用户名: 密码: 验证码:
不同孔隙度多孔钛种植体对骨整合影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究两种不同孔隙度多孔钛种植体经酸碱热处理仿生沉积羟基磷灰石对骨整合的影响。
     材料和方法:采用粉末注射成形技术制备孔隙度分别为40%(A组)和60%(B组)的多孔钛种植体,采用酸碱热处理、仿生沉积羟基磷灰石(hydorxyapatite,RA)的方法进行表面改性,将种植体植入狗背部肌肉及股骨内,分别于4、8、12周后处死动物,取出标本,进行大体标本X线片、软组织切片HE染色、双色荧光标记荧光显微镜、不脱钙硬组织切片Goldner's三色法染色检测及定量组织学骨长入深度测定。
     结果:软组织切片HE染色检测显示:4、8、12周背部肌肉内种植体无明显炎症反应和组织坏死。双色荧光标记检测显示:在植入4周时,近种植体的宿主骨表面有荧光素沉积,而种植体表面荧光素沉积不明显。植入8周时,两组种植体的表面和多孔结构表层的空隙内见荧光物质沉积,植入12周时,A组仅在种植体表层孔隙内可见荧光,而B组在种植体深层孔隙内亦有荧光素沉积。不脱钙硬组织切片检测显示:4周时,A、B两组种植体与宿主骨间均存在间隙,间隙内可见纤维结缔组织;8周时,A、B两组种植体与宿主骨间间隙减小,在种植体表面及近表面的孔隙内,可见未矿化的类骨质形成,而深层孔隙内多为纤维结缔组织;12周时,A、B两组种植体均与骨组织实现骨整合,A组种植体的新生骨组织仅长入表层的孔隙,深层孔隙内仅见少量类骨质及纤维组织,而B组种植体深层孔隙内可见钙化良好的新生骨组织,其间可见血管穿行。定量组织学测定结果表明,4周时,两组种植体骨长入深度均为0;8周时,A组与B组骨长入深度比较差异无显著性(P>0.05);12周时,两组骨长入深度比较差异有显著性(P<0.05),B组宿主骨与种植体间骨长入深度大于A组。
     结论:经表面改性的两种不同孔隙度的多孔钛种植体植入骨质内12周时均能实现骨整合,新生骨组织能长入多孔结构,形成生物固定;60%孔隙度的多孔钛种植体更有利于新生骨组织长入多孔结构。
Objective:This study investigated the effect of different porosity on the osseointegration of porous titanium implant after surface modification.
     Material and method:This study utilized the Metal Injection Molding technology to prepare porous tiantium implants with the porosity of 40%and 60%;carried out the surface modification by means of acid-base heat treatment,biomimetic deposition hydroxyapatite;implanted them in the back muscle and femur of dogs.The animals were sacrificed at 4,8,12 weeks after implantation.Bone formation in the implants was investigated by x-ray test, histology and histomorphometry of non-decalcified sections using traditional light- and fluorescence microscopy.
     Results:Soft tissue sections using HE staining showed:all of the back muscle implants had no inflammation and necrosis at 4,8 and 12 weeks.That two-color fluorescent markers detection showed:at 4 weeks after the implantation,there was fluorescence deposition on the surface of the host bone near the implants,but the fluorescence deposition on the implants was not obvious.At 8 weeks after the implantation,it showed that there was fluorescence deposition both on the surface and external pores of porous implant.At 12 weeks,for group A,there was only fluorescence deposition in the external pores of implant;for group B,the fluorescence can also be found in the deep-seated pores.Non-decalcified sections detected:at 4 week,there was a gap between implants and the host bone in two groups,the fibrous connective tissue could be seen in the gap.For 8 weeks after the implantation, the gap between the implant and the host bone got narrow.It can be seen that the osteoid formed on the surface and external pores of the implant.But the pores of deeper layers were filled with fibrous connective tissue.At 12 weeks after implantation,both of group A and B had completed the osseointegration. The new-grown bone tissue of group A only grew into the external pores and only a little osteoid existed in the deep-seated pores.For group B,the visible well-calcified bone tissue existed in the pores both surface and deep layers,the micrangium could be seen inside of it.The Quantitative histological determination showed:after 4 weeks,for two groups,the depth of the bone ingrowth in the implants was 0.At 8 weeks,the depth of bone ingrowth didn't have been distincted diversity between group A and B(p>0.05).At 12 weeks, the bone ingrowth depth showed a remarkable difference between group A and B(p<0.05).The depth of the bone ingrowth of group B was deeper than group A.
     Conclusion:The surface-modified porous titanium implant with the different porosity can complete osseointegration within 12 weeks.The new-born bone tissue can grow into the porous structure,and achieve biological fixation.The porous titanium implant with 60%porosity connective pore structure is benefit to new bone tissue grow into the porous structure.
引文
[1]Barrere F,Valk CM,Meijer G,et al.Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants infemurs of goats.J Biomed Mater Res,2003,67:655-65
    [2]Schwartz Z,Nasazky E,Boyan BD.Surface microto-pography regulates osteointegration:the role of im-plant surface microtopography in osteointegration.Alpha Omegan,2005 Jul,98(2):9-19
    [3]Zardiackas LD,Parsell DE,Dillon LD,et al.Structure,metallurgy,and mechanical properties of a porous tantalum foam.J Biomed Mater Res,2001,58:180-187.
    [4]王东胜.三种特殊染色法显示不脱钙骨切片中新生骨的比较研究.中华老年口腔医学杂志,2006,7,4(3):139-164
    [5]Tengvall P,Lundstrom I.Physico-Chemical Considerationsof Titanium as a Biomaterial[J].Clin Mater,1992(9):115-34
    [6]Garrett R,Abhay P,Dimitrios P.A.Fabrication methods of porous metals for use in orthopaedic applications.Biomaterials,2006(27):2651-2670.
    [7]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000:116-137
    [8]Taba Junior M,Novaes Junior AB,Souza SL,et al.Radiographic evaluation of dental implants with different surface treatments:anexperimental study in dogs.Implant Dent,2003,12:252-8
    [9]Piatelli M,Scarano A,Paolantonio M,et al.Bone response to machined and resorbable blast material titanium implants:an experimental study in rabbits.J Oral Implantol,2002,28:2-8
    [10]Ramires PA,Wennerberg A,Johznsson CB,et al.Biological behavior of sol-gel coated dental implants.Journal of Materials Science-Materials in Medicine,2003,14(6):539-545
    [11]Wei M,Ruys AJ,Milthorpe BK,et al.Solution ripening of hydroxyapatite nanoparticles effects on electrophoretic deposition.Mater Res,1999,45:11-9
    [12]Wei M,Ruys AJ,Swain MV,et al.Interfacial bone strength of electrochemically deposited hydroxyapatite coating on metals.J Mater Sci Mater Med,1999,10:401-9
    [13]Collier J.P,Suprenant V.A,Mayor M.B,et al.Loss of hydroxyapatite coating on retrieved total hip components.J.Arthroplasty,1993,6:389-392.
    [14]Lenka Jonasova,Frank A Muller,Ales Helebrant,et al.Biomimetic apatite formation on chemically treated titanium.Biomaterials,2004,25:1187-1194
    [15]Zhao G,Schwartz Z,Wieland M,et al.High surface energy enhances cell response to titanium substrate microstructure.J Biomed Mater Res A,2005,74:49-58
    [16]Barrere F,Snel MM,van-Blitterswijk CA,et al.Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants.Biomaterials,2004,25(14):2901-2910
    [17]Ban S,Maruno S.Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid.Biomaterials,1995,16(13):977-981
    [18]Feng B,Weng J,Yang BC,et al.Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion.Biomaterials,2004,25:3421-3428
    [19]Holy CE,Fialkov JA,Davies JE,et al.Use of a bio-mimetic strategy to engineer bone.J Biomed Mater Res,2003,65:447-453
    [20]Itala AI,Ylanen HO,Ekholm C,et al.Pore diameter of more than 100 micron is not requisite for bone ingrowth in rabbits.J Biomed Mater Res,2001,58:679-683
    [21]Otsukia B,Takemotoa M,Fujibayashia S,et al.Pore throat size and connectivity determine bone and tissue ingrowth into porous implants:Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants.Biomaterials,2006,27:5892-5900
    [22]Mastrogiacomo M,Scaglione S,Martinetti R,et al.Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics.Biomaterials,2006,27(17):3230-7
    [23]Eckert M,Wittmann I,Rollinghoff M,et al.Endotoxin-induced expression of murine bactericidal permeability/ increasing protein is mediated exclusively by toll/IL-1receptor domain-containing adaptor inducing IFN-beta-dependent pathways.J Immunol,2006,176(1):522-8
    [24]Kuo SM,Chang S J,Chen TW,et al.Guided tissue regeneration for using a chitosan membrane:an experimental study in rats.J Biomed Mater Res A,2006,76(2):408-15
    [25]Carls FR,Schiipbach P,Sailer HF,et al.Distraction osteogenesis for lengthening of the hard palate:Part Ⅱ.Histological study of the hard and soft palate after distraction.PlastReconstr Surg,1997,100(7):1648
    [26]廖湘凌,陈绍维,李声伟等.复合牛骨形成蛋白多孔中空种植体成骨效应的研究.华西口腔医学杂志,2003,12,21(6):428-431
    [27]Mendes M,Pritzker KP.Optimizing multiple fluorochrome bone histodynamic marders.Bone,1993,14(3):537-543
    [28]Boyde A,Wolfe LA,Maly M,et al.Vital confocal microscopy in bone.Scanning,1995,17(2):72-85
    [1] Cooper L F, Masuda T, Whitson S W, et al. Formation of Mineraliz- ing Osteoblast Cultures on Machined, Titanium Oxide Grit-blasted, and Plasma-sprayed Titanium Surfaces[J]. Int J Oral Maxillofac Im-plants, 1999,14(1):37-47
    
    [2] Sergo V, Sbaizero O, David RC. Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyaptne coatings[J]. Biomaterials, 1997,18:477
    [3] Schwartz Z, Nasazky E, Boyan BD. Surface microto-pography regulates osteointegration: the role of im-plant surface microtopography in osteointegration. Alpha Omegan, 2005 Jul,98(2):9-19
    [4] AbronA, HopfenspergerM, Thompson J, etal. Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model[J]. J Prosthet Dent, 2001,85:40-46
    [5] Sykaras N, Lacopin AM, Marker VA, et al. Int J Oral Maxillofac Implants, 2000,15(5):675-690
    [6] Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach[J]. Clin Oral Implants Res, 1999,10:394-405
    [7] Wennerberg A, Halgren C, Johansson C, et al. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughness[J]. Clin Oral Implants Res, 1998,9:11-19
    [8] Buser D, Schenk R, Steinemann S, et al. Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res, 1991,25:889-902
    [9] Zinger O, Anselme K, Denzer A, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials, 2004,25:2695-711
    
    [10] Cho SA, Park KT. The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials, 2003,24:3611-7
    
    [11] Trisi P, Lazzara R, Rao W, et al. Bone-implant contact and bone quality: evaluation of expected and actual bone contact on machined and osseotite implant surfaces. Int J Periodontics Restorative Dent, 2002,22:535-45
    
    [12] Trisi P, Marcato C, Todisco M. Bone-to-implant apposition with machined and MTX microtextured implant surfaces in human sinus grafts. Int J Periodontics Restorative Dent, 2003,23:427-37
    [13] Cochran DL, Buser D, Weingart D, et al. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res, 2002,13:144-53
    [14] Ellingsen JE, Johansson CB, Wennerberg A, et al. Improved retention and bone-to-implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants, 2004,19:659-66.
    [15] Yokoyama K, Ichikawa T, Murakami H, et al. Fracture mechanisms of retrieved titanium screw thread in dental implants. Biomaterials, 2002,23:2459-65
    [16] Xuanyong L, Paul KC, Chuanxian D. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R, 2004,47:49-121
    [17] Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A, 2005,74:49-58
    [18] Nishio K, Neo M, Akiyama H, et al. The effect of alkali- and heat-treated titanium and apatite formed titanium on osteoblastic differentiation of bone marrow cells. J Biomed Mater Res, 2000,52:652-61
    [19] Nishiguchi S, Fujibayashi S, Kim HM, et al. Biology of alkali-and heat-treated titanium implants. J Biomed Mater Res,2003, 67A:26-35
    [20] Aparicio C, Gil FJ, Fonseca C, et al. Corrosion behavior of commercially pure titanium shot blasted with different materials and size of shot particles for dental implant applications. Biomaterials, 2003,24:263-73
    [21] Ivanoff CJ, Hallgren C, Widmark G, et al. Histologic evaluation of the bone integration of TiO(2) blasted and turned titanium microimplants in humans. Clin Oral Implants Res, 2001,12:128-34
    [22] Rasmusson L, Roos J, Bystedt H. A 10-year follow-up study of titanium dioxide-blasted implants. Clin Implant Dent Relat Res, 2005,7:36-42
    [23] Wennerberg A, Albrektsson T, Albrektsson B, et al. Histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implant Res. 1996,6:24-30
    [24] Sul YT, Johansson CB, Roser K, et al. Qualitativeand quantitative observations of bone tissue reactions toanodised implants. Biomaterials, 2002,23:1809-17
    [25] Jungner M, Lundqvist P, Lundgren S. Oxidized titanium implants (Nobel Biocare TiUnite)compared with turned titanium implants(Nobel Biocare mark Ⅲ)with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol.Clin Oral Implants Res,2005,16:308-12
    [26]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000:116-137
    [27]郑学斌,黄民辉.喷涂距离和喷涂功率对羟基磷灰石涂层的影响[J].无机材料学报,1999,14(5):83-78
    [28]吕宇鹏,朱瑞富,雷廷权.等离子喷涂磷灰石陶瓷涂层研究进展[J].生物工程学杂志,2001,18(3):451-455
    [29]戴金辉,李建保,唐国翌.生物涂层材料的研究现状与展望[J].山东陶瓷,1999,22(2):19-22
    [30]Taba Junior M,Novaes Junior AB,Souza SL,et al.Radiographic evaluation of dental implants with different surface treatments:anexperimental study in dogs.Implant Dent,2003,12:252-8
    [31]Chang YL,Stanford CM,Wefel JS,et al.Osteoblastic cell attachment to hydroxyapatite-coated implant surface in vitro[J].Int J Oral Maxillofac Implants,1999,14(2):239
    [32]杨巍,杨贤金等.钛合金表面生物活性陶瓷涂层的设计.2006,31(1):59-61
    [33]张天夫,王伟,孙晓东等.钛生物陶瓷涂层种植体的实验研究.吉林大学学报(医学版),2002,28:597-599
    [34]Massaro C,Baker MA,Cosentino F.Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques.Biomed Mater Res,2001,58(6):651-657
    [35]杨成,孟丽娥,丁涛等.磷酸钙溶胶涂层对多孔型种植体表面骨内向生长的影响.中国口腔颌面外科杂志,2006,4(2):136-139
    [36]Shirkhanzadeh M.J Mater Sci Lett,1991,10:1415-1417
    [37]Barrere F,Snel MM,de-Groot K,et al.Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants.Biomaterials,2004,25(14):2901-2910
    [38]Ban S,Maruno S.Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid.Biomaterials,1995,16(13):977-981
    [39]Wang XX,Yan W,Hayakawa S.Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid.Biomaterials.2003,24(25):4631-4637
    [40] Habibovic P, Li J, Meijer G, et al. Biological performance of uncoated and octacalcium phosphate-coated Ti6A14V. Biomaterials, 2005,26:23-36
    [41] Barrere F, van der Valk CM, Dalmeijer RA, et al. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants, J Biomed Mater Res, 2003,64:378-87
    [42] Muramatsu K, Uchida M, Kim HM, et al. Thromboresistance of alkali-and heat-treated titanium metal formed with apatite, J Biomed Mater Res. 2003,65A(4):409-416.
    [43] Robertson DM, Pierre L, Chahal R. Preliminary observations of bone ingrowth into porous materials. J Biomed Mater Res, 1976,10:335-44
    [44] Cameron HU, Macnab I, Pilliar RM. A porous metal system for joint replacement surgery. Int J Artif Organs, 1978,1:104-9
    [45] Head WC, Bauk DJ, Emerson Jr RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop. 1995:85 - 90.
    [46] Weber JN, White EW. Carbon-metal graded composites for permanent osseous attachment of non-porous metals. Mater Res Bull, 1972,7(9):1005-16
    [47] White EW, Weber JN, Roy DM, et al. Replamineform porous biomaterials for hard tissue implant applications. J Biomed Mater Res, 1975,9:23-7
    [48] Spector M, Michno MJ, Smarook WH, et al. A highmodulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants. J Biomed Mater Res, 1978,12:665-77.
    [49] Karagienes M. Porous metals as a hard tissue substitute. I. Biomedical aspects. Biomater Med Dev Artif Organs. 1973:171-81.
    [50] Bobyn JD, Palsh KA, Haddad Jr RJ. Interface mechanics and bone growth into porous Co - Cr - Mo alloy implants. Clin Orthop Relat Res, 1985:271 - 80.
    [51] Whang K, Healy KE, Elenz DR, et al. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng, 1999,5:35-51
    [52] Holy CE, Fialkov JA, Davies JE, et al. Use of a biomimetic strategy to engineer bone. J Biomed Mater Res A, 2003,65:447-53
    [53] Itala AI, Ylanen HO, Ekholm C, et al. Pore diameter of more than 100 micron is not requisite for bone ingrowth in rabbits. J Biomed Mater Res, 2001,58:679-683
    [54] St-Pierre J P, Gauthier M, Lefebvre LP, et al. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. Biomaterials, 2005,26:7319-7328
    [55] Otsukia B, Takemotoa M, Fujibayashia S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials, 2006,27:5892-5900
    [56] Chang BS, Lee CK, Hong KS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 2000,21(12): 1291-8
    [57] Du C, Meijer GJ, van de Valk C, et al. Bone growth in biomimetic apatite coated porous polyactive 1000PEGT70PBT30 implants. Biomaterials, 2002,23(23):4649-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700