用户名: 密码: 验证码:
超宽带电磁法正演模拟及反演成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出用超宽带(UWB)电磁脉冲进行地下目标体探测或穿墙探测的方法,即超宽带电磁法。它结合了瞬态电磁场理论、窄脉冲信号发射技术、高速采样技术、UWB天线和信号处理技术等学科的研究成果,具有模拟精确、无损伤、分辨率高和探测深度大(或穿透能力强)等优点。
     本文深入分析了UWB电磁波在地下有耗介质里的传播特征、能量分布特征、分辨率与探测深度、发射电磁脉冲的时宽或频宽与回波中有效信息量的关系等基础理论问题;开展了用超宽带电磁脉冲对地下介质的高分辨率探测研究,使用有限面积的口径天线,馈入大功率、窄脉冲信号,以同时提高探测深度和分辨率;用高阶时域有限差分(FDTD)法对任意复杂地下介质模型和穿墙生命探测的理论模型进行数值模拟,揭示了窄脉冲电磁波在复杂介质里的传播规律和目标的脉冲响应特征;给出了适合UWB电磁法的电导率和介电常数同时重构的反演法和处理方法建议。
     论文主要成果如下:
     1.将时域卷积完全匹配层(CPML)和高阶时域有限差分法相结合,模拟了有限面积的口径天线辐射的UWB电磁波场,编制了UWB电磁法的三维高阶FDTD模拟软件,能对任意复杂地下有耗介质进行数值模拟。
     2.改进了CPML吸收边界条件的迭代公式里的卷积计算方法,提出分段线性卷积完全匹配层(PCPML)吸收边界处理方法,进一步改善了边界吸收效果。
     3.分别用频域的解析解法和时域的FDTD解法分析了均匀有耗介质空间里,有限面积口径天线的窄脉冲辐射场的传播特点与能流密度的空间分布特点;首次揭示了电磁导弹能流密度慢衰减的本质原因,客观地评价了电磁导弹在探地方面的应用价值。
     4.实现了任意复杂介质的UWB电磁波场模拟。直观显示了UWB电磁波在几种典型地下探测模型和地面上穿墙探测人体模型里的传播过程,解释了电磁波与有耗地下介质的相互作用机理;分析了天线参数和地电参数对辐射场性能的影响,进而讨论了UWB电磁法的分辨率和探测深度等问题,为UWB电磁法的解释和走向实际提供理论指导。
     5.研究了适合UWB电磁法特点的电导率和介电常数同时重构的反演方法。使用改进的时域有限内存BFGS拟牛顿约束反演方法和非线性共轭梯度法近似反演方法,同时重构模型的介电参数与电导率,完成了UWB电磁法的双参数反演,编制了相应的反演软件。
     6.研究了UWB电磁法的快速成像方法,提出基于时域波形匹配滤波方法的相关概率成像法,成功实现了对单个或多个目标体的概率成像。
In this dissertation, a new detect method was proposed which use ultra-wideband(UWB) electromagnetic pulse to detect underground targets or through-the-walldetection, so it was called UWB electromagnetic method. It combines transientelectromagnetic field theory, very narrow pulse signal transmission technology, high-speed sampling techniques, UWB antenna and signal processing technology andother subjects of research, the result of simulation is accurate, noninvasive, highresolution and penetrating depth etc. Many basic theoretical issues have been studiedin-depth in this dissertation, such as the UWB electromagnetic waves in lossy media, the dissemination of energy distribution, Resolution and penetrating depth, therelationship between pulse width or bandwidth and the Echo of effectivelyinformation and so on. The high-resolution survey research was carried out to detectthe media under the ground with UWB electromagnetic pulse. We used limited-areaof aperture antenna, feed into the high power and very narrow pulses. In this way, wecan improve the penetrating depth and resolution at one time.
     The numerical simulation of the theoretical model for arbitrary complex mediaunderground and through the walls to detect life was carried out which used thehigh-order finite-difference time-domain (FDTD) method, the result revealed thelaw of the electromagnetic pulse dissemination and the impulse responsecharacteristics of objectives in complex media. The inversion method of conductivityand permittivity simultaneously reconstructing for UWB electromagnetic method wasproposed in this dissertation.
     The main contribution of this dissertation can be summarized as follows:
     1. Combined the time domain convolutional PML with high-order FDTD tosimulate the UWB electromagnetic radiation field of limited-area of aperture antenna, developed the 3D electromagnetic simulation of high-order FDTD software which cancarry out numerical simulation for arbitrarily complex of underground lossy media.
     2. Improved the convolution method in iterative formula of CPMLabsorption boundary conditions, proposed piecewise linear convolution PML(PCPML) absorption boundary approach, and further improved the absorptioneffect of the boundary.
     3. Discussed the narrow radiation pulse of limited area of aperture antennatransmission and energy density characteristic of the spatial distribution in uniformlossy media space with frequency domain analytic method and the time domainFDTD method respectively, revealed the nature law of electromagnetic flux densityslow decay for the first time, and corrected the misunderstand about electromagneticmissile for the moment, evaluated objectively the applied value of electromagneticmissile used in explorating earth
     4. Simulated the UWB electromagnetic wave filed of arbitrary complexitymodel, the transmission of UWB electromagnetic wave in several typical undergroundmodel and through the walls to detect the human body model can be shown directly, explained the interaction mechanism of electromagnetic wave in lossy mediaunderground. Analyzed the antenna parameters and electrical parameters on theperformance of the radiation field, and then discussed the resolution and depth ofUWB electromagnetic detection method. It can provide theoretical guidance for thepractical work of UWB electromagnetic method.
     5. The inversion method of conductivity and permittivity simultaneouslyreconstructing for UWB electromagnetic method was proposed in this dissertation.Using the improved time-domain limited memory BFGS quasi-Newton constrainedinversion method and nonlinear conjugate gradient method approximate inversionmethod to reconstruct permittivity and conductivity of the model in the same time, and completed the UWB electromagnetic double-parameter inversion and developedthe corresponding inversion software.
     6. Studied the rapid imaging methods of UWB electromagnetic detectmethod which based on time-domain waveform matching filter method of probabilityimaging, and achieved the single or multiple objects with the probability imagingsuccessfully.
引文
[1] 王绪本。二维大地电磁测深资料处理与反演解释方法研究[D].2002,博士论文,成都,成都理工大学。
    [2] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations initial boundary value problems involving Maxwell equations in isotropic media [J]. IEEE Trans. Antennas Propagation, I966, 14 (2): 302-307.
    [3] 葛德彪,闫玉波。电磁波时域有限差分方法(第二版)[M]。西安:西安电子科技大学出版社,2005。
    [4] Berenger J. P. Perfectly matched layer for the FDTD solution of wave-structure interaction problems [J]. IEEE Tram. on A. P., 1996, 44 (1): 110-117.
    [5] Gedney S. D. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices [J]. IEEE Trans. Antennas Propagat., 1996a, 44 (12): 1630-1639.
    [6] Gedney S. D. An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media [J]. Electromagnetics, 1996b, 16(4): 399-415.
    [7] Roden J. A. and Gedney S. D. Convolutional PML(CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media[J]. IEEE Microwave and Optical Technology Letters. 2000, 27(5): 334-339.
    [8] G. Mur. Absorbing Boundary Conditions for the FDTD approximation of the three-domain electromagnetics field equations [J]. IEEE Trans. on Electromagnetic Compatibility, 1981, 23(3): 377-382.
    [9] Aflove A. Computational Electrodynamics: The Finite-Difference Time-Domain Method [M], Norwood, MA, Artech House, 1995.
    [10] Fang J. FDTD computation for Maxwell's equation [D]. Berkeley. CA. university of California at Berkeley, 1989.
    [11] 栗毅,黄春林,雷文太。探地雷达理论与应用[M]。北京:科学出版社,2006。
    [12] Chen, Y. H., Chew, W. C.. Application of PMLs to the transient modeling of subsurface EM problems[J].Geophysics 1997, 62,(6): 1730-1736
    [13] Harris, F. J. On the use of windows for harmonic analysis with the discrete Fourier transform [J]. Proceedings of the IEEE. 1978, 66:51-83
    [14] Chevalier, M. W., Luebbers, R. J., and Cable, V. P. FDTD local grid with material traverse [J]. IEEE Trans on Antennas Prop., 1997, 45:411-421.
    [15] Robertsson, J. O. A., and Holliger, K. Modeling of seismic wave propagation near the earth's surface [J]. Phys. Earth Planet. Internat, 1997,104:193-211.
    [16] Bernhard Lampe, Klam Holliger, and Alan G. Green. A finite-difference time-domain simulation tool for ground-penetrating radar antennas [J]. Geophysics, 2003, 68:971-987.
    [17] 王秉中。计算电磁学[M]。北京:科学出版社,68-74。
    [18] K. Mei. and J. Fang. superabsorption -a method to improve absorbing boundary conditions[J]. IEEE Trans. On. Antennas and Propagation. 1992, 40 (9): 1001-1010.
    [19] Z. Liao, H. Wong, Y. Baipo and Y. Yifan. A transmitting boundary for transient wave analyzes[J]. Scientia Sinica, (Series A), 1984, 27 (10): 1062-1076.
    [20] Berenger J. P. Making using of the PML absorbing boundary condition in coupling and scattering FDTD computer codes [J]. IEEE Trans. On. Electromagn. Compat., 2003, EMC-45 (2): 189-197.
    [21] Teixeira F L and Chew W C. PML-FDTD in cylindrical and spherical coordinates [J], IEEE Microwave and Guided Wave Lett., 1997, 7: 285-287.
    [22] Ramadan O and Oztoprak A Y. An efficient implementation of the PML for truncating FDTD domains, Micro [J]. Opt. Tech. Lett., 2003, 36 (1): 55-60.
    [23] Lau Y C, Leong M S and Kooi P S. Extension of Berenger's PML boundary condition in matching lossy medium and evanescent waves [J]. Electronics Letters, 1996, 32: 974-976.
    [24] Wang T., and Tripp A. C. FDTD simulation of EM wave propagation in 3D media [J]. Geophysics, 1996, 61: 110-1131.
    [25] Chew W. C., Jin J. M. and Michielssen E. Complex coordinate stretching as a generalized absorbing boundary condition [J]. Microwave and Optical Technology Letters, 1997, 15 (6): 599-604.
    [26] Luebbers R. J. and Hunsberger F. FDTD for Nth-Order Dispersive Media [J]. IEEE Trans. on A. P., 1992, 40 (11):1297-1301.
    [27] Wait J. R. Complex resistivity of the earth [M]. In: Kong J. A. ed. Progress in Electromagnetic Researh, New York: Elsevier, 1989.
    [28] Wu T. T, et al. A review of electromagnetic missiles [M]. Proc. SPIE. 1989, 1081:370-379.
    [29] 阮成礼。电磁导弹的严格解[J]。电子学报,1993,21(9):99-102。
    [30] 胡平。探地雷达数值模拟技术的应用研究[D]。中国地质大学(北京)博士论文,北京:2005,68-70。
    [31] 董良国,马在田,曹景忠。一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-418.
    [32] 阮成礼。电磁导弹概论[M],北京:人民邮电出版社,1994。
    [33] 万长华。电磁导弹的传播特性研究[D]。电子科技大学博士论文,成都:1991。
    [34] Shen H M, Wu T T. The transverse energy pattern of an electromagnetic missiles form a circular disk [J]. Proc SPIE 1988, 1061:352~360.
    [35] Mao Lifeng, Wang Xuben. The distribution of the ultra wide band electromagnetic field and the propagation behavior of the energy density [J]. Proceedings of the 2th International Conference on Environmental and Engineering Geophysics. Science Press USA Inc: Science Press, Jun. 2006.
    [36] 方广有,张忠治,汪文秉。浅层地下目标时域电磁散射问题的数值模拟[J]。电子科学学刊,1996,18(3):276-282。
    [37] 王卫平。直升机TEM系统关键技术指标与探测深度分析[J]。地球学报,2005,26(1):93—97。
    [38] 苏发,何继善,温佩琳。电磁导弹在勘探地球物理中的应用前景[J]。中国有色金属学报,1995,5(3):1~3。
    [39] 李貅,薛国强。一种有发展前景的隧道及井巷超前预报技术(——电磁导弹探测技术)[J]。西安工程学院学报,2002,24(1):12-14。
    [40] 李貅,薛国强。隧道及井巷掘进超前预报的电磁导弹探测技术[J].长安大学学报(自然科学版),2002,22(3):48-50.
    [41] Carcione, J. M. Ground radar simulation for archaeological applications [J]. Geophys. Prosp., 1996a. 44:871-888.
    [42] Carcione, J. M. Ground-radar numerical modeling applied to engineering problems [J]. Eur. J. Environ. Eng. Geophys., 1996b, 1: 65-81.
    [43] Carcione, J. M. Ground penetrating radar: wave theory and numerical simulation in lossy anisotropic media [J]. Geophysics, 1996c, 61:1664-1677.
    [44] Carcione, J. M.. Radiation patterns for GPR forward modeling [J]. Geophysics, 1998, 63:424-430.
    [45] Maloney, J. G., Smith, G. S., and Scott, Jr., W. R.. Accurate computation of the radiation from simple antennas using the finite-differencetime-domain method [J]. IEEE Trans. Anten. Propa., 1990, AP-38, 1059-1068.
    [46] Roberts, R. L., and Daniels, J. J.. Modeling near-field GPR in three dimensions using the FDTD method [J]. 1997, Geophysics, 62:1114-1126.
    [47] Daniels, D. J.. Surface-Penetrating Radar[M]. London, U.K.: Institute of Electrical Engineers, 1996.
    [48] Chander, R.. On tracing seismic rays with specified end points in layers of constant velocity and plane interface [J]. Geophysical Prospecting, 1997, 25 (1): 120-124.
    [49] Sambridge M S, Kennett B L N. Boundary value ray tracingin heterogeneous medium: A simple and versatile algorithm. Geophysical Journal International, 1991, 101 (1): 157~168.
    [50] Farra V.. Bending method revisited: a Hamiltonian approach [J]. Geophysical Journal International, 1992, 109 (1):138~150.
    [51] 底青云,王妙月。1999.电磁波有限元仿真模拟[J]。地球物理学报,42(6):818~825。
    [52] 底青云,许琨,王妙月。2000.衰减雷达波有限元偏移[J]。地球物理学报,43(2):257~263。
    [53] Qingyun Di, Miaoyue Wang.. Migration of ground-penetrating radar data with a finite-element method that considers attenuation and dispersion [J]. Geophysics, 2004, 69 (2):472~477.
    [54] Fang J. Time domain finite difference computation for Maxwell's equations: [D]. Berkeley: Univ. California, 1989.
    [55] Krumpholz M and Linda, Katehi P B. MRTD: New Time-Domain Schemes Based on Multiresolution Analysis [J]. IEEE Trans. on. Microwave Theory Tech., 1996, 44 (4) : 555~571.
    [56] Goverdhanarm K, Tentzeris E, Krumpholz M, Katehi P B. An FDTD multigrid based on multiresolution analysis [J]. IEEE Trans. on. Antennas and Propagat. Soc. Int. Symp., vol (1), Baltimore, MD, July 1996: 352~355.
    [57] Kang Lan, Yaowu Liu, Weigan Lin. A higher order (2, 4) scheme for reducing dispersion in FDTD algorithm [J]. IEEE Trans. On. Electromagnetic compatibility. 1999, 41 (2): 160~165.
    [58] Stavros V. Georgakopoulos, Craig R. Birtcher, Constantine A. Balanis, Rosenmary A. Renaut. High-Order Finite-Difference Schemes for Electromagnetic Radiation, Scattering, and Penetration, Part Ⅰ: theory [J]. IEEE Antenna's and Propagation Magazine, 2002, 44 (1): 134~142.
    [59] 董晓龙,汪文秉。瞬态电磁学的新进展[J].电子科技导报,1997,12:20-24。
    [60] 陈清礼,严良俊,胡文宝。宽带时频瞬变电磁新方法[J]。石油地球物理勘探,2004,39(增刊):24—26。
    [61] Loubriel G M, etal. Toward pulsed power uses for photoconductors emiconductors witches [A]. In Proc 6th. IEEE Pulsed Power Conf, Arling, VA, 1987, 57~603.
    [62] Loubriel G M, Zutavern F J, Baca A G, etal. Photoconductive Semiconductor Switches [J]. IEEE Trans. on Plasma Science, 1997, 25 (2).
    [63] 赵尚弘,杨晓铁,谢小平。超宽带雷达与反隐形技术[J].空军工程大学学报(自然科学版),2000,1(2):82-85。
    [64] 马冯舸。瞬态电磁脉冲的时域伪谱方法:研究、改进及应用[D],博士论文,2004,电子科技大学,成都。
    [65] Davis J L, Annan A P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy [J]. Geophysical Prospecting, 1989, 37:531-551.
    [66] 沈飚,于东海,孙忠良。有耗介质中脉冲响应的研究[J]。石油地球物理勘探,1996,31(4):529~534。
    [67] Allen Taflove and Susan C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Third Edition) [M]. Artech House 2005.
    [68] K. Umashankar, A. Taflove. A novel method to analyze electromagnetic scattering of complex obiects [J]. IEEE Trans. Electromag. Compat. 24 (1982):397-405.
    [69] 李大心。探地雷达方法与应用[M]。北京:地质出版社,1994。
    [70] 俞寿朋。宽带雷克子波[J].石油地球物理勘探,1996,31(5):605-615.
    [71] 杨文采。地球物理反演的理论与方法[M]。北京:地质出版社,1997.
    [72] 姚姚。地球物理反演基本理论和应用方法[M],中国地质大学出版社,2002.
    [73] 王家映。地球物理反演理论[M],中国地质大学出版社,1998.
    [74] Sasaki K. Full 3-D inversion of electromagnetic data on PC [J]. J. Appl. Geophysics, 2001, 46:45-54.
    [75] G. A. Newman and D. L. Alumbaugh. Three-dimentional massively parallel electromagnetic inversion—Ⅰ. Theory [J]. Geophys. J. Int, 1997, 128:345-354.
    [76] Commer M. Three-dimensional inversion of transient electromagnetic data: A comparative study[D]. 2004, University of Cologne, Cologne.
    [77] Rodi W L, Mackie R L. Nonlinear conjugate gradient-algorithm for 2-D magnetotelluric inversion [J]. Geophysics, 2001, 66 (1): 174-187.
    [78] Newman G A. Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients [J]. Geophys. J. int., 2000.140:410-424.
    [79] Wu T. T. Electromagnetic missiles [J]. J. Appl. Phys., 1985, 57 (5): 2370-2373.
    [80] 高永才。大地电磁测深二维反演成像技术研究。2004,硕士论文,成都,成都理工大学。
    [81] 胡祖志。地电磁非线性共轭梯度拟三维反演[J]。地球物理学报,2006,49(4):1226—1234。
    [82] Polak E, Ribiere G. Note sur la convergence de directions conjugese, Rev. Francaise Informat Recherche Opertionelle, 3e Annee, 1969, 16:35-43.
    [83] Polyk B T. The conjugate gradient method in extremem problems, USSR Comp Math and Math. Phys. 1969, 9:94-112.
    [84] Hestenes M R. Iterative method for sovling linear equations, NANL Report No. 53-9, National Bureau of Standards, Washington, D. C. 1951 (later published in JOTA, 1973, 1:322-334.
    [85] Stiefel E L. U ber einige Methodern der Relationsrechnung, Zeitschrifit fur Angewandte Mathematik under Physik 3, 1952.
    [86] Hestenes M R, Stiefel E L. Methods of conjugate gradients for solving linear systems, J Res Nat Bur Standards Sect. 1952, 5 (49):409-436.
    [87] Fletcher R, Reeves C. Function minimization by conjugate gradients [J]. Comput. J, 1964, 7:149-154.
    [88] Christiansen A V, Auken E. Optimizing a layered and laterally constrained 2D inversion of resistivity data using Broyden's update and 1D derivatives [J]. J. Appl. Geophys., 2004, 56:247-261.
    [89] 袁亚湘。非线性规划数值方法[M].上海:上海科学技术出版社,1993。
    [90] Petella, D. Introduction to ground surface self-potential tomography [J]. Geophys. Prosp, 1997, 45: 653-681.
    [91] Szaraniee E. Fundamental functions for horizontally stratified earth [J]. Geophys. Prosp. 1976, 24: 528-548.
    [92] Ursin B. Review of elastic and electromagnetic wave propagation in horizontally layered media[J]. Geophysics, 1983, 48: 1063-1081.
    [93] Davis J M, and A P Annan. Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy [J]. Geophysical Prospecting, 1989, 37:531-551.
    [94] Daniels, D. J. Surface-Penetrating Radar [M]. London, U. K.: Institute of Electrical Engineers. 1996.
    [95] Micheal, L. Ground penetrating radar for 3-D sedimentological characterization of elastic reservoir analogs [J]. Geophysics, 1995, 62: 786-796.
    [96] Theimer, B. D., D. C. Nobes, and B. G. Warner. A study of geoelectric properties of peatlands and their influence on ground penetrating radar surveying[J]. Geophysical Prospecting. 1994 42:179-209.
    [97] Lepen, D. R., B. J. Moorman, and J. S. Price. Using ground penetrating radar to delineate subsurface feature along a wetland catena [J]. Soil Science Society of America Journal, 1996, 60:923-931.
    [98] McMechan, G. A. Use of ground penetrating radar for 3-D sedimentological characterization of elastic reservoir analogs [J]. Geophysics, 1997, 62:786-796
    [99] Annan, A. P., J. E. Scaife, and P. Giamou. Mapping buried barrels with magnetics and ground-penetrating radar: 60th Annual International Meeting, SEG, Expanded Abstracts, 1990, 422-423.
    [100] Zeng, X. GPR characterization of buried tanks and pipes [J]. Geophysics, 1997, 62:797-806.
    [101] Arcone, S. A. Ground penetrating radar reflection profiling of ground water and bedrock in an area of discontinuous permafrost [J]. Geophysics, 1998, 63:1573-1584.
    [102] Goodman, D. Ground penetrating radar simulation in engineering and archaeology [J]. Geophysics, 1994, 59: 224-232.
    [103] Luis Martino. Electrical and GPR prospecting at Palo Blanco archaeological site, northwestern Argentina [J]. Geophysics, 2006, 71 (6) : B193-B199.
    [104] Fisher, E., G. A. McMechan, and A. P. Annan.Acquisition and processing of wide-aperture ground penetrating radar data [J]. Geophysics, 1992a 57: 495-504.
    [105] Tillard, S., and J. C. Dubois. Analysis of GPR data: Wave propagation velocity determination. Journal of Applied [J]. Geophysics, 1995, 33: 77-91.
    [106] 刘秀娟,邓世坤,薛桂霞。探地雷达剖面的相干加强处理[J]。物探与化探,2004,28(1):73—75。
    [107] 王帮兵,丁凯,田钢。探地雷达多次覆盖技术在堤防隐患探测中的应用[J]。水力发电,2006,32(10):102—105。
    [108] Olson, C. G., and j. A. Doolittle. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain [J]. Soil Science Society of America Journal, 1985, 49:1490-1498.
    [109] Fisher E, MeMechan G A, and Annan A P, et al. Examples of reverse time migration of signal-channel, ground penetrating radar profiles [J]. Geophysics, 1992b, 57: 577-586.
    [110] Zhou H, Sato M. Subsurface cavity imaging by crosshole borehole radar measurements [J]. IEEE Transactions on Geo-science and Remote Sensing, 2004, 42 (2): 335 34
    [111] 邓世坤。克希霍夫积分偏移法在探地雷达图像处理中的应用[J].地球科学.1993,18(3):303~30.
    [112] Armando R. Sena, Paul L. Stoffa, and Mrinal K. Sen. Split-step Fourier migration of GPR data in lossy media [J]. Geophysics, 2006, 71 (4): K77-K91.
    [113] Mark Grasmueck, Ralf Weger, and Heinrich Horstmeyer. Full-resolution 3D GPR imaging [J]. Geophysics, 2005, 70 (1): K12-K19.
    [114] R. B. Szerbiak, G. A. McMechan, R. Corbeanu, C. Forster, and S. H. Snelgrove. 3-D characterization of a clastic reservoir analog: From 3-D GPR data to a 3-D fluid permeability model [J]. Geophysics, 2000, 66 (4): 1026-1037.
    [115] J. van der Kruk, C. P. A. Wapenaar, J. T. Fokkema, and P. M. van den Berg. Three-dimensional imaging of multicomponent ground-penetrating radar data [J]. Geophysics, 2003, 68 (4):1241-1254.
    [116] Qingyun Di, Meigen Zhang, and Maioyue Wang. Time-domain inversion of GPR data containing attenuation resulting from conductive losses [J]. Geophysics, 2006, 71 (5): K103-K109.
    [117] Nocedal, J., and S. J. Wright. Numerical optimization [M]. Springer Publishing Company, 1999, Inc.
    [118] Newman, G. A., and P. T. Boggs., Solution accelerators for large-scale three-dimensional electromagnetic inverse problem [J] Inverse Problems. 2004, 20:151-170.
    [119] Haber, E. Quasi-Newton methods for large-scale electromagnetic inverse problems [J]. Inversion Problems, 2005, 13:63-77.
    [120] Q. Ni, Y. X. Yuan. A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization [J]. Math. Comp. 66 (1997): 1509-1520.
    [121] David. D. Ferris. Jr, Nicholas C. Currie. A survey of Current Technologies for Through-The-Wall Surveillance(TWS), Part of the SPIE Conference on Sensors, C~3I, Information, and Training Technologies for Law Enforcement [J]. Boston. Massachusetts, SPIE Vol: 3577, 1998: 62~72.
    [122] 王运飞,王经瑾,刘国治。时频分析在超宽带散射信号处理中的应用[M]。强激光与粒子束。2003,15(7):689-693.
    [123] 徐义贤。电磁学中的某些进展与电磁法的有关问题[J]。地球物理学进展。1996,11(1):88-96.
    [124] 金龙,阮成礼。慢衰减的频域解释。电子与信息学报[J],2005。27(4):642-646.
    [125] Kelley, C. T.. Iterative methods for optimization: SIAM. 1999.
    [126] Byrd. R. H., P. Lu, J. Nocedal, and C. Zhu. A limited-memory algorithm for bound constrained optimization: SIAM Journal on Scientific Computing. 1995, 16:1190-1208.
    [127] Buckley A.. A combined conjugate gradient quasi-Newton miniumization algorithms. Math. Prog. 1978, 15: 200-210.
    [128] Shanno D. F.. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 1970, 24: 647-656.
    [129] Shanno D. F., Phua K. H.. Matrix conditioning and nonlinear optimization. Math. Prog. 1978, 14: 149-160.
    [130] 肖波。初盛唐诗人与建交文学。硕士论文,武汉大学,2005。
    [131] Perry J. M.. A class of conjugate garadient algorithms with a two-step vaiable-metric memory. Disscussion Paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern University (Evanston, Illinois, 1977).
    [132] Nocedal J.. Updating quasi-Newton matrices with limited storage. Mathematics of Computation. 1980, 35: 773-782.
    [133] A. R. Conn, N. I. M. Gould and Ph. L. Toint. Global convergence of a class of trust region algorithm for optimization with simple bounds, SIAM J. Numer. Anal. 1988a, 25:433-460.
    [134] A. R. Conn, N. I. M. Gould and Ph. L. Toint. Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comp. 1988b, 50: 399-430.
    [135] A. R. Conn, N. I. M. Gould and Ph. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A). Number 17 in Springer Series in Computational Mathematics, Springer Verlag, Heidelberg, New York, 1992.
    [136] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. L-BFGS-B Fortran subroutines for large-scale bound constrained optimization, Report NAM-11, EECS Department, Northwestern University, 1994.
    [137] Yunhai Xiao, Zengxin Wei. A new subspace limited memory BFGS algorithm for large-scale bound constrained optimization. Applied Mathematics and Computation. 2007, 185: 350-359.
    [138] J. J. More and G. Toraldo, On the soulution of lage quadratic propramming problems with bound constraints. SIAM J. Optimization. 1991, 1:93-113.
    [139] Q. Ni. General large-scale nonlinear programming using sequential quadratic programming methods. Bayreuther Mathematische Schriften. 1993, 45:133-236.
    [140] D. C. Liu and J. Nocedal. On the limited memory method for large scale optimization. Math. Prog. 1989, 45: 503-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700