用户名: 密码: 验证码:
水肥异区交替灌水施肥条件下的生态环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国干旱半干旱区,水资源紧缺和灌溉水利用效率低、水资源浪费等问题并存,使得节水型农业成为该地区农业发展的必然趋势。交替灌溉施肥是一项新型节水施肥技术,其对作物根系生长及养分吸收、水分生理状况、光合作用与作物产量,以及水分利用效率等效应的研究已取得较大进展。但有关此项技术的环境效应研究还鲜见报道。因此研究水肥异区交替灌水施肥条件下的氨挥发和反硝化作用等,可揭示节水施肥条件下的土壤氮素转化规律,为合理施肥,提高氮肥效率提供依据。本文以夏玉米为供试作物,通过两年大田试验,采用二元二次正交旋转组合设计(二因素五水平),研究了交替灌溉施肥对夏玉米产量、氮素吸收与分配、水氮利用效率以及水氮最佳配比等的影响,着重探讨了交替施肥灌溉条件下土壤剖面中的氮素分布与运移,氨挥发和N_2O排放通量等。目的是探索夏玉米田交替灌溉施肥技术的生态环境效应。取得了以下主要结论和进展:
     1.在陕西关中地区小麦-玉米轮作条件下夏玉米田补充灌溉和施用氮肥均有增产效应,且增产效果显著。但2年的水肥效应不同。2007年水、氮交互作用为正效应,且施肥效应显著大于灌水效应,交替灌溉施肥的最高产量以及相应水氮最佳配比为:最高产量6935.84 kg/hm~2,总灌水量为816.00m~3/hm~2,总施氮量为208.80kg/hm~2;2008年施肥和灌水对产量效应基本相当,交替灌溉施肥的最高产量以及相应水氮最佳配比为:最高产量6367.07kg/hm~2,总灌水量为930.12m~3/hm~2,总施氮量为238.19 kg/hm~2。在水肥异区交替灌溉施肥条件下,适宜的水肥配比条件下产量高于常规施肥灌水,并且最高产量的水氮投入量远低于当地生产中的常规灌水量(1800 m~3/hm~2)和施肥水平(300 kg/hm~2),说明交替灌溉施肥技术在当地玉米生产中节水节肥效应显著。
     2.交替灌溉施肥处理可提高水分利用率,2007年的水分利用率高于2008年。2007年氮素作用显著大于水分作用,氮素投入量较高时更有利于水分利用率的提高,最高产量时WUE籽粒产量为1.47 kg/m~3;2008年施肥和灌水对水分利用的影响基本相当,最高产量时WUE籽粒产量为0.95 kg/m~3。
     3.在同等产量水平下,交替灌溉施肥能有效地提高夏玉米氮肥利用率和氮肥效率。2007年氮素施入量处于中等水平(150 kg/hm~2)时,配以适宜的灌水量(总灌水量700 m~3/hm~2),氮肥利用率较高,氮肥利用率和氮肥效率分别为44%和45kg/kg;2008年,200 kg/hm~2配合800 m~3/hm~2处理的氮肥利用率和氮肥效率分别为40%和35kg/kg,较常规施肥灌水高一倍。
     4.与常规施肥灌水处理相比,水肥异区交替灌溉施肥可显著降低夏玉米地的氨挥发。交替灌溉施肥条件下的氨挥发量为6.39-12.02 kg/hm~2,其中施肥量为200 kg/hm~2的两处理挥发量只有6.80和6.39 kg/hm~2,仅占施肥量的0.87%和0.67%;常规施肥灌水处理达13.82 kg/hm~2,占施肥量的2.92%;拔节期的氨挥发量和损失率略低于抽雄期,且两个时期交替灌溉施肥各处理的氨挥发量均大于对照而小于常规处理;灌水量为800 m~3/hm~2,施肥量为200 kg/hm~2时的氨挥发量在不同灌水量和施肥量水平下最低。随着施肥量的增加氨挥发量显著增加。
     5.与常规施肥灌水处理相比,水肥异区交替灌溉施肥可显著降低夏玉米地的N_2O排放量。交替灌溉施肥条件下的N_2O排放累积量14.75-22.07 kg/hm~2,其中F3W1和F4W2处理的N_2O排放累积量只有19.20和16.26 kg/hm~2,仅占施肥量的5.62%和4.06%;常规施肥灌水处理达32.26 kg/hm~2,占施肥量的10.75%。拔节期的N_2O排放量和损失率远远低于抽雄期。
     6.在同一施肥水平,随着灌水量的增加,土壤下层水分含量逐渐增加,且峰值下移。在同一灌水水平,随着施氮量的增加,土壤水分含量有下降趋势。灌水与施氮对土壤硝态氮影响明显,在同一施肥水平,随着灌水量的增加,土壤上层硝态氮的含量降低,峰值下移。在同一灌水水平,随着施肥量的增加,夏玉米收获后土壤硝态氮的残留量有增加趋势。同时,交替灌溉施肥条件下,各处理0-100cm的硝态氮累积量大于100-200cm,且土壤剖面中硝态氮含量均小于常规处理。
In the arid and semiarid region of China, water resource shortage, the low of irrigation water use efficiency and lavishly irrigation are coexisting. Water-saving agriculture became a necessary trend of agricultural development in the area. Alternating furrow irrigation and fertilization(AFIF) is a new technology of water-saving and fertilization. Researches has made further progress of alternating irrigation on plant root growth, physiology, grain yield and water utilization efficiency etc. However, there were few studied on environmental effect of alternating furrow irrigation and fertilizer placement. Therefore to research ammonia volatilization and N_2O release under alternating irrigation and fertilizer placement maybe reveal that soil nitrogen transformation under water-saving and fertilizer placement and provide evidence for reasonable fertilization and improving nitrogen fertilizer efficiency. The tested crop of experiments was summer maize. It was studied of the effects of water and N coupling on crop yield, nitrogen uptake and partitioning, utilizing efficiency of water and nitrogen and optimal coupling of water and nitrogen etc with binary quadric orthogonal rotational combination design in field experiment for 2 years. In order to explore the ecological environment effect of summer maize under alternating furrow irrigation and fertilizer placement, we mainly studied nitrogen distribution and migration of the soil profile, ammonia volatilization and denitrification etc. The main conclusion and results were as following:
     1. Both supplemental irrigation and nitrogen application could raise maize yield significantly in wheat-corn rotation system in the zone of central Shaanxi plain. But there were different effect of water and N in 2007 and 2008. There were positive interactions between water and fertilizer and the effect of nitrogen is more significantly than that of water irrigation in 2007. The optimal coupling of water irrigation and nitrogen are 816.00m~3/hm~2 and 208.80kg/hm~2, respectively, and the highest yield is 6935.84 kg/hm~2 in2007. However, the effect of water and irrigation was equivalent important in 2008. The optimal coupling of water irrigation and nitrogen are 930.12m~3/hm~2 and 238.19kg/hm~2, respectively, and the highest yield is 6367.07 kg/hm~2. Compared with the traditional irrigation and fertilizer, the yield was higher under alternating irrigation and fertilizer placement conditions and the input of water and nitrogen of the highest output in AFIF treat was far lower than conventional irrigation amount 1800m~3/hm~2 and fertilizer level 300kg/hm~2 of local production. The effect of water-saving and fertilizer-saving AFIF technology was significant in local maize production.
     2. The water use efficiency was increased under AFIF. The water use efficiency of 2007 was higher than that of 2008. The effect of nitrogen fertilizer is greater than that of water irrigation in 2007 and the water use efficiency improved significantly in higher nitrogen application. The highest WUE was 1.47kg/m~3 in 2007. However, the effect of water and irrigation was equivalent and the highest WUE was 0.95 kg/m~3 only in 2008.
     3. In the similar yield, Nitrogen use effeciency(NUE)and N fertilizers effects(NFE) were increased significantly under alternating irrigation and fertilizer placement. The NUE of AFIF was surpassed that of CI by two times when N application was in middle level (150kg/hm~2) coordinated with suitable water level (total amount of irrigation 700m~3/hm~2) in 2007. NUE and NFE were 44% and 45kg/kg. separately。The NUE and NFE were 40% and 35kg/kg in the F2W2 treatments, they were two times higher than that of traditional irrigation in 2008.
     4. Compared with conventional irrigation, the ammonia volatilization of maize filed was decreased significantly with AFIF. It was 6.39-12.20kg/hm~2. The accumulated ammonia volatilization was 6.80 and 6.39kg/hm~2 in the F2W2 and F2W4 treatments, and there were only 0.87% and 0.67% of N used. But accumulated ammonia volatilization was 13.82kg/hm~2 in the conventional irrigation treatment and it was 2.92% of N used. The accumulation and loss rate of soil ammonia volatilization were much less at the jointing stage of summer maize than those of the tasseling stage. The amount of soil ammonia volatilization was the lowest at the irrigation quantity of 800m~3/hm~2 and fertilization amount of 200kg/hm~2. Ammonia volatilization was increased significantly as increase of N fertilizer rate.
     5. Compared to conventional irrigation, the amount of N_2O emissions of maize was decreased significantly under AFIF. It is about 14.75-22.07kg/hm~2 N_2O. The accumulated N_2O were 19.20 and 16.26kg/hm~2 in the F3W1 and F4W2 treatments, and they were only 5.62% and 4.06% of N used. But the amount of N_2O emissions was 32.26kg/hm~2 in the conventional irrigation treatment and the emission rate of N sued was 10.75%. The accumulation and loss rate of soil N_2O emissions were much less at the jointing stage of summer maize than those at the tasseling stage.
     6. In the same level of fertilizer, the soil moisture content increased and the peak moved downward with the increase of irrigation water. In the same level of irrigation, the soil moisture content decreased with the increase of N fertilizer. The effect of irrigation and N fertilizer on soil NO_3-N was significant. In the same level of fertilizer, the soil NO_3-N content decreased and the peak moved downward with the increase of irrigation water. In the same level of irrigation, the soil NO_3-N content increased with the increase of N fertilizer. Meanwhile, the NO_3-N accumulation was more in 0-100cm than 100-200cm and the NO_3-N residue in soil profile in AFIF was smaller than that in conventional irrigation.
引文
[1]江平.西部农业水资源可持续发展与利用[J].农村经济,2005,9:111-113.
    [2]康绍忠,许迪.我国现代农业节水高新技术发展战略的思考[J].中国农村水利水电,2001,10:25-29.
    [3]许迪,康绍忠.现代农业技术研究进展与发展趋势[J].高技术通讯,2002,12:104-108.
    [4]山仑.加速发展我国节水农业[J].求是,2005,22:42-43.
    [5]穆罕默德,赵莹莹,孙刚,等.节水灌溉技术研究进展[J].农业与技术,2001,21(4):27-32.
    [6]文宏达,刘玉柱,李晓丽,等.水肥耦合与旱地农业可持续发展[J].土壤与环境,2002,11(3):315-318.
    [7]陶毓汾,王立祥,韩仕峰,等.中国北方旱农地区水分生产潜力及开发[M].北京:中国气象出版社,1993.
    [8]纪瑛.旱地农业必须走可持续发展的道路[J].甘肃农业科技,2000(6):23-25.
    [9]吕晓男,陆允甫,卢德生.覆盖对改善土壤物理形状和春玉米产量影响的研究初报[J].土壤通报,1994,25(3):102-103.
    [10]赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学,1996,29(2):59-66.
    [11]李华,王朝晖,王西娜,等.不同栽培模式对冬小麦产量形成及氮素吸收转运的影响[J].农业环境科学学报,2007,26(1):369-374.
    [12]李建奇,黄高宝,牛俊义.氮磷营养对覆膜春玉米产量和品质的影响[J].干旱地区农业研究,2005,23(5):62-67.
    [13]苏彩虹,郭创业.黄土旱塬农田全程全覆盖的“土壤水库”作用[J].水土保持学报,2001,15(4):87-91.
    [14]朱自玺,赵国强,邓天宏,等.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究,2000,8(1):34-37.
    [15]许翠平,刘洪禄,车建明,等.秸秆覆盖对冬小麦耗水特征及水分生产率的影响[J].灌溉排水,2002,21(3):24-27.
    [16]李凤民,鄢珣,王俊,等.地膜覆盖导致春小麦产量下降的机理[J].中国农业科学,2001,34(3):330-333.
    [17]赵镬京,吴萧.川中丘陵区小麦不同覆盖栽培条件下土壤水分及增产效果研究[J].干旱地区农业研究,2003,21(1):66-69.
    [18]曹国番.半干旱冷凉区微型种植方法、覆盖材料和补灌时期研究[J].干旱地区农业研究,1998,16(2):13-18.
    [19]陈亚新,康绍忠.非充分灌溉远离[M].北京:中国农业出版社,1995,1-60.
    [20]李浩.非充分灌溉发展现状[J].节水灌溉,1998,5:21-23.
    [21]史文娟,胡笑涛,康绍忠.干旱缺水条件下作物调亏灌溉技术研究状况与展望[J].干旱地区农业研究,1998,16(2):84-88.
    [22] Chalmers DJ, Mitchell P, Heek L.Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning. JAmer Soc Sci, 1981, 106(3):307-312.
    [23]曾德超.果树调亏灌溉密植节水增产技术的研究与开发[M].北京:北京农业大学出版社,1994,2-41.
    [24]康绍忠,史文娟,胡笑涛,等.调亏灌溉对于玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,14(4):82-87.
    [25]张喜英,由懋证,王新元.冬小麦调亏灌溉制度田间试验初报[J].生态农业研究,1999,6(3):33-36.
    [26]康绍忠,张建华,梁宗锁,等.控制性交替灌溉—一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-5.
    [27] Tan C S, Buttery B R. The effect of soil moisture stress to various fraction of the root system on transpiration, photosynthesis and internal water relation of peach seedlings [J]. Am. Soc. Hortic. Sci, 1982, 107: 845-849.
    [28] Poni S, Tagliavini M, Neri D, et al.Influence of root pruning and water stress on growth and physiological factors of potted apple, grape, peach and pear tree [J].Sci.Hortic, 1992, 52: 223-226.
    [29]康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001,11:80-86.
    [30]潘英华,康绍忠.交替隔沟灌溉水分入渗特性[J].灌溉排水,2000,19(1):1-4.
    [31] Tardieu F, Zhang J, Davies W J. What information is conveyed by an ABA signal from maize roots in drying field soil [J].Plant, Cell and Enviroment, 1992, 15: 185-191.
    [32] Zhang J, Davies W J. Does ABA in the xylem control the rate of leaf grow- th in soil-dried maize and sunflower plants [J].J Exp Bot, 1990, 41: 1125-1132.
    [33] Gowing DJG, Davies W J, Jones H G. A positive rootsourced signal as an indicator of soil drying in apple Malus domestica Borkh [J].J.Ex- p.Bot.1990, 41: 1535-154.
    [34] Kang S, Hu X, Goodwin I, Jerie P. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard [J].Sci.Hortic.2002, 92: 277-285.
    [35] Kang S, Hu X, Jerie P, Zhang J. The effects of partial rootzone drying on root, trunk sap flow and water balance in an irrigated pear(Pyrus communis L.) orchard [J].J.Hydrol.2003, 2(80): 192-206.
    [36] Hutton R. Improving the water use efficiency of citrus at Yanco Agricultural Institute [J].Farmers, Newslett.Hortic.2000, 184: 47-49.
    [37] Stoll M, Jones H G, Infante J M. Leaf gas exchange and growth in red raspberries is reduced when part of the root system is dried[J]. A cta Horticulture, 2002, 585: 671-677.
    [38] Dry P R, Loveys B R. Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried [J].Vitis, 1999, 38(4): 151-156.
    [39] Wahbi S, Wakrim R, Aganchich B, et al. Effect of partial rootzone drying(PRD)on adult Olive tree(Olea europaea)in field conditions under arid climate.I Physiological and agronomic resposes [J].Agriculture, Ecosystems and Environment, 2005, 106: 289-301.
    [40] Zegbe J A, Behboudian M H, Clothier B E. Partial rootzone drying is a feasible option for irrigation processing tomatoes [J].Agri.WaterManagement, 2004, 68: 195-206.
    [41] Zegbe J A, Behboudian M H, Lang A, et al. Deficit irrigation and partial rootzone drying maintain fruit drymass and enhance fruit quality in“Petopride”processing tomato [J].Scientia Horticulture, 2003, 98: 505-510.
    [42]毕彦勇,高东升,王晓英,等.根系分区灌溉对设施油桃生长发育、产量及品质的影响[J].中国生态农业学报,2005,13(4):88-90.
    [43]魏玉云,杜春梅,茶正早,等.不同母质砖红壤中尿素氨挥发差异的研究[J].农业环境科学学报,2006,25(增刊):243-247.
    [44]黄建英,张卫.同土壤施氮肥氨的挥发试验初报[J].土壤肥料,1990,17(1):26-28.
    [45]同延安,张文孝,韩稳社.氮肥在粗腐殖质土壤中的转化[J].土壤肥料,1992,9(2):4-7.
    [46]高鹏程,张一平.氨挥发与土壤水分散失关系的研究[J].西北农林科技大学学报,2001,29(6):21-25.
    [47]王小彬,Barleyld,Grantca,等.关于土壤几种脲酶抑制剂的作用条件[J].植物营养与肥料学报,1998,4(3):211-218.
    [48]曹兵,李新慧,张琳,等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报,2001,16(2):83-86.
    [49] Duxbury J M, Mosier A R. Status and issues concerning agricultural emissions of greenhouse gases.In: Kaiser H M, Drennen T. Agricultural Dimensions of Global Climate Change[M].St.Lucie Press, F L, 1993, 229-258.
    [50] Byrnes B H. Environmental ffects of N fertilizer use [J].An overview: Fertilizer Research, 1990, 26: 209-215.
    [51] Bouwman A F. The role of soils and land use in the greenhous effect. Background paper of the international conference“Soil and the Greenhouse Effect”Wageningen, The N etherlands, Int.Soil Ref. and Into.Cnt.1989, 14-18.
    [52] Freney J R, Denmead O T, Simpson J R. Nitrons oxide emission from soils at low moisture contents. Soil Biol. Biolchem.1979, 11: 167-173.
    [53] Anderson E C, Levine J S. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nirtate respires. Applied and Environmental Microbiology.1986, 51: 938-945.
    [54]邹国元,张福锁,巨晓棠,等.冬小麦-夏玉米轮作条件下氮素反硝化损失研究[J].中国农业科学,2004,37(10):1492-1496.
    [55]张玉铭,董文旭,曾江海,等.玉米地土壤反硝化速率与N2O排放通量的动态变化[J].中国生态农业学报,2001,9(4):70-72.
    [56]郑循华,王明星,王跃思,等.华东稻田CH4和N2O排放[J].大气科学,1997,21(2):231-237.
    [57]曾江海,王智平,张玉铭,等.小麦-玉米轮作期土壤排N2O通量及总量估算[J].环境科学,1995,16(1):32-35,67.
    [58]侯爱新,陈冠雄,Cleemput Ovan.不同种类氮肥对土壤释放N2O的影响[J].应用生态学报,1998,9(2):176-180.
    [59] 85-913-04-05攻关课题组.我国农用氮肥氧化亚氮排放量变化趋势预测(1990~2020)[J].农业环境保护,1994,13(6):259-261.
    [60]崔玉亭.苏南农村经济发达地区氮循环特征与农业可持续发展[D]:(博士学位论文).北京:中国农业大学,1998.
    [61] National Academy of Science(NAS), Accumulation of nitrate.Committee on nitrate accumulations. Agriculture Board, Div.of Bioland Agric National Research Council, M.Alexander, Chairman, Washington, D.C.1972.
    [62] U.S.Environmental Protection Agency, National pesticide survey. Summary results of EPA’S national surrey of pesticides in drinking water wells. USEPA. Washington,D.C. Draft 31,Oce.1990.
    [63]马立珊.农田氮素管理与环境质量和作物品质.见:朱兆良、文启孝(主编).中国土壤氮素[M],杭州:江苏科技出版社,1992:267-287.
    [64]朱兆良.我国农业系统中的氮素循环和平衡.见:朱兆良、文启孝(主编),中国土壤氮素[M],杭州:江苏科技出版社,1992:288-303.
    [65]张维理,田哲旭,张宁,等.我国北方农田氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,37(3):372-378.
    [66]马毅杰,马立珊.化肥与生态环境[A].见:植物营养与肥料学会第一届学术讨论会论文[C].成都:成都出版社,1994.
    [67]范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与施肥学报,1998,4(1):6-21.
    [68]赵竟英,宝德俊.潮土硝态氮移动规律及对环境的影响[J].农业环境保护,1996,15(4):166-169.
    [69]吕殿青,杨学云,张航,等.陕西土娄土中硝态氮运移特点及影响因素[J].植物营养与肥料学报,1996,2(4):289-296.
    [70]陈子明,袁锋明,姚造华,等.北京潮土NO3--N在土壤中的移动特点及其淋失动态[J].植物营养与肥料学报,1995,1(2):71-79.
    [71]王小彬,蔡典雄,张志田,等.稳态水流下肥料氮的运移[J].植物营养与肥料学报,1996,2(2):110-115.
    [72]吕殿青,Ove Enteryd,同延安,等.氮肥施用对环境污染的影响[J].植物营养与肥料学报,1998,4(1):8-15.
    [73]高明霞,王国栋,胡田田,等.不同灌溉方式下土娄土玉米根际硝态氮的分布[J].西北植物学报,2004,24(5):881-885.
    [74]邢维芹,王林权,李立平,等.半干旱区玉米水肥空间耦合效应II.土壤水分和速效氮的动态分布[J].土壤,2003,35(3):242-247.
    [75] Benjamin J G, Havis H R, Ahuja L R, et al. Leaching and water flow patterns I every-furrow and alternate-furrow irrigation.Soil Sci.Soc.Amer, 1994, 58, 1511-1517.
    [76]邢维芹,骆永明,王林权,等.半干旱区玉米水肥空间耦合效应I.氮素的吸收和残留及其环境效应[J].土壤,2003,35(2):118-121.
    [77]谭军利,王林权,李生秀.不同灌溉模式下水分养分的运移及其利用[J].植物营养与肥料学报,2005,11(4):442-448.
    [78]梁宗锁,康绍忠,胡炜,等.控制性分根交替灌水的节水效应[J].农业工程学报,1997,13(4):58-63.
    [79]邢维芹,王林权,骆永明,等.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报2002,18(6):46-49.
    [80]邢维芹,王林权,李生秀,等.半干旱区夏玉米的水肥空间耦合效应[J].农业现代化研究,2001,22(3):150-153.
    [81]杜太生,康绍忠,胡笑涛,等.根系分区交替灌溉对棉花产量和水分利用效率的影响[J].中国农业科学,2005,38(10):2061-2068.
    [82]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报,2000,16(1):39-43.
    [83]汪耀富,蔡寒玉,张晓海,等.分根交替灌溉对烤烟生理特性和烟叶产量的影响[J].干旱地区农业研究,2006,24(5):93-98.
    [84]梁宗锁,康绍忠,石培泽,等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26-32.
    [85] Benjamin J G, Porter L K, Duke H R, et al. Nitrogen movement with furrow irrigation method and fertilizer band placement [J].Soil Sci Soc Am.J, 1998, 62(4): 1103-1108.
    [86] Skinner R H, Hanson J D, Benjamin J G. Root distribution following spatial of water and nitrogen supply in furrow irrigated corn [J].Plant and Soil, 1998, 199: 187-194.
    [87] Skinner R H, Hanson J D, Benjamin J G. Nitrogen uptake and partitioning under alternate-andevery-furrow irrigation [J].Plant Soil, 1999, 210: 11-20.
    [88]李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报,2005,21(8):17-21.
    [89]山仑.植物抗旱生理研究与发展半旱地农业[J].干旱地区农业研究,2007,1(1):1-5.
    [90]孙景生,康绍忠,蔡焕杰,等.控制性交替灌溉技术的研究进展[J].农业工程学报,2001,17(4):1-5.
    [91]宋海星,李生秀.限根条件下供氮对玉米光合作用有关生理特性的影响[J].干旱地区研究,2004,22(4):28-32.
    [92]金轲,汪德水,蔡典雄,等.旱地农田肥水耦合效应及其模式研究[J].中国农业科学,1999,32(5):104-104.
    [93]李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区研究,1994,12(1):47-53.
    [94]孟兆江,刘安能,吴海卿.商丘试验区夏玉米节水高产水肥耦合数学模型与优化方案[J].灌溉排水,1997,16(4):18-21.
    [95]刘作新,郑昭佩,王建.辽西半干旱区小麦、玉米水肥耦合效应研究[J].应用生态学报,2000,11(4):540-544.
    [96]张秋英,刘晓冰,金剑,等.水肥耦合对玉米光合特性及产量的影响[J].玉米科学,2001,9(2):64-67.
    [97]于亚军,李军,贾志宽,等.旱作农田水肥耦合研究进展[J].干旱地区农业研究,2005,23(3):220-224.
    [98]韩萍,李海燕,侯长希,等.中国玉米生产30年回顾[J].农艺科学,2007,23(11):202-206.
    [99]潘英华,康绍忠,杜太生,等.交替隔沟灌溉土壤水分时空分布与灌水均匀性研究[J].中国农业科学,2002,35(5): 531-535.
    [100] Kang S Z, Zhang J H. Controlled alternate partial rootzone irrigation: its physiological consequences and impact on water use efficiency [J]. Journal of Experimental Botany, 2004, 55(407): 2437-2446.
    [101]程福厚,李绍华,孟昭清.调亏灌溉条件下鸭梨营养生长、产量和果实品质反应的研究[J].果树学报,2003,20(1):22-26.
    [102]梁继华,李伏生,唐梅,等.分根区交替灌溉对盆栽甜玉米水分和及氮素利用的影响[J].农业工程学报,2006,22(10):68-72.
    [103] Thomas L, Thomp sona, Thomas A. Nitrogen and water Interactions in subsurface drip-rrrigated cauliflower [J]. Soil Science Society of America Journal, 2000, 64: 406-411.
    [104]程素云.施肥在提高旱作小麦水分利用效率中的作用[J].干旱地区农业研究,1987, (2):58-66.
    [105] Brown P J. Water use and soil water deletion by dryland wheat as affected by nitrogen fertilization [J].Agron.J.1972, 63: 43-46.
    [106]李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1):22-28.
    [107]李生秀,李世清,高亚军,等.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):38-46.
    [108] Morgan J A. Interaction of water supple and N in wheat [J].PlantPhysiol, 1984, 76: 112-117.
    [109]陈建军,任永浩,陈培元,等.干旱条件下氮素营养对小麦不同抗旱品种生长的影响[J].作物学报,1996,22(4):483-489.
    [110] Zakia I, Sabine D. Golombek.Interaction of drought and nitrogen availability on drought tolerance mechanisms of some sudanese pearl millet genotypes[J].Rural Poverty Reduction through Research for Development, 2004(10): 5-7.
    [111]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2000,14-38.
    [112]梁宗锁,康绍忠,张建华,等.控制性分根交替灌水对作物水分利用率的影响及节水效应[J].中国农业科学,1998,31(5):88-90.
    [113]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水,2001,20(2): 5-7.
    [114]赵允格,邵明安.不同整地方式下施肥对夏玉米产量及水氮利用效率的影响[J].农业工程学报,2004,20(4):40-44.
    [115]刘芳,于振文,元新华.应用15N示踪法对旱地冬小麦施肥与氮素吸收利用的研究[J].土壤学报,1997,2:30-31.
    [116]刘敏超,曾长立,王兴仁,等.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响[J].农业现代化研究,2000,21(5):309-312.
    [117]赵广才,李春喜,张保明.不同施氮比例和时期对冬小麦氮素利用的影响[J].华北农学报,2000,15(3):99-102.
    [118] Cui Z J, Chen X P, Li J L, et al. Effects of N fertilization on grain yield of winter wheat and apparent N loss [J].Pedosphere, 2006, 16: 806-812.
    [119] Sexton B T, Monncrief J F, Rosen C J, et al. Optimizing nitrogen and irrigation inputs for corn based on nitrogen leaching and yield on coarse textured soil [J]. J EnvironQual, 1996, 25: 982-992.
    [120] Anghinoni I, Barber S A. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply [J].Agron.J, 1980, 72: 658-688.
    [121] Robinson D. Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil [J].Plant and Soil, 2001, 232: 41-50.
    [122]程宪国,汪德水,张美荣,等.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1995,29(4): 67-74.
    [123]兰晓泉.半干旱黄土丘陵区农田水肥效应研究[J].土壤通报,1998,29(4):161-163.
    [124]穆兴民.水肥耦合效应与协同管理[M].北京:中国林业出版社,1999.
    [125] Campbell C A, Cameron D R, Nicholaichuk W, et al. Effect of fertilizer N and soil moisture ongrowth, N content and soil moisture use by spring wheat [J].Can.J.Soil Sci.,1978, 57: 289-310.
    [126] Robinson D. The responses of plants to non-uniform supplies of nutrients [J].New Phytologist, 1994, 127: 635-674.
    [127]王旭刚,郝明德,陈磊,等.长期施肥条件下小麦农田氨挥发损失的原位研究[J].植物营养与肥料学报,2006,12(1):18-24.
    [128]张胜,张翠云,孙振华.河北平原山前地区土壤氨挥发测定试验研究[J].农业环境保护,2002,21(6):527-529.
    [129]徐万里,张云书,刘骅.新疆盐渍化土壤氮肥氨挥发损失特征初步研究[J].生态环境,2007,16(1):176-179.
    [130]凌莉,李世清,李生秀.石灰性土壤氨挥发损失的研究[J].土壤侵蚀与水土保持报,1999,5(6):119-122.
    [131] Wang D J, Liu Q, Lin J H, et al. Optimum nitrogen use and reduced nitrogen loss for production of rice and wheat in the Yangtze Delta region. Environ Geochem Health, 2004, 26: 221-227.
    [132] Riley W J, Ortiz-Monasterio I, Matson P A. Nitrogen leaching and soil nitrate, nitrite, and ammonium levels under irrigated wheat in Northern Mexico. Nutr Cycl Agroecosyst, 2001, 61: 223-236.志,2004,23(5):232-235.
    [136] Delgado J A, Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux [J].Journal of Environmental Quality, 1996, 25(5): 1105-1111.
    [137] Velthof G L, Kuikman P J, Oenema O. Nitrous oxide emission from soils amended with residues [J]. Nutr Cyc Agroecosyst, 2002, 62: 249-261.
    [138] Delwiche C C. Denitrification, nitrification and atmospheric nitrous oxide[M].New York, USA: A willey-Interscience Publication, John Wiley and Sons, 1981, 2-41.
    [139]蒋静艳,黄耀.农业土壤N2O排放的研究进展[J].农业环境保护,2001,20(1):51-54.
    [140]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):47-52.
    [141] Feney J R. Emission of nitrous oxide from soils used for agriculture [J].Nutr Cyc Agroecosyst, 1997, 49: 1-6.
    [142] Mac Kenize A F, Fan M X, Cadrin F. Nitrous oxide emission as affected by tillage, corn-soybean-alfalfa rotations and nitrogen fertilization [J].Can J Soil Sci, 1997, 77: 145-152.
    [143]丁洪,蔡贵信,王跃思,等.玉米-潮土系统中氮肥硝化反硝化损失与N2O排放[J].中国农业科学,2001,34(4):416-421.
    [144] X Hou, H. Tsuruta. Nitrous oxide and nitric oxide fluxes from an upland field in Japan: effect of urea type, placement, and crop residues [J]. Nutrient Cycling in Agriecosystem, 2003, 65: 19-200.
    [145] Teauta M, Beauchamp E C. Nitrous oxide production from urea granules of different sizes [J].J.Environ.Qual.2000, 29: 1408-1413.
    [146]王朝晖,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定——通气法[J].植物营养与肥料学报,2002,8(2):205-209.
    [147] Zhu Z L. Efficient management of nitrogen fertilizers for floodrice in relation to nitrogen transformation in flooded soils [J]. Pedosphere, 1992(2): 97 -114.
    [148]田光明,曹金留,蔡祖聪.镇江丘陵地区稻田氨挥发损失研究[J].南京大学学报(自然科学) ,1997(专集):268-270.
    [149] Tian G M, Cao J L, Cai Z C, et al. Ammonia volatilization from winter wheat field topdessed with urea[J]. Pedosphere, 1998(4): 331-336.
    [150]董文旭,胡春胜,张玉铭.华北农田土壤氨挥发原位测定研究[J].中国生态农业学报,2006,14(3):46-48.
    [151]苏芳,丁新泉,高志岭,等.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J].中国环境科学,2007,27(3):409 -413.
    [152] Bouwman A F. Exchange of greenhouse gases between terrestrial and the atmosphere [J].John Wiley Sons Ltd. 1990: 61-127.
    [153] Veltllof G.L, Oenema O, Postma R, et al. Effect of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland [J].Nutrient Cycling in Agriecosystem, 1997, 46: 257-267.
    [154] Skiba U, Smith K A, Fowler D. Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil [J].Soil Biol.Biolehem, 1993(25): 1527-1536.
    [155]李勇先.稻田土壤中氧化亚氮的释放机制及控制[D].浙江大学硕士论文,2003.
    [156]郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J].应用生态学报,1996,7(3):273-279.
    [157]封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35-40.
    [158] Mummey D L, Smith J L, Bolton J R H. Nitrous oxide flux from a Shrub-steppe ecosystem: sources and regulation [J].SoilBiol. Biochem, 1994, 26(2): 279-286.
    [159] Davidson E A. Sources of nitric oxide and nitrous oxide following wetting of dry soil [J].Soil Sci.Am.J, 1992(56): 95-102.
    [160]周文能,林而达.小麦地氧化亚氮排放特征研究[J].中国农业气象,1994,15(1):6-8.
    [161]盛钰,赵成义,贾宏涛.水肥耦合对玉米田间土壤水分运移的影响[J].干旱区地理,2005,28(6):811-817.
    [162]袁锋明,陈子明,姚造华.土壤中的氮素淋洗[J].见:陈子明主编.氮素产量环境,北京:中国农业科技出版社,1996:191-208.
    [163]王西娜,王朝辉,李生秀.施氮量对夏季玉米产量及土壤水氮动态的影响[J].生态学报,2007,27(1):197-204.
    [164]梁运江,依艳丽,许广波,等.水肥耦合效应对保护地土壤硝态氮运移的影响[J].农村生态环境,2004,20(3):32-36.
    [165]倪余文,区自清.土壤优先水流及污染物优先迁移的研究进展[J].土壤与环境,2000,9(1):60-63.
    [166]李玉山,喻宝屏.土壤深层储水对小麦产量效应的研究[J].土壤学报,1980,17(1):43-54.
    [167] Southwick L M, Willis G H, Johnson D C, et al. Leaching of nitrate,atrazine and metribuzin from sugarcane in Southern Louisiana[J].J Environ Qual, 1995(24): 684-690.
    [168]党廷辉,马海涛,高晓妮.矿态氮反映旱地土壤供N能力的研究[J].陕西农业科学,1991, (6):14-15.
    [169]袁新民,同延安,杨学云,等.施用磷肥对土壤NO3-N累积的影响[J].植物营养与肥料,2000, (64):397-406.
    [170]樊军,郝明德.旱地农田土壤剖面硝态氮累积的原因初探[J].农业环境科学报,2003,22(3):263-266.
    [171]李世清,高亚军,杜建军,等.连续施用氮肥对旱地土壤氮素状况的影响[J].干旱地区农业研究,1999,17(3):28-34.
    [172]李世清,王瑞军,李紫燕,等.半干旱半湿润农田生态系统不可忽视的土壤氮库-土壤剖面中累积的硝态氮[J].干旱地区农业研究,2004,22(4):1-13.
    [173]董依平,李继云,刘全幼.收获后不同小麦品种土壤硝态氮残留量的研究[J].环境科学学报,2000,20(2):251-253.
    [174]崔振岭,石立委,徐久飞,等.氮肥施用对冬小麦产量、品质和氮素表观损失的影响研究[J].应用生态学报,2005,16(11):2071-2075.
    [175] X Chen, F Zhang, V Romheld, et al. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by animproved Nmin method [J].Nutrient Cyclingin Agroecosystems, 2006, 74: 91-98.
    [176]张国梁,章申.农田氮素淋失研究进展[J].土壤,1998,6:291-297.
    [177] Oikeh S O, Carsky R J, Kling J G, et al. Differential N uptake by maize cultivars and soil nitrate dynamics under N fertilization in West Africa.Agriculture[J].Eco system and Environment, 2000(79): 187-197.
    [ 178 ]李生秀.提高旱地土壤氮肥利用率的途径和对策[J].土壤学报,2002,36(增刊):56-76.
    [ 179 ] MarschnerH著.李春俭译.高级植物的矿质营养[M].北京:中国农业大学出版社,2001:355-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700