招募不同的蛋白形成VISA复合物分别激活NF-κB和IRF3。一方面,VISA利用TRAF结合结构域(TRAF interaction motifs)招募TRAF2 (tumor necrosis factor receptor 2)和TRAF6 (tumor necrosis factor receptor 6),然后TRAF2和TRAF6泛素化RIP1和NEMO/IKKy,激活IKK (inhibitor ofκB kinase)复合物和NF-κB信号通路;另一方面VISA结合TRAF3、MITA (mediator of IRF3 activator)、TBK1 (TRAF familymember-associated NF-κB activator-binding kinase 1),激活IRF3信号通路,NF-KB和IRF3结合到Ⅰ型干扰素基因启动子上,诱导Ⅰ型干扰素表达。
     机体通过一系列的蛋白修饰调节细胞抗病毒免疫反应,其中,泛素化和去泛素化修饰是重要的调控手段。例如E3泛素链接酶TRIM25通过K63-连接的泛素链修饰RIG-Ⅰ,辅助RIG-Ⅰ招募VISA。因此,我们推测有未知蛋白通过泛素化或去泛素化作用参与病毒诱导的Ⅰ型干扰素信号通路。在本研究中,我们鉴定出两个去泛素化酶--OTUB1和OTUB2,负调控病毒诱导的Ⅰ型干扰素信号通路。过表达OTUB1和OTUB2抑制由病毒诱导的ISRE、NF-κB、IFNβ启动子的激活和IFNB1及其下游细胞因子RANTES的表达。与之相对应,通过siRNA技术减少内源性OTUB1和OTUB2的表达,不仅能有效地促进仙台病毒(sendai virus,SeV)诱导的IFNβ的表达,而且能显著抑制水泡口炎病毒(vesicle stomatitis virus, VSV)的复制。免疫共沉淀实验显示,OTUB1和OTUB2参与病毒诱导的Ⅰ型干扰素信号通路中非常重要的复合物——VISA复合物的形成。进一步的研究结果表明,OTUB1和OTUB2特异性去泛素化TRAF3和TRAF6。这些实验显示:OTUB1和OTUB2通过去泛素化TRAF3和TRAF6负调控病毒诱导的Ⅰ型干扰素信号通路。
Viral infection triggered a series of signaling events that lead to induction of typeⅠinterferons (IFNs). TypeⅠIFNs then activate the JAK-STAT signal transduction pathways, leading to transcriptional induction of a wide range of downstream antiviral genes and subsequent innate antiviral response. It has been shown that transcriptional activation of the IFNB1 gene requires coordinate and cooperative assembly of an enhanceosome that contains multiple transcription factors such as NF-κB and IRF3.
     The innate immune system has developed at least two kinds of pathogen recognition receptor (PRRs) for the recognition of viral RNAs. One is mediated by membrane-bound Toll-like receptors (TLRs) such as TLR3. Engagement of TLR3 by dsRNA triggers TRIF (an adaptor of the TLR pathway)-mediated signaling pathway, thereby leading to IRF3 and NF-κB activation. The second one involves the cytosolic RIG-I-like receptor (RLR) family members RIG-Ⅰ, MDA5 and Lgp2. Upon viral infection, the RNA helicase domains of RIG-Ⅰand MDA5 serve as intracellular viral RNA receptors, whereas their CARD modules are associated with the downstream CARD-containing adapter protein VISA (also known as MAVS, IPS-1, and Cardif). Various studies have demonstrated that VISA plays a central role in assembling a complex that activates distinct signaling pathways leading to NF-κB and IRF3 activation respectively. VISA is associated with TRAF2 and TRAF6 through its TRAF interaction motifs. It has been shown that TRAF2 and TRAF6 facilitate K63-linked polyubiquitination of RIP and NEMO/IKKy respectively and these processes cause activation of IKKs and subsequent NF-κB. VISA is also associated with TRAF3, another member of the TRAF protein family. Gene knockout studies have demonstrated that TRAF3 is essential in virus-triggered IRF3 activation and typeⅠIFN induction.
     Ubiquitination and deubiquitination have emerged as critical post-translational regulatory mechanisms for activation or attenuation of the virus-triggered IFN response pathways. It has been shown that the E3 ubiquitin ligase TRIM25 catalyzes K63-linked ubiquitination of RIG-Ⅰand this ubiquitination is essential for the interaction of RIG-Ⅰwith VISA as well as for its ability to signal. We speculate the unknown ubiquitinases and deubiquitinases involved in IFN-βproduction. In this study, we identified two deubiquitinases, OTUB1 and OTUB2, inhibited virus-triggered IFN induction. Overexpression of OTUB1 and OTUB2 inhibited SeV-induced activation of ISRE, NF-κB, IFN promoter and IFNB1 expression, whereas knockdown of OTUB1 and OTUB2 had opposite effects and inhibited vesicular stomatitis virus (VSV) replication. Coimmunoprecipitations indicate OTUB1 and OTUB2 are associated with the VISA-associated complex, the components in the virus-triggered IFN signaling. We further found that OTUB1 and OTUB2 regulate the antiviral responses by specifically deubiquitinating TRAF3 and TRAF6. These findings suggest that OTUB1 and OTUB2 negativly regulates virus-triggered signaling by their deubiquitinase activity.
引文
Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., and Akira, S. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1-and IL-18-mediated function. Immunity 9,143-150.
    Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
    Al-Hakim, A.K., Zagorska, A., Chapman, L., Deak, M., Peggie, M., and Alessi, D.R. (2008). Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 411,249-260.
    Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413,732-738.
    Amerik, A.Y., and Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695,189-207.
    Anest, V., Hanson, J.L., Cogswell, P.C., Steinbrecher, K.A., Strahl, B.D., and Baldwin, A.S. (2003). A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423, 659-663.
    Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104, 7500-7505.
    Balachandran, S., Thomas, E., and Barber, G.N. (2004). A FADD-dependent innate immune mechanism in mammalian cells. Nature 432,401-405.
    Bao, X., Liu, T., Shan, Y.,Li, K., Garofalo, R.P., and Casola, A. (2008). Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog 4, e1000077.
    Bauer, S., Pigisch, S., Hangel, D., Kaufmann, A., and Hamm, S. (2008). Recognition of nucleic acid and nucleic acid analogs by Toll-like receptors 7,8 and 9. Immunobiology 213,315-328.
    Beg, A.A., Ruben, S.M., Scheinman, R.I., Haskill, S., Rosen, C.A., and Baldwin, A.S., Jr. (1992). I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B:a mechanism for cytoplasmic retention. Genes Dev 6,1899-1913.
    Belvin, M.P., and Anderson, K.V. (1996). A conserved signaling pathway:the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 12,393-416.
    Bernassola, F., Karin, M., Ciechanover, A., and Melino, G. (2008). The HECT family of E3 ubiquitin ligases:multiple players in cancer development. Cancer Cell 14,10-21.
    Bhoj, V.G., and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430-437.
    Bomar, M.G., Pai, M.T., Tzeng, S.R., Li, S.S., and Zhou, P. (2007). Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta. EMBO Rep 8,247-251.
    Bonnard, M., Mirtsos, C., Suzuki, S., Graham, K., Huang, J., Ng, M., Itie, A., Wakeham, A., Shahinian, A., Henzel, W.J., et al. (2000). Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J 19,4976-4985.
    Bowie, A., and O'Neill, L.A. (2000). The interleukin-1 receptor/Toll-like receptor superfamily:signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67,508-514.
    Brightbill, H.D., Libraty, D.H., Krutzik, S.R., Yang, R.B., Belisle, J.T., Bleharski, J.R., Maitland, M., Norgard, M.V., Plevy, S.E., Smale, S.T., et al. (1999). Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285,732-736.
    Brikos, C., and O'Neill, L.A. (2008). Signalling of toll-like receptors. Handb Exp Pharmacol,21-50.
    Broemer, M., Krappmann, D., and Scheidereit, C. (2004). Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene 23,5378-5386.
    Brummelkamp, T.R., Nijman, S.M., Dirac, A.M., and Bernards, R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424,797-801.
    Burckstummer, T., Baumann, C., Bluml, S., Dixit, E., Durnberger, G., Jahn, H., Planyavsky, M., Bilban, M., Colinge, J., Bennett, K.L., et al. (2009). An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10,266-272.
    Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R., and Tschopp, J. (2003). Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197,263-268.
    Cao, Z., Henzel, W.J., and Gao, X. (1996). IRAK:a kinase associated with the interleukin-1 receptor. Science 271,1128-1131.
    Carty, M., Goodbody, R., Schroder, M., Stack, J., Moynagh, P.N., and Bowie, A.G. (2006). The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7,1074-1081.
    Chen, G., Cao, P., and Goeddel, D.V. (2002). TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9,401-410.
    Chen, G., and Goeddel, D.V. (2002). TNF-R1 signaling:a beautiful pathway. Science 296,1634-1635. Chen, Z.J. (2005). Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7,758-765.
    Childs, K., Stock, N., Ross, C., Andrejeva, J., Hilton, L., Skinner, M., Randall, R., and Goodbourn, S. (2007). mda-5, but not RIG-I, is a common target for paramyxovirus Ⅴ proteins. Virology 359, 190-200.
    Chiu, Y.H., Macmillan, J.B., and Chen, Z.J. (2009). RNA polymerase Ⅲ detects cytosolic DNA and induces typeⅠ interferons through the RIG-I pathway. Cell 138,576-591.
    Chuang, T., and Ulevitch, R.J. (2001). Identification of hTLR10:a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518,157-161.
    Chuang, T.H., and Ulevitch, R.J. (2000). Cloning and characterization of a sub-family of human toll-like receptors:hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11,372-378.
    Coornaert, B., Carpentier, I., and Beyaert, R. (2009). A20:central gatekeeper in inflammation and immunity. J Biol Chem 284,8217-8221.
    Couillault, C., Pujol, N., Reboul, J., Sabatier, L., Guichou, J.F., Kohara, Y., and Ewbank, J.J. (2004). TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5,488-494.
    Covert, M.W., Leung, T.H., Gaston, J.E., and Baltimore, D. (2005). Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 309,1854-1857.
    Cui, S., Eisenacher, K., Kirchhofer, A., Brzozka, K., Lammens, A., Lammens, K., Fujita, T., Conzelmann, K.K., Krug, A., and Hopfner, K.P. (2008). The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell 29,169-179.
    Cui, Y., Li, M., Walton, K.D., Sun, K., Hanover, J.A., Furth, P.A., and Hennighausen, L. (2001). The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Genomics 78,129-134.
    DiDonato, J.A., Hayakawa, M., Rothwarf, D.M., Zandi, E., and Karin, M. (1997). A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388, 548-554.
    Dikic, I., Wakatsuki, S., and Walters, K.J. (2009). Ubiquitin-binding domains-from structures to functions. Nat Rev Mol Cell Biol 10,659-671.
    Du, X., Poltorak, A., Wei, Y., and Beutler, B. (2000). Three novel mammalian toll-like receptors:gene structure, expression, and evolution. Eur Cytokine Netw 11,362-371.
    Ducut Sigala, J.L., Bottero, V., Young, D.B., Shevchenko, A., Mercurio, F., and Verma, I.M. (2004). Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 304,1963-1967.
    Dunne, A., Ejdeback, M., Ludidi, P.L., O'Neill, L.A., and Gay, N.J. (2003). Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 275,41443-41451.
    Ea, C.K., Deng, L., Xia, Z.P., Pineda, G., and Chen, Z.J. (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22, 245-257.
    Edelmann, E. (2002). Function-morphological investigations of fish inner ear otoliths as basis for interpretation of human space sickness. Acta Astronaut 50,261-266.
    Elsasser, S., and Finley, D. (2005). Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7,742-749.
    Ewald, S.E., Lee, B.L., Lau, L., Wickliffe, K.E., Shi, G.P., Chapman, H.A., and Barton, G.M. (2008).
    The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658-662.
    Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J., and Alnemri, E.S. (2009). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458,509-513.
    Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J.,
    Liao, S.M., and Maniatis, T. (2003a). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4,491-496.
    Fitzgerald, K.A., Rowe, D.C., Barnes, B.J., Caffrey, D.R., Visintin, A., Latz, E., Monks, B., Pitha, P.M., and Golenbock, D.T. (2003b). LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198,1043-1055.
    Fujita, T., Yasuda, S., Kamata, Y, Fujita, K., Ohtani, Y., Kumagai, Y., and Majima, M. (2008).
    Contribution of down-regulation of intestinal and hepatic cytochrome P45O3 A to increased absorption of cyclosporine A in a rat nephrosis model. J Pharmacol Exp Ther 327,592-599.
    Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E., Farzan, M., Inoue, S., Jung, J.U., and Garcia-Sastre, A. (2009). Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5,439-449.
    Gack, M.U., Kirchhofer, A., Shin, Y.C., Inn, K.S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K.P., and Jung, J.U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci U S A 105,16743-16748.
    Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., et al. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446,916-920.
    Ganchi, P.A., Sun, S.C., Greene, W.C., and Ballard, D.W. (1992). I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol Biol Cell 3,1339-1352.
    Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-96.
    Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16,225-260.
    Gottipati, S., Rao, N.L., and Fung-Leung, W.P. (2008). IRAKI:a critical signaling mediator of innate immunity. Cell Signal 20,269-276.
    Haas, T., Metzger, J., Schmitz, F., Heit, A., Muller, T., Latz, E., and Wagner, H. (2008). The DNA sugar backbone 2'deoxyribose determines toll-like receptor 9 activation. Immunity 28,315-323.
    Hacker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006, re13.
    Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G, Kamps, M.P., Raz, E.,
    Wagner, H., Hacker, G., et al. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439,204-207.
    Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S., Tanaka, K., and Murata, S. (2007).
    Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 27,6629-6638.
    Han, K.J., Su, X., Xu, L.G., Bin, L.H., Zhang, J., and Shu, H.B. (2004). Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem 279,15652-15661.
    Harte, M.T., Haga, I.R., Maloney, G, Gray, P., Reading, P.C., Bartlett, N.W., Smith, G.L., Bowie, A., and O'Neill, L.A. (2003). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197,343-351.
    Hashimoto, C., Hudson, K.L., and Anderson, K.V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52,269-279.
    Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S.,
    Underhill, D.M., and Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410,1099-1103.
    Hayden, M.S., West, A.P., and Ghosh, S. (2006). NF-kappaB and the immune response. Oncogene 25, 6758-6780.
    Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H.,
    Takeda, K., and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3,196-200.
    Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., Kawai, T., Hoshino, K., Takeda, K., and Akira, S. (2004). The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199,1641-1650.
    Hicke, L., Schubert, H.L., and Hill, C.P. (2005). Ubiquitin-binding domains. Nat Rev. Mol Cell Biol 6, 610-621.
    Hirano, S., Kawasaki, M., Ura, H., Kato, R., Raiborg, C., Stenmark, H., and Wakatsuki, S. (2006).
    Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat Struct Mol Biol 13, 272-277.
    Hirotani, T., Yamamoto, M., Kumagai, Y., Uematsu, S., Kawase, I., Takeuchi, O., and Akira, S. (2005).
    Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-beta. Biochem Biophys Res Commun 328,383-392.
    Hochrein, H., Schlatter, B., O'Keeffe, M., Wagner, C., Schmitz, F., Schiemann, M., Bauer, S., Suter, M., and Wagner, H. (2004). Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and-independent pathways. Proc Natl Acad Sci U S A 101,11416-11421.
    Honda, K., Takaoka, A., and Taniguchi, T. (2006). Type Ⅰ interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25,349-360.
    Horng, T., Barton, G.M., Flavell, R.A., and Medzhitov, R. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420,329-333.
    Horng, T., Barton, G.M., and Medzhitov, R. (2001). TIRAP:an adapter molecule in the Toll signaling pathway. Nat Immunol 2,835-841.
    Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G, Caffrey, D.R., Latz, E., and Fitzgerald, K.A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458,514-518.
    Hoshino, K., Sugiyama, T., Matsumoto, M., Tanaka, T., Saito, M., Hemmi, H., Ohara, O., Akira, S., and
    Kaisho, T. (2006). IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440,949-953.
    Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J.W., Gu, W., Cohen, R.E., and Shi, Y. (2002). Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111,1041-1054.
    Hu, M., Li, P., Song, L., Jeffrey, P.D., Chenova, T.A., Wilkinson, K.D., Cohen, R.E., and Shi, Y. (2005).
    Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 24, 3747-3756.
    Hu, Y, Baud, V., Oga, T., Kim, K.I., Yoshida, K., and Karin, M. (2001). IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 410,710-714.
    Hultmark, D. (1994). Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun 199,144-146.
    Hurley, J.H., Lee, S., and Prag, G. (2006). Ubiquitin-binding domains. Biochem J 399,361-372.
    Ikeda, F., and Dikic, I. (2008). Atypical ubiquitin chains:new molecular signals.'Protein Modifications: Beyond the Usual Suspects'review series. EMBO Rep 9,536-542.
    Ishikawa, H., and Barber, G.N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455,674-678.
    Ito, T., Amakawa, R., Kaisho, T0, Hemmi, H., Tajima, K., Uehira, K., Ozaki, Y., Tomizawa, H., Akira, S., and Fukuhara, S. (2002). Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195,1507-1512.
    Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F., and Lanzavecchia, A. (2001). Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31,3388-3393.
    Jefferies, C.A., Doyle, S., Brunner, C., Dunne, A., Brint, E., Wietek, C., Walch, E., Wirth, T., and O'Neill, L.A. (2003). Bruton's tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 278, 26258-26264.
    Jiang, Z., Mak, T.W., Sen, G., and Li, X. (2004). Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad SciUS A 101,3533-3538.
    Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104,14050-14055.
    Kadowaki, N., Ho, S., Antonenko, S., Malefyt, R.W., Kastelein, R.A., Bazan, F., and Liu, Y.J. (2001).
    Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194,863-869.
    Kagan, J.C., and Medzhitov, R. (2006). Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125,943-955.
    Kanayama, A., Seth, R.B., Sun, L., Ea, C.K., Hong, M., Shaito, A., Chiu, Y.H., Deng, L., and Chen, Z.J. (2004). TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15,535-548.
    Kang, D.C., Gopalkrishnan, R.V., Wu, Q., Jankowsky, E., Pyle, A.M., and Fisher, P.B. (2002). mda-5:
    An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A 99,637-642.
    Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity. Annu Rev Immunol 18,621-663.
    Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A.,
    Kawai, T., Ishii, K.J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441,101-105.
    Kawai, T., and Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13, 460-469.
    Kawai, T., and Akira, S. (2008). Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143,1-20.
    Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi,O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction. Nat Immunol 6,981-988.
    Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O'Rourke, K.M., Eby, M., Pietras, E., Cheng, G., Bazan, J.F., et al. (2007). DUBA:a deubiquitinase that regulates type Ⅰ interferon production. Science 318,1628-1632.
    Kenny, E.F., and O'Neill, L.A. (2008). Signalling adaptors used by Toll-like receptors:an update. Cytokine 43,342-349.
    Kim, H.T., Kim, K.P., Lledias, E., Kisselev, A.F., Scaglione, K.M., Skowyra, D., Gygi, S.P., and Goldberg, A.L. (2007). Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein
    ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 282,17375-17386.
    Komander, D., Clague, M.J., and Urbe, S. (2009a). Breaking the chains:structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10,550-563.
    Komander, D., Lord, C.J., Scheel, H., Swift, S., Hofmann, K., Ashworth, A., and Barford, D. (2008).
    The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 29,451-464.
    Komander, D., Reyes-Turcu, F., Licchesi, J.D., Odenwaelder, P., Wilkinson, K.D., and Barford, D. (2009b). Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10,466-473.
    Kopp, E., and Medzhitov, R. (2003). Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 15,396-401.
    Kovalenko, A., Chable-Bessia, C., Cantarella, G., Israel, A., Wallach, D., and Courtois, G. (2003). The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424, 801-805.
    Krug, A., Towarowski, A., Britsch, S., Rothenfusser, S., Hornung, V, Bals, R., Giese, T., Engelmann, H., Endres, S., Krieg, A.M., et al. (2001). Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31,3026-3037.
    Lamothe, B., Webster, W.K., Gopinathan, A., Besse, A., Campos, A.D., and Darnay, B.G. (2007).
    TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun 359,1044-1049.
    Legler, D.F., Micheau, O., Doucey, M.A., Tschopp, J., and Bron, C. (2003). Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18, 655-664.
    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86,973-983.
    Li, H., Kobayashi, M., Blonska, M., You, Y., and Lin, X. (2006). Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 281,13636-13643.
    Li, X.D., Sun, L., Seth, R.B., Pineda, G., and Chen, Z.J. (2005). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102,17717-17722.
    Liberati, N.T., Fitzgerald, K.A., Kim, D.H., Feinbaum, R., Golenbock, D.T., and Ausubel, F.M. (2004).
    Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc Natl Acad Sci U S A 101,6593-6598.
    Lin, R., Lacoste, J., Nakhaei, P., Sun, Q., Yang, L., Paz, S., Wilkinson, P., Julkunen, I., Vitour, D.,
    Meurs, E., et al. (2006a). Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol 80, 6072-6083.
    Lin, R., Yang, L., Nakhaei, P., Sun, Q., Sharif-Askari, E., Julkunen, I., and Hiscott, J. (2006b). Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281,2095-2103.
    Liu, L., Botos, I., Wang, Y, Leonard, J.N., Shiloach, J., Segal, D.M., and Davies, D.R. (2008a). Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320,379-381.
    Liu, P., Li, K., Garofalo, R.P., and Brasier, A.R. (2008b). Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-Ⅰ{middle dot}NF-kappa B-inducing kinase signaling pathway. J Biol Chem 283,23169-23178.
    Lo, Y.C., Lin, S.C., Rospigliosi, C.C., Conze, D.B., Wu, C.J., Ashwell, J.D., Eliezer, D., and Wu, H. (2009). Structural basis for recognition of diubiquitins by NEMO. Mol Cell 33,602-615.
    Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., et al. (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13,1015-1024.
    Loo, Y.M., Owen, D.M., Li, K., Erickson, A.K., Johnson, C.L., Fish, P.M., Carney, D.S., Wang, T., Ishida, H., Yoneyama, M., et al. (2006). Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci U S A 103,6001-6006.
    Lord, K.A., Hoffman-Liebermann, B., and Liebermann, D.A. (1990). Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5,1095-1097.
    Ludwig, S., and Wolff, T. (2009). Influenza A virus TRIMs the type Ⅰ interferon response. Cell Host Microbe 5,420-421.
    Mansell, A., Brint, E., Gould, J.A., O'Neill, L.A., and Hertzog, P.J. (2004). Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-kappaB activation by toll-like receptor (TLR)-2 and TLR4. J Biol Chem 279,37227-37230.
    Mao, Y., Senic-Matuglia, F., Di Fiore, P.P., Polo, S., Hodsdon, M.E., and De Camilli, P. (2005).
    Deubiquitinating function of ataxin-3:insights from the solution structure of the Josephin domain. Proc Natl Acad Sci U S A 102,12700-12705.
    Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A., and Fassler, R. (2006). Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125,665-677.
    Matta, H., and Chaudhary, P.M. (2004). Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci U S A 101,9399-9404.
    May, M.J., D'Acquisto, F., Madge, L.A., Glockner, J., Pober, J.S., and Ghosh, S. (2000). Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289,1550-1554.
    Maytal-Kivity, V., Reis, N., Hofmann, K., and Glickman, M.H. (2002). MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpnl 1 function. BMC Biochem 3,28.
    McGettrick, A.F., Brint, E.K., Palsson-McDermott, E.M., Rowe, D.C., Golenbock, D.T., Gay, N.J.,
    Fitzgerald, K.A., and O'Neill, L.A. (2006). Trif-related adapter molecule is phosphorylated by PKC{epsilon} during Toll-like receptor 4 signaling. Proc Natl Acad Sci U S A 103,9196-9201.
    McWhirter, S.M., Fitzgerald, K.A., Rosains, J., Rowe, D.C., Golenbock, D.T., and Maniatis, T. (2004). IFN-regulatory factor 3-dependent gene expression is defective in Tbkl-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 101,233-238.
    Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388,394-397.
    Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C.A., Jr. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2, 253-258.
    Meierhofer, D., Wang, X., Huang, L., and Kaiser, P. (2008). Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7,4566-4576.
    Meng, X., Khanuja, B.S., and Ip, Y.T. (1999). Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev 13,792-797.
    Mercurio, F., DiDonato, J.A., Rosette, C., and Karin, M. (1993). p105 and p98 precursor proteins play an active role in NF-kappa B-mediated signal transduction. Genes Dev 7,705-718.
    Mercurio, F., Zhu, H., Murray, B.W., Shevchenko, A., Bennett, B.L., Li, J., Young, D.B., Barbosa, M., Mann, M., Manning, A., et al. (1997). IKK-1 and IKK-2:cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278,860-866.
    Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5,503-507.
    Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437,1167-1172.
    Mink, M., Fogelgren, B., Olszewski, K., Maroy, P., and Csiszar, K. (2001). A novel human gene (SARM) at chromosome 17qll encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics 74,234-244.
    Moore, C.B., Bergstralh, D.T., Duncan, J.A., Lei, Y., Morrison, T.E., Zimmermann, A.G., Accavitti-Loper, M.A., Madden, V.J., Sun, L., Ye, Z., et al. (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451,573-577.
    Mori, M., Yoneyama, M., Ito, T., Takahashi, K., Inagaki, F., and Fujita, T. (2004). Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J Biol Chem 279,9698-9702.
    Muruve, D.A., Petrilli, V., Zaiss, A.K., White, L.R., Clark, S.A., Ross, P.J., Parks, R.J., and Tschopp, J. (2008). The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452,103-107.
    Muzio, M., Bosisio, D., Polentarutti, N., D'Amico, G., Stoppacciaro, A., Mancinelli, R., van't Veer, C., Penton-Rol, G., Ruco, L.P., Allavena, P., et al. (2000). Differential expression and regulation of toll-like receptors (TLR) in human leukocytes:selective expression of TLR3 in dendritic cells. J Immunol 164, 5998-6004.
    Muzio, M., Ni, J., Feng, P., and Dixit, V.M. (1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278,1612-1615.
    Negishi, H., Fujita, Y., Yanai, H., Sakaguchi, S., Ouyang, X., Shinohara, M., Takayanagi, H., Ohba, Y., Taniguchi, T., and Honda, K. (2006). Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A 103,15136-15141.
    Ng, J.M., Vrieling, H., Sugasawa, K., Ooms, M.P., Grootegoed, J.A., Vreeburg, J.T., Visser, P., Beems, R.B., Gorgels, T.G., Hanaoka, F., et al. (2002). Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B. Mol Cell Biol 22,1233-1245.
    Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786.
    O'Neill, L.A. (2008). When signaling pathways collide:positive and negative regulation of toll-like receptor signal transduction. Immunity 29,12-20.
    O'Neill, L.A., and Bowie, A.G. (2007). The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7,353-364.
    Oganesyan, G., Saha, S.K., Guo, B., He, J.Q., Shahangian, A., Zarnegar, B., Perry, A., and Cheng, G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response. Nature 439,208-211.
    Ohno, A., Jee, J., Fujiwara, K., Tenno, T., Goda, N., Tochio, H., Kobayashi, H., Hiroaki, H., and Shirakawa, M. (2005). Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure 13,521-532.
    Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003a). TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4, 161-167.
    Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284,807-817.
    Oshiumi, H., Sasai, M., Shida, K., Fujita, T., Matsumoto, M., and Seya, T. (2003b). TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 278,49751-49762.
    Park, B., Brinkmann, M.M., Spooner, E., Lee, C.C., Kim, Y.M., and Ploegh, H.L. (2008). Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 9,1407-1414.
    Peng, J., Schwartz, D., Elias, J.E., Thoreen, C.C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., and Gygi, S.P. (2003). A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 27,921-926.
    Perry, A.K., Chow, E.K., Goodnough, J.B., Yeh, W.C., and Cheng, G. (2004). Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199,1651-1658.
    Petroski, M.D., and Deshaies, R.J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6,9-20.
    Petroski, M.D., Zhou, X., Dong, G., Daniel-Issakani, S., Payan, D.G., and Huang, J. (2007). Substrate modification with lysine 63-linked ubiquitin chains through the UBC13-UEV1Aubiquitin-conjugating enzyme. J Biol Chem 282,29936-29945.
    Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006).
    RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001.
    Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70,503-533.
    Pickart, C.M., and Eddins, M.J. (2004). Ubiquitin:structures, functions, mechanisms. Biochim Biophys Acta 1695,55-72.
    Raasi, S., Varadan, R., Fushman, D., and Pickart, C.M. (2005). Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 12,708-714.
    Rahighi, S., Ikeda, F., Kawasaki, M., Akutsu, M., Suzuki, N., Kato, R., Kensche, T., Uejima, T., Bloor,
    S., Komander, D., et al. (2009). Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136,1098-1109.
    Regnier, C.H., Song, H.Y., Gao, X., Goeddel, D.V., Cao, Z., and Rothe, M. (1997). Identification and characterization of an IkappaB kinase. Cell 90,373-383.
    Reiley, W.W., Jin, W., Lee, A.J., Wright, A., Wu, X., Tewalt, E.F., Leonard, T.O., Norbury, C.C.,
    Fitzpatrick, L., Zhang, M., et al. (2007)..Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Takl and prevents abnormal T cell responses. J Exp Med 204,1475-1485.
    Rice, N.R., MacKichan, M.L., and Israel, A. (1992). The precursor of NF-kappa B p50 has I kappa B-like functions. Cell 71,243-253.
    Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A., and Bazan, J.F. (1998). A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95,588-593.
    Rothenfusser, S., Goutagny, N., DiPerna, G., Gong, M., Monks, B.G., Schoenemeyer, A., Yamamoto, M., Akira, S., and Fitzgerald, K.A. (2005). The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-Ⅰ. J Immunol 175,5260-5268.
    Rowe, D.C., McGettrick, A.F., Latz, E., Monks, B.G., Gay, N.J., Yamamoto, M., Akira, S., O'Neill, L.A., Fitzgerald, K.A., and Golenbock, D.T. (2006). The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci U S A 103, 6299-6304.
    Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K.P., and Yamaoka, S. (2006). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pinl. Nat Immunol 7,598-605.
    Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., Matsumoto, K., Takeuchi, O., and Akira, S. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6,1087-1095.
    Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, K., and Akira, S. (2003).
    Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors,
    NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171, 4304-4310.
    Sato, Y, Yoshikawa, A., Yamagata, A., Mimura, H., Yamashita, M., Ookata, K., Nureki, O., Iwai, K.,
    Komada, M., and Fukai, S. (2008). Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455,358-362.
    Schoenemeyer, A., Barnes, B.J., Mancl, M.E., Latz, E., Goutagny, N., Pitha, P.M., Fitzgerald, K.A., and Golenbock, D.T. (2005). The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 280,17005-17012.
    Servant, M.J., Grandvaux, N., tenOever, B.R., Duguay, D., Lin, R., and Hiscott, J. (2003).
    Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 278,9441-9447.
    Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122,669-682.
    Sharma, S., tenOever, B.R., Grandvaux, N., Zhou, G.P., Lin, R., and Hiscott, J. (2003). Triggering the interferon antiviral response through an IKK-related pathway. Science 300,1148-1151.
    Shim, J.H., Xiao, C., Paschal, A.E., Bailey, S.T., Rao, P., Hayden, M.S., Lee, K.Y., Bussey, C., Steckel, M., Tanaka, N., et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19,2668-2681.
    Shinohara, M.L., Lu, L., Bu, J., Werneck, M.B., Kobayashi, K.S., Glimcher, L.H., and Cantor, H. (2006). Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol 7,498-506.
    Silverman, N., and Maniatis, T. (2001). NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 15,2321-2342.
    Skaug, B., Jiang, X., and Chen, Z.J. (2009). The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78,769-796.
    Sobhian, B., Shao, G., Lilli, D.R., Culhane, A.C., Moreau, L.A., Xia, B., Livingston, D.M., and Greenberg, R.A. (2007). RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316,1198-1202.
    Su, X., Li, S., Meng, M., Qian, W., Xie, W., Chen, D., Zhai, Z., and Shu, H.B. (2006). TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol 36,199-206.
    Sun, Q., Sun, L., Liu, H.H., Chen, X., Seth, R.B., Forman, J., and Chen, Z.J. (2006). The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24,633-642.
    Supajatura, V, Ushio, H., Nakao, A., Okumura, K., Ra, C., and Ogawa, H. (2001). Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J Immunol 167, 2250-2256.
    Swanson, K.A., Hicke, L., and Radhakrishnan, I. (2006). Structural basis for monoubiquitin recognition by the Edel UBA domain. J Mol Biol 358,713-724.
    Swanson, K.A., Kang, R.S., Stamenova, S.D., Hicke, L., and Radhakrishnan, I. (2003). Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J 22,4597-4606.
    Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K., Mudd, S., Shamel, L., Sovath, S., Goode, J., et al. (2004). Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101,3516-3521.
    Tabeta, K., Hoebe, K., Janssen, E.M., Du, X., Georgel, P., Crozat, K., Mudd, S., Mann, N., Sovath, S., Goode, J., et al (2006). The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3,7 and 9. Nat Immunol 7,156-164.
    Tada, K., Okazaki, T., Sakon, S., Kobarai, T., Kurosawa, K., Yamaoka, S., Hashimoto, H., Mak, T.W., Yagita, H., Okumura, K., et al (2001). Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 276,36530-36534.
    Takaesu, G., Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, H., Irie, K., Ninomiya-Tsuji, J., and Matsumoto, K. (2000). TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5,649-658.
    Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29,428-440.
    Takaoka, A., Wang, Z., Choi, M.K., Yanai, H., Negishi, H., Ban, T., Lu, Y, Miyagishi, M., Kodama, T.,
    Honda, K., et al. (2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448,501-505.
    Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., Kano, S., Honda, K., Ohba, Y, Mak, T.W., et al. (2005). Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434,243-249.
    Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21,335-376.
    Takeuchi, O., and Akira, S. (2009). Innate immunity to virus infection. Immunol Rev 227,75-86.
    Takeuchi, O., Kawai, T., Sanjo, H., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Takeda, K., and Akira, S. (1999). TLR6:A novel member of an expanding toll-like receptor family. Gene 231,59-65.
    Tang, E.D., Wang, C.Y., Xiong, Y, and Guan, K.L. (2003). A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 278,37297-37305.
    Taniguchi, T., Ogasawara, K., Takaoka, A., and Tanaka, N. (2001). IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19,623-655.
    Tian, Y., Zhang, Y., Zhong, B., Wang, Y.Y., Diao, F.C., Wang, R.P., Zhang, M., Chen, D.Y., Zhai, Z.H., and Shu, H.B. (2007). RBCK1 negatively regulates tumor necrosis factor-and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem 282,16776-16782.
    Trompouki, E., Hatzivassiliou, E., Tsichritzis, T., Farmer, H., Ashworth, A., and Mosialos, G. (2003).
    CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424,793-796.
    Uematsu, S., and Akira, S. (2007). Toll-like receptors and Type I interferons. J Biol Chem 282, 15319-15323.
    Uematsu, S., Sato, S., Yamamoto, M., Hirotani, T., Kato, H., Takeshita, F., Matsuda, M., Coban, C., Ishii, K.J., Kawai, T., et al. (2005). Interleukin-1 receptor-associated kinase-1 plays an essential role for
    Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction. J Exp Med 201,915-923. Varshavsky, A. (1997). The ubiquitin system. Trends Biochem Sci 22,383-387.
    Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y., and Barber, G.N. (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 175,6444-6455.
    Wagner, S., Carpentier, I., Rogov, V., Kreike, M., Ikeda, F., Lohr, F., Wu, C.J., Ashwell, J.D., Dotsch, V., Dikic, I., et al. (2008). Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27,3739-3745.
    Wakabayashi, Y, Kobayashi, M., Akashi-Takamura, S., Tanimura, N., Konno, K., Takahashi, K., Ishii, T., Mizutani, T., Iba, H., Kouro, T., et al. (2006). A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol 177,1772-1779.
    Wang, B., Matsuoka, S., Ballif, B.A., Zhang, D., Smogorzewska, A., Gygi, S.P., and Elledge, S.J. (2007). Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316,1194-1198.
    Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., and Chen, Z.J. (2001). TAK1 is a ubiquitin:dependent kinase of MKK and IKK. Nature 412,346-351.
    Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E., and Flavell, R.A. (2004a). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366-1373.
    Wang, Y.Y., Li, L., Han, K.J., Zhai, Z., and Shu, H.B. (2004b). A20 is a potent inhibitor of TLR3-and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett 576, 86-90.
    Weber, F., Wagner, V., Rasmussen, S.B., Hartmann, R., and Paludan, S.R. (2006). Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80,5059-5064.
    Werner, S.L., Barken, D., and Hoffmann, A. (2005). Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309,1857-1861.
    Wertz, I.E., O'Rourke, K.M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D.L., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430,694-699.
    West, A.P., Koblansky, A.A., and Ghosh, S. (2006). Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22,409-437.
    Wilson, J.R., de Sessions, P.F., Leon, M.A., and Scholle, F. (2008). West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol 82,8262-8271.
    Windheim, M., Stafford, M., Peggie, M., and Cohen, P. (2008). Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol 28,1783-1791.
    Wu, C.J., Conze, D.B., Li, T., Srinivasula, S.M., and Ashwell, J.D. (2006). Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 8, 398-406.
    Xia, Z.P., Sun, L., Chen, X., Pineda, G, Jiang, X., Adhikari, A., Zeng, W., and Chen, Z.J. (2009). Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461,114-119.
    Xiao, G., Cvijic, M.E., Fong, A., Harhaj, E.W., Uhlik, M.T., Waterfield, M., and Sun, S.C. (2001a).
    Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells:evidence for the involvement of IKKalpha. Embo J 20,6805-6815.
    Xiao, G., Harhaj, E.W., and Sun, S.C. (2000). Domain-specific interaction with the I kappa B kinase (IKK)regulatory subunit IKK gamma is an essential step in tax-mediated activation of IKK. J Biol Chem 275,34060-34067.
    Xiao, G., Harhaj, E.W., and Sun, S.C. (2001b). NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7,401-409.
    Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19,727-740.
    Xu, M., Skaug, B., Zeng, W., and Chen, Z.J. (2009). A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-lbeta. Mol Cell 36,302-314.
    Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J.L., and Tong, L. (2000). Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408,111-115.
    Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., and Akira, S. (2003a). TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4,1144-1150.
    Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., Takeda, K., and Akira, S. (2002). Cutting edge:a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta
    promoter in the Toll-like receptor signaling. J Immunol 169,6668-6672.
    Yamamoto, Y., Verma, U.N., Prajapati, S., Kwak, Y.T., and Gaynor, R.B. (2003b). Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423,655-659.
    Yang, K., Shi, H.X., Liu, X.Y., Shan, Y.F., Wei, B., Chen, S., and Wang, C. (2009). TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol 182,3782-3792.
    Yoneyama, M., and Fujita, T. (2008). Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29,178-181.
    Yoneyama, M., and Fujita, T. (2009). RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227,54-65.
    Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5,730-737.
    Zhang, M., Tian, Y, Wang, R.P., Gao, D., Zhang, Y, Diao, F.C., Chen, D.Y, Zhai, Z.H., and Shu, H.B.. (2008a). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18,1096-1104.
    Zhang, M., Tian, Y., Wang, R.P., Gao, D., Zhang, Y, Diao, F.C., Chen, D.Y, Zhai, Z.H., and Shu, H.B. (2008b). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res.
    Zhang, S.Q., Kovalenko, A., Cantarella, G., and Wallach, D. (2000). Recruitment of the IKK signalosome to the p55 TNF receptor:RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 12,301-311.
    Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y, Diao, F., Lei, C., He, X., Zhang, L., Tien, P., et al. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29,538-550.
    Zhong, B., Zhang, L., Lei, C., Li, Y, Mao, A.P., Yang, Y, Wang, Y.Y., Zhang, X.L., and Shu, H.B. (2009a). The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA. Immunity.
    Zhong, B., Zhang, L., Lei, C., Li, Y, Mao, A.P., Yang, Y, Wang, Y.Y., Zhang, X.L., and Shu, H.B. (2009b). The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30,397-407.
    Zhou, H., Wertz, I., O'Rourke, K., Ultsch, M., Seshagiri, S., Eby, M., Xiao, W., and Dixit, V.M. (2004). Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427,167-171.
    Zhu, X., Menard, R., and Sulea, T. (2007). High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins 69,1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700