用户名: 密码: 验证码:
地震岩石物理学及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震岩石物理学是传统的岩石物理学与勘探地震学交叉构成的一门新兴学科,被誉为连接地震数据(属性参数)与油藏特性(储集参数)的“桥梁”,近十多年来在国际上得到了充分重视和快速发展。地震岩石物理学致力于弄清储层岩石及其所含流体性质与地震属性参数之间的内在关系,基于岩石弹性、粘弹性和各向异性等物理特性的系统理论和介质模型,来建立地震属性参数与储层/油藏特性参数之间的经验关系,通过流体替换模拟和叠前弹性参数反演等技术手段,为隐蔽油气藏勘探和剩余油开采监测等的地震资料解释提供基础依据,有力地促进了地震岩性识别、储层流体检测、油藏地震监测等技术的发展。
     国内开展地震岩石物理学研究的进程相对较为迟缓,目前尚没有一部系统论述地震岩石物理学理论基础和应用研究的专著。为了推进地震岩石物理学在国内的研究和应用,本论文结合准噶尔盆地腹部隐蔽油气藏勘探的地震岩石物理学应用研究,阐明了地震岩石物理学的基本定义、主要内容、研究思路与发展趋势;系统论述了地震岩石物理学的基础理论、介质模型、经验关系和实验手段;开展了从岩心取样测试、数据相关分析、弹性参数对比、经验模型建立,到流体替换模拟、叠前地震反演和储层油气预测到的全过程地震岩石物理学应用研究,取得了多项创新性的方法研究成果和应用研究成果。
     通过对传统的岩石物理学及测井岩石物理分析的研究目标及内容对比,阐明了地震岩石物理学的基本定义,提出了用一个新的英文单词“Seismophysics”来表述地震岩石物理学的建议。同时,简要回顾了地震岩石物理学的发展历程和国内研究现状;分析指出了地震岩石物理学的发展趋势和发展方向。从地震资料解释对岩石物理学的需求出发,将地震岩石物理学研究划分为基础研究和应用研究两大部分,并阐明了两部分的具体研究内容。首次明确提出了地震岩石物理学应用研究的基本思路:①实验室模拟储层温压条件下不同流体饱和情况的全套岩石物理参数测试和储层流体特性参数测试;②岩样测试数据的岩石物理(包括弹性参数)分析,建立各种岩石物理参数与地震属性参数之间的经验关系模型:③测井解释成果与岩石物理关系模型的标定,以及结合地震正演模拟的地震属性敏感度分析:④基于各向同性和各向异性的储层流体替换和AVO正演模拟;⑤以地震叠前弹性参数反演为主的储层岩石物理特征表征和储层含油气性预测。
     在国内首次较全面地系统论述了地震岩石物理学的应用基础。在“有效介质理论模型”部分,重点分析了空间平均模型、自适应(自洽)模型和散射理论模型的假设前提与应用条件,论述了双相、多相介质的自适应近似和不同形状包裹体的几何描述以及裂隙介质模型的不同数学表述。在地震岩石物理学的核心内容“多孔介质的流体机制模型”部分,重点论述了Gassmann方程、Biot理论、喷流机制、BISQ模型及斑块饱和模型等多孔介质模型所基于的流体流动机制,对比分析了不同模型的衰减与频散机理。在“孔隙流体的地震特性”部分,从应用研究的角度介绍了计算岩石孔隙流体特性的数学表达式(Batzle和Wang,1992),论述了随温度、压力变化的孔隙流体密度和体积模量等流体特性参数的预测方法。在“速度影响因素分析(经验关系)”部分,集中论述了岩石密度、压力、温度、饱和度、孔隙度、泥质含量、流体饱和度等因素对地震波速度的影响作用,相关的通用性经验关系模型,以及纵、横波速度关系和岩石各向异性研究等地震岩石物理学实验研究的重要成果。最后介绍了人造实验岩样(CIPS)和数字图像分析(虚拟数字实验)技术等实验室测试方法与模拟技术的最新进展。
     针对准噶尔盆地腹部隐蔽油气藏勘探的实际需求,开展了隐蔽油气藏勘探阶段的地震岩石物理学应用研究。采集了研究区4个区块10口钻井多个目的层组的130多块岩心样品,在不同温压条件和不同流体饱和条件下进行岩样参数测试,获取了一整套岩石物理实验数据;通过实验数据的系统性分析,研究了储层物性和弹性参数变化的总体规律和相关关系,建立了研究区的地震岩石物理学模型;根据岩石物理分析成果,结合实际测井资料,开展了流体替换模拟和地震弹性参数反演,给出了研究区储层含油气性预测成果图。最后,在对所取得的全部成果进行总结归纳的基础上,给出了几点认识与启示,并指出了不足之处。
     准噶尔盆地腹部储层地震岩石物理学应用研究取得了16项主要成果,其中包括6项重要创新成果。
     ●三项方法研究的创新成果
     (1)不同流体饱和情况下纵、横波速度变化的定量分析,首次揭示了研究区三工河组砂岩储层含不同流体时V_P和V_S的总体变化规律。即相对于干层(或含气层)的速度测量平均值,含油层和含水层的V_P均增高约5%,含油层的V_S略有增高(<1%),而含水层的V_S降低约2.5%;孔隙度愈低的砂岩储层含油后V_P增高幅度愈大(4.2%→5.6%),而V_S增高幅度愈小(1.5%→0.8%);含水层相对于干层(或含气)的V_P增高和V_S降低则都与砂岩孔隙度无明显关联。
     (2)为了探索利用地震资料进行流体检测的基础依据,同时求解研究区储层砂体预测和油气检测的实际勘探需求,创造性地开展了岩样弹性参数的流体敏感性对比分析。根据研究区储层砂岩岩样在模拟储层条件下不同流体饱和时测量的纵、横波速度和密度,计算了纵、横波速度比γ、纵波阻抗Z_P、横波阻抗Z_S、泊松比、体积模量K、剪切模量μ、杨氏模量E、纵波模量M、拉梅系数λ、压缩系数β等岩石弹性参数,通过论据充分的图表定量分析对比了在分辨“气/油”、“油/水”及“气/水”时各个弹性参数平均值的相对变化幅度。
     (3)在单个弹性参数随流体改变而相对变化的差异对比分析基础之上,根据岩石弹性力学和Biot-Gassmann理论对不同弹性模量和弹性参数的物理定义,考虑到研究区致密型砂岩的弹性性质明显依赖于岩石骨架,创造性地提出了选用明显依赖于岩石骨架性质的模量或参数,来消除反映孔隙流体性质较敏感的模量或参数中骨架因素影响,以两者构成的弹性参数组合来提高储层流体判别能力的思想。通过多种弹性参数组合的对比试验,最终优选出弹性模量比Kμ和弹性系数比λμ两个对研究区储层孔隙流体改变最敏感的弹性参数组合。
     ●三项应用研究的创新成果
     (1)通过部分流体饱和的岩石物理测试与分析,首次揭示了研究区储层速度随含水饱和度变化的趋势及其与岩石孔隙度的关系。研究区储层砂岩的纵波速度随饱和度的增加而缓慢增高,在含水饱和度从0变化到1的区间内,不同孔隙度岩样V_P的变化率分别为2.60%(φ<10%),2.49%(φ:10~15%),1.35%(φ>15%),即孔隙度愈低V_P增高愈明显;横波速度V_S随含水饱和度的增加略有降低,但降低幅度与岩样孔隙度的大小没有明显的统计关系。实验结果完全符合Biot理论和Gassmann方程的预测结论。
     (2)在研究区首次采用地震岩石物理分析的重要技术手段——流体替换,进行不同含油/气饱和度储层地震响应特征变化的正演模拟研究。针对研究区Y1井白垩系清水河组一个21m厚的气水同层储层和侏罗系三工河组一个11m厚的油水同层储层,分别进行了三种含气饱和度的“水→气”流体替换和三种含油饱和度的“水→油”流体替换。推演了流体替换的详细计算过程,给出了流体替换后的密度、速度拟测井曲线及不同饱和度的合成地震记录,分析了地震响应随含油/气饱和度改变的相应变化特征。
     (3)首次建立起了准噶尔盆地腹部研究区侏罗系三工河组储层的地震岩石物理学模型(包括各种经验关系的应用条件)。包括速度—压力变化规律,速度—温度变化规律,速度—密度转换关系,密度—孔隙度经验关系,渗透率—泥质含量经验关系,不同流体饱和情况下的纵—横波速度关系等及其相应的应用条件,以及研究区储层流体检测的地震属性参数和弹性参数敏感性分析成果及敏感性参数优选建议。给出了拉梅系数比λ/μ的三维叠前弹性参数反演结果和Y1井区西山窑组2砂组储层含油气性综合预测图。
Seismic Rock Physics is a interdisciplinary studies producing in traditional Rock Physics and the Prospecting Seismology,being praised as a "bridge" joining the seismic data(attribute parameter)with oil reservior property(elastic parameter),last more than ten years obtain recognition sufficiently and development speedily abroad. Seismic rock physics is devoted itself to clarify the intrinsic relations that the nature of rock and its pore fluid versus the seismic property parameter.Based on the systematic theory and media models of rock physics property such as elastic, viscoelasticity and anisotropy in rocks,the empirical relations between seismic attribute versus reservior property parameter are established.By uses of the techniques such as fluid substitution and prestack elastic parameter inversion and so on,the reference fundamentals on seismic data interpretation are supplied for subtle reservoir prospecting and remaining oil production monitoring.Forcefully accelerate the techniques development such as seismic lithology recognition,hydrocarbon detection and seismic reservior monitoring etc.
     The research and application of seismic rock physics is delay relatively at home, yet there is not the treatise systematically to expound the theoretical base and the applied research of seismic rock physics at the moment.In order to carry forward seismic rock physics research and application at home,uniting the applied research to subtle reservoir prospecting in belly of Zunger basin,this dissertation clarified the funda- mental definition,main substance,research mentality,and development tendency for seismic rock physics;expounded the basic theory,media models, empirical relations,and measurement techniques of seismic rock physics;the full process of applied research involved with the core sampled,measurement data analysis,elastic parameter compares,empirical model building,fluid substitution, prestack seismic inversion,and reservior oil/gas prediction are discussed systematically.Many researched achievements are acquired including innovative method research results and applied research results.
     By means of compared with research target and substance of tradition rock physics and petrophysics analysis,clarify the fundamental definition of seismic rock physics,propose a news term "seismophysics" to state the seismic rock physics.At the same time,the development course and domestic research present situation were briefly reviewed to the angle through the petroleum industry demand promotion; analyse the development tendency;point out the development orientation for seismic rock physics.According the real demand of seismic data interpretation to rock physics, research to divide seismic rock physics into basic research and applied research. Moreover,expound the concrete substances of the two parts.First clearly and definitely propose the research mentality of seismic rock physics applied research:①Rock physics property parameter testing for core samples and its pore fluid simulated to keep the temperature and pressure in reserve in the laboratory;②Rock physics analysis(consist of the elastic parameter)for samples test data,empirical relation models established between different rock physics parameter versus the seismic attribute parameters;③Empirical relation models scaling with logging interpretation, and seismic attributes fluid-sensibility analysis combined with seismic forword modeling;④Fluid substituting and AVO modeling based on isotropy and anisotropy prospecting for reservior;⑤Reservior characterization and hydrocarbon detection by use of the prestack seismic elastic parameter inversion and so on.
     First more systematically expound the basis theory of seismic rock physics at home,consist of different type of media models,empirical relations,and measurement techniques and so on.In "Effective-Medium Model" section,the stress was analysed the assumptions and limitations for volume average model, self-consistent model,and scattering theoretic model,Expound the self-consistent approximations to two-phase media,heterogeneous media,the geometry description to different shape inclusion,and the mathematic expression to a cracked media.In "Machanism of Acoustic Propagation in a Fluid Saturated Porous Media" section,the kernel substance of seismic rock physics,emphatically expound Gassmann's relations, Biot's theory,Squirt(local flow)mechanism,BISQ(Biot-squirt)model and Patchy saturation model,and what based on fluid flow mechanism.Comparative analysis attenuation and dispersion mechanism expressed in distinct model.In "Seismic Property of Fluid" section,from the angle of applied research introduce in some expressions for calculating the fluid seismic property in porous rock(Batzle and Wang, 1992),clarify the prediction methods to fluid property parameter such as fluid density and bulk modulus along with the adaptive changes of temperature and pressure.In "Analyzing for Velocity Effects(Empirical Relations)",many empirical relations was expounded in seismic wave velocity effected from pressure,temperature,rock density, porosity,clay content,saturation,and correlated common empirical relation models, along with V_P-V_S relations and rock anisotropy research in laboratory.Finally introduce the new progress in test methods and simulation techniques such as the artificial rock sample(CIPS)and the digital image analysis(virtual digital test)and so on.
     In view of actual demand from the subtle reservoir prospecting on the belly in Zhunger basin,seismic rock physics applied research was carried out.More than 130 target rock samples was collected from 10 wells on the 4 tracts in research area.One complete of set rock physics test data was gained from these samples testing for different fluids-saturated at the temperature and pressure in reservior.By means of the test data systematically analysis,total variation regular and correlation relations between rock physical property parameters and elastic parameters was revealed,the seismic rock physics model was established in the research area.On the basis of the rock physics research results,integrated actual logging data,the fluid substitution modeling and the seismic elastic parameter inversion was launched.The hydrocarbon -bearing predicted map on Jurassic target was given out in the research area.Finally, above the complete acquired achievements summing up,proposed several understands and inspirations,pointed out some defects in this research work yet.
     Seismic rock physics applied research on the reservoir of belly in Zhunger basin acquired mainly 16 term achievements among which included 6 significant blazing new trails.
     ●Three method research blazing new trails
     (1)The quantitative analysis on velocity changes with different fluid-saturated reveals firstly the total velocity variation regular when different fluid-bearing sandstone reservior in Sangonghe formation in the research area.As compared to velocity average measurements of dry bed(either gas-bearing bed),the V_P of oil-bearing bed and V_P of water-bearing bed all increase about 5%,the V_S of oil-bearing bed get higher a little(<1%),and the V_S of water-bearing bed decrease about 2.5%.In oil-bearing bed,the lower is porosity of sandstone,the higher is V_P increase(from 4.2%up to 5.6%),and the lower is V_S increase(from 1.5%down to 0.8%).The V_P increase or decrease of water-bearing bed against dry bed is not related with sandstone porosity obviously.
     (2)In order to probe on basis of fluid detection from seismic data,and solved the actual demand for sand body prediction and hydrocarbon detection in the research area at the same time,fluid sensitivity comparative analysis of rock elastic parameter was carried out creatively.On the basis of V_P,V_S and densityρmeasurements,the rock elastic parameters as velocity ratioγ,compressional wave impedance Z_P,shear wave impedance Zs,Poisson ratioσ,bulk modulus K,shear modulusμ,Yang's modulus E,compressional wave modulus M,Lame coefficientλand compressional coefficientβwere calculated.By means of the argument sufficient diagram, quantitatively analysis was made to compare the relative change scopes of every elastic parameter for distinguishing "gas/oil"、"oil/water" and "gas/water".
     (3)Based on physics definition of the elastic moduli and elastic parameter with Biot-Gassmann's theory and the rock mechanics,above the comparative analysis of average measurement divergences from the elastic parameter changed relatively with the fluid altering,one creative idea that raising the detectiom capabilities for reservior fluid was proposed by use of the parameter array that choosing a modulus either parameter obviously dependent on rock frame nature to remove the frame effects in another modulus either parameter obviously dependent on fluid nature in rocks.By means of much kinds of pair-comparisons parameter array testing,that the resilience compose,finally the most optimization array as elastic moduli ratio Kμand elastic coefficient ratioλ/μwas chosen out to detect the reservior fluid in research area.
     ●Three applied research blazing new trails
     (1)Through rock physics testing and analysing under partial saturation condition, First fined the variation tendency in reservior velocity changes with the water saturation against the rock porosity in research area.The P-wave velocity of sandstone gets higher slowly with the water saturation increase,as water saturation from 0 up to 1, The V_P variance ratio of different porosity rock samples is 2.60%(φ<10%),2.49% (φ:10~15%)and 1.35%(φ>15%)separately.The lower porosity of sandstone is, the higher V_P increase is obviously.S-wave velocity V_S get lower a little with the water saturation increase,there is not the obvious statistics relations against the rock porosity.This test cognition accord with Biot's theory and Gassmann's equation prediction completely.
     (2)The significant technique in seismic rock physics analysis——fluid substitution was first adoptd in the research area to simulate the feature changes of seismic responds with different hydrocabon saturation in reservior.Aimed at a gas/water bed of 21m thickness among Cretaceous and a oil/water bed of 11m thickness among Jurassic in the Y1 well,the "water→gas" substitution and "water→oil" substitution was carried on three kinds of gas saturation and three kinds of oil saturation separately.Fluid medium substitution and three kinds Han's oil saturation degree Fluid medium substitution.Deduce the detailed calculation process of fluid substitution.Give out the virtual logging curves of dencity and velocity,and synthetic seismograms under three kinds of saturation after fluid substitution.The feature changes of seismic responds with different hydrocabon saturation in reservior were discussed.
     (3)First having establish the seismic rock physics models(including the applied limitations for various empirical relations)of Sangonghe formation Jurassic reserviors in belly of Zhunger basin.Consist of velocity-pressure relations,velocity-temperature relations,velocity-dencity relations,dencity-porosity relations,permeability -caly content,V_P-V_S relations with different hydrocabon saturation in reservior. Along with the fluid sensitive parameters or parameter array for reservior hydrocarbon detection in the research area.Give out the 3-D prestak inversion results of elastic coefficient ratioλ/μ,together with the hydrocabon prediction plan view to Xishanyao-2 formation in the Y1 well.
引文
[1] Gassmann R, Elastic waves through a packing of spheres [J]. Geophysics, 1951, 16: 673-682
    [2] Biot M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, I: Low frequency range, and II: Higher-frequency range [J]. Journal of the Acoustical Society of America, 1956,28: 168-196
    [3] Wyllie M. R. J., Gregory A. R., Gardner L. W., Elastic wave velocities in heterogeneous and porous media [J]. Geophysics, 1956,21:41-70
    [4] Biot M. A., and Willis D. G., The elastic coefficients of the theory of consolidation [J]. Journal of Appl. Mech., 1957, 24(3): 594-601
    [5] Wyllie M. R. J., Gregory A. R., Gardner L. W., An experimental investigation of factors affecting elastic wave velocities in porous media [J]. Geophysics, 1958,23: 459-493
    [6] Geerstma J. and Smith D. C., Some aspects of elastic wave propagation in fluid—saturated porous solids [J]. Geophysics, 1961,26: 169-181
    [7] Hashin Z. and Shtrikman S., A variational approach to the elastic behavior of multiphase materials [J]. Journal of Mech. Phys. Solids, 1963, 11: 127-140
    [8] Hill R., A self-consistent mechanics of composite materials [J]. Journal of the Mechanics and Physics of Solids, 1965, 13: 213-222
    [9] King M. S., Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturated [J]. Geophysics, 1966, 31(1): 50-73
    [10] O'Connell R. J. and Budiansky B., Seismic velocities in dry and saturated cracked solids [J]. Geophysical Research, 1974, 79: 5412-5426
    [11] Kuster G. T. and Toksoz M. N., Velocity and attenuation of seismic waves in two-phase media, Part 1: Theoretical formulations [J]. Geophysics, 1974, 39 (3): 587-606
    [12] Kuster G. T. and Toksoz M. N., Velocity and attenuation of seismic waves in two-phase media: Part 2 [J]. Geophysics, 1974, 39 (3): 607-618
    [13] Gardner G. H. F., Gardner L. W., Gregory A. R., Formation velocity and density—The diagnostic basics for stratigraphic traps [J]. Geophysics, 1974, 39 (6) , 770-780
    [14] White J. E., Computed seismic speeds and attenuation in rocks with partial gas saturation [J]. Geophysics, 1975,40: 224-232
    [15] Brown R. and Korringa J., On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid [J]. Geophysics, 1975,40(3): 608-616
    [16] Gregory A. R., Fluid saturation effects on dynamic elastic properties of sedimentary rocks [J]. Geophysics, 1976,5: 895-921
    [17] Cheng C. H., and M. N. Toksoz, Inversion of seismic velocities for the pore aspect ratio spectrum of a rock [J]. Journal of Geophysical Research, 1979, 84,7533-7543.
    [18] Hudson J.A., Wave speeds and attenuation of elastic waves in material containing cracks [J]. Geophysical Journal of the Royal Astronomical Society, 1981. 64(1): 133-150
    [19] Ostrander W. J., Plane-wave reflection coefficients for gas sands at non-normal angles of incidence [C]. 52nd Annual International Meeting, 1982, SEG Expanded Abstracts: 216-218
    [20] Zimmerman R. W., The elastic moduli of a solid with spherical pores: New self-consistent method [J]. International Journal of Rock Mechanics and Mining Sciences, 1984, 21: 339-343
    [21] Shuey R. T., A simplification of the Zoeppritz equations [J]. Geophysics, 1985, 50(3): 609-614
    [22] Castagna J P, Batzle M L, Eastwood R L., Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks [J]. Geophysics, 1985, 50 (4): 571-581
    [23] Han D., Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments [D]: Ph.D. dissertation, Stanford University, 1986
    [24] Han D. H., Nur A., Morgan D., Effects of porosity and clay content on wave velocities in sandstones [J]. Geophysics, 1986,51 (11): 2093-2107
    [25] Smith GC. and Gidlow P.W., Weighted stacking for rock property estimation and detection of gas [J]. Geophysics Prospecting, 1987,35(4): 993-1014
    [26] Nur A. and Wang, Z., Seismic and acoustic velocities in reservoir rocks: Experimental studies [C]. 58th SEG Annual International Meeting, 1988
    [27] King M. S., R. W. Zimmerman, and R. F. Corwin, Seismic and electrical properties of unconsolidated permafrost [J]. Geophysical Prospecting, 1988, 36: 349-36
    [28] Wang Z. and A. Nur, Dispersion analysis of acoustic velocities in rocks [J]. Journal of the Acoustical Society of America, 1990, 87: 2384-2395
    [29] Mavko G. and Jizba D., Estimating grain-scale fluid defects on velocity dispersion in rocks [J]. Geophysics, 1991, 56(7): 1940-1949
    [30] Wang Z. and A. Nur, Seismic and acoustic velocities in reservoir rocks, Vol.2 [M]. SEG Geophysics Reprint Series, No. 10. 1992
    [31] Mavko G. and Jizba D., Estimating grain-scale fluid effects on velocity dispersion in rocks [J]. Geophysics, 1991,56: 1940-1949
    [32] Batzle M. and Wang Z., Seismic properties of pore fluids [J]. Geophysics, 1992, 57(11): 1396-1408
    [33] Mukerji T. and Mavko G., Pore fluid effects on seismic velocity in anisotropic rocks [J]. Geophysics, 1994, 59: 233-244
    [34] Xu S. and White R. E., A new velocity model for clay-sand mixtures [J]. Geophysical Prospecting, 1995,43: 91-118
    [35] Dvorkin J., Mavko G., and Nur A., Squirt flow in fully saturated rocks [J]. Geophysics, 1995, 60: 97-107
    [36] Tao G., M. S. King, and M. Nabi-Bidhendi, Ultrasonic wave propagation in dry and brine-saturated sandstones as a function of effective stress: Laboratory measurements and modeling [J]. Geophysical Prospecting, 1995,43,299-327
    [37] Dvorkin J. and Nur A., Elasticity of high-porosity sandstones: Theory for two North Sea datasets [J]. Geophysics, 1996,61(5): 1363-1370
    [38] Mavko G., Mukerji T., and Dvorkin J., The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media [M]. Cambridge University Press, 1998
    [39] Batzle M., Christiansen R., Han D. H., Reservoir recovery processes and geophysics [J]. The Leading Edge, 1998,17(10): 1444-1447
    [40] Dvorkin J., Moos D., Packwood J., and Nur, A., Identifying pathy saturation from well logs [J]. Geophysics, 1999, 64(6): 1756-1759
    [41] Wang Z., and A. Nur, Seismic and acoustic velocities in reservoir rocks, Vol.3 [M]. SEG Geophysics Reprint Series No. 19. 2000
    [42] Lumley D. E.and Meadows M., A risk analysis spread-sheet for both time-lapse VSP and TL seismic reservoir monitoring [J]. Expanded Abstracts of 70 Annual Internat SEG Mtg., 2000, 1647-1650
    [43] Wang Z., Fundamentals of seismic rock physics [J]. Geophysics, 2001, 66 (2): 398-412
    [44] Hilterman F. J., Seismic Amplitude Interpretation [M]. EAGE Distinguished Instructor Series, No.4, 2001
    [45] Hudson J. A., T. Pointer, and E. Liu, Effective-medium theories for fluid-saturated materials with aligned cracks [J]. Geophysical Prospecting, 2001,49: 509-522.
    [46] Avseth P., Mukerji T., Jorstad A., Mavko G., and Veggeland T., Seismic reservoir mapping from 3D AVO in a North Sea furbidite system [J]. Geophysics, 2001, 66 (5): 1157-1176
    [47]Wang Z.,Seismic anisotropy in sedimentary rocks,Part 1:A single-plug laboratory method;Part 2:Laboratory data[J].Geophysics,2002,65:1415 - 1440.
    [48]King M.S.and J.R.Marsden,Velocity dispersion between ultrasonic and seismic frequencies in brine-saturated reservoir sandstones[J].Geophysics,2002,67:254-258.
    [49]Carcionc J.M.,H.B.Helle,N.M.Pham,and T.Toverud,Pore pressure estimation in reservoir rocks from seismic reflection data[J].Geophysics,2003,68:1569-579
    [50]Chapman M.and Liu E.,Theories for fluid substitution in fractured carbonate reservoirs[C].EAGE 66th Conference Expanded Abstructs,2004,710-714
    [51]Meadows M.,D.Adams,R.Wright,et al,Rock physics analysis for time-lapse seismic at Schiehallion field,North Sea[J].Geophysical Prospecting,2005,53:205-213
    [52]King M.S.,The development of rock physics in seismic exploration[J].Geophysics,2005,70(6):3-8
    [53]SEG/Denver 2000-2007 Technical Program Expanded Abstract[CD].SEG International Exposition and 70th-77th Annual Meeting,2000-2007
    [54]贺振华主编.反射地震资料的偏移与反演方法[M].重庆:重庆大学出版社,1989
    [55]史謂,沈联蒂。根据波速-压力关系评价岩石岩性、物性的实验研究[J].地球物理学报,1990,33(2):21-219
    [56]李庆忠.岩石的纵、横波速度规律[J].石油地球物理勘探,1992,27(1):1-12
    [57]布尔贝,等著.许云译。孔隙介质声学[M].北京:石油工业出版社,1994
    [58]万明浩,等著.岩石物理性质及其在石油勘探中的应用[M].北京:地质出版社,1994
    [59]沈联蒂,史謂.岩性、含油气性、有效覆盖压力对纵橫波速度的影响[J].地球物理学报,1994,37(3):391-398
    [60]M.Simaan,F.Aminzadeh著.王炳章等译。石油勘探中的人工智能和专家系统[M].北京:石油工业出版社,1996
    [61]韩文功,李红梅,杨云岭,等.济阳坳陷岩芯弹性和物性参数的实验室测量及分析[J].石油物探,1997,36(1):21-27
    [62]贺振华,黄德济,等著.复杂油气藏地震波场特征方法理论及应用[M].成都:四川科学技术出版社,1999
    [63]王炳章.勘探地球物理方法技术的最新进展[J].石油地球物理勘探,1999,34(4):465-483
    [64]魏建新.走进各向异性孔隙弹性时代[J].石油物探译丛,1999(3):1-9
    [65]杨东全.岩石物理性质和钻柱涡动机理研究[D](博士学位论文).北京:清华大学,1999
    [66]杨顶辉,张中杰,等.双相各向异性研究、问题与应用前景[J].地球物理学进展,2000,15(2):8-21
    [67]陈颐,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001
    [68]云美厚.油藏注水强化开采地震监测技术的研究与应用[D](博士学位论文).北京:中国地质大学,2001
    [69]Castagna j.P著,王炳章译.地震岩性分析技术的最新进展:新世纪地球物理发展和展望[J].石油物探,2001(增刊):23-28
    [70]史謂,杨东全.岩石波速和孔隙度、泥质含量之间的关系研究[J].北京大学学报(自然科学版),2001,37(3):379-384
    [71]杨顶辉,陈小宏.含流体多孔介质的B1SQ模型[J].石油地球物理勘探,2001,36(5):146-159
    [72]朱建伟,何樵登,田志禹.基于BISQ机制的含油水孔隙介质地震波波动方程[J].石油物探,2001,40(4):8-13
    [73]甘利灯.四维地震技术及其在水驱油藏监测中的应用[D](博士学位论文).北京:中国地质大学,2002
    [74]黄绪德著.油气预测与油气藏描述:地震勘探直接找油气[M].南京:江苏科学技术出版,2003
    [75]贺振华,李亚林,曹均,等.地层温压条件下超声波侧试技术[J].勘探地球物理进展,2003,26(2):84-87
    [76]马中高,管路平,贺振华,等.模型正演优选地震属性进行储层预测[J].石油学报,2003,24(6):35-39
    [77]王咸彬.全三维储层解释技术及其应用[J].石油物探,2003,42(4):480-485
    [78]史謌,沈文略,杨东全.岩石弹性波速度和饱和度、孔隙流体分布的关系[J].地球物理学报,2003,46(1):138-142
    [79]朱成宏.各向异性研究的新进展[J].勘探地球物理进展,2003,26(5-6):357-366
    [80]牛滨华,孙春岩.地震波理论研究进展——介质模型与地震波传播[J].地球物理学进展,2004,19(2):255-263
    [81]王离迟,等.准噶尔盆地中国石化腹部区块隐蔽油气藏勘探实践[C].西部新区勘探论文集,北京:石油工业出版社,2004,71-84
    [82]许江桥,等.准噶尔盆地中部1区块隐蔽圈闭识别研究[C].西部新区勘探论文集,北京:石油工业出版社,2004,216-224
    [83]赵群.模拟天然气水合物的岩石物理特性模型实验[J].地球物理学报,2005,48(3):649-655
    [84]石玉梅,姚逢昌,刘雯林.陆相碎屑岩油藏长期水驱时移地震监测的可行性[J].石油地球物理勘探,2005,40(3):329-333
    [85]尹军杰,刘学伟,李文慧.地震波散射理论及应用研究综述[J].地球物理学进展,2005,20(1):123-134
    [86]钟伟,杨宝俊,张智.复杂介质地震波场研究进展[J].世界地质,2005,24(4):402-407
    [87]邓继新,王尚旭,俞军.孔隙流体分布对部分饱和储层砂岩速度实验结果的影响及理论分析[J].石油物探,2005,44(5):495-498
    [88]石玉梅,姚逢昌,等.时移地震监测水驱前沿的方法和应用研究[J].地球物理学报,2006,49(4):1198-1205
    [89]安勇,牟永光,方朝亮.沉积岩的速度、衰减与岩石物理性质间的关系[J].石油地球物理勘探,2006,41(2):188-192
    [90]王喜双,甘利灯,等.油藏地球物理技术进展[J].石油地球物理勘探,2006,41(5):607-613
    [91]邹新宁,孙卫.盒8地层岩石物理参数及地震响应模型研究[J].中国石油大学学报(自然科学版),2006,30(2):21-25
    [92]金龙,陈小宏,姜香云.利用地震资料定量反演孔隙度和饱和度的新方法[J].石油学报,2006,27(4):63-66
    [93]马丽娟,郑和荣.准噶尔盆地侏罗系储层含油气性相关岩石物理参数[J].石油与天然气地质,2006,27(5):614-619
    [94]魏嘉.定量地震解释离我们有多远[J].勘探地球物理进展,2006,29(6):433-437
    [95]马中高,伍向阳.石油流体弹性参数的实验研究[J].石油物探,2007,46(1):94-99
    [96]李维新,史謌,等.岩石物理弹性参数规律研究[J].地球物理学进展,2007,22(5):1380-1385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700