用户名: 密码: 验证码:
绕船舶自由面流动的时域分析和数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何利用数值计算方法来准确预报船舶兴波阻力与兴波波形,并为船舶设计服务,一直都是船舶阻力理论研究中的重要内容与难点之一,同时也是船型优化等工程问题的关键。本文首先回顾了绕船舶自由面流动的势流和粘性流理论,介绍了自由面兴波模拟的数值方法。
     回顾了定常间接边界元兴波计算的两种方法:基于Havelock源的格林函数法,非奇异的Rankine源方法,在所有边界面上布置Rankine源。以Wigley船为例,提供了非奇异Rankine源方法的兴波波形和兴波阻力系数。
     利用了时域线性直接边界元法计算船舶兴波。边界积分方程由格林第二定理获得,奇点的速度势由边界上未知强度的源和偶极积分表示,影响系数通过解析的方法求解,物面上的法向速度由物面边界条件决定,自由面上的速度势由线性时域自由面边界条件更新。辐射条件不需要特别给定。自由面计算域边界不随时间变化。提出了船体割划水面的动网格技术。本文以Wigley船为例,讨论了自由面、船体表面网格划分和时间步长对计算结果的影响,并给出了稳定时刻自由面波形和线性兴波阻力计算结果。采用开式尾—静力修正和虚长度的方法分别计算方尾船舶兴波波形和兴波阻力,计算结果与试验结果一致。
     发展了强非线性时域直接边界元方法,提出了满足自由面移动计算域辐射条件的方法。每个时步自由面上的速度势和节点漂移量通过全非线性Lagrange型自由面边界条件求解,重新进行网格划分得到下一个时步的自由面形状。本文以Wigley单体船为例,比较了自由面固定计算域和移动计算域兴波波形。给出了近水面潜体和双体船的非线性兴波计算结果,并讨论了双体船片体间距变化对兴波阻力的影响。
     建立了考虑双体船片体两侧非对称流动的兴波计算方法,片体作为升力体考虑,尾涡面上施加压力Kutta条件。文中给出了考虑片体两侧流动不对称性Wigley双体船的计算结果,并与不考虑尾涡效应双体船兴波计算结果进行了比较。这种方法可以用来求解近水面水翼绕流水动力性能。
     尝试采用有限体积法离散求解标准k—ε湍流方程,运用VOF的方法模拟绕船体自由面粘性流动。并以Wigley船为例,给出了船体表面的压力分布和兴波波形及阻力结果,并与试验结果比较证明了粘性绕流计算的可靠性。
Using numerical method to predict the ship resistance and wave pattern generated by ship motion is one of important work for scientists whose research interest is ship hydrodynamics. It is also a very important tool for the ship design and ship hull optimization. The objective of this thesis is to develop the numerical scheme to simulate the free surface flow around the ship hull.
     First the developments of using potential method and viscous fluid flow simulate the free surface flow around the ship hull were reviewed carefully. The numerical method of simulation the free surface flow was presented.
     Two undirected boundary element methods under steady state were presented in second chapter: Green function method based on Havelock Source and Non-singular Ranking Source method. The Green function method based on Havelock Source set the Havelock Source on the hull surface and the boundary condition of free surface satisfy the linear condition. Non-singular Ranking Source method fixed the Ranking Source on the hull surface and raised panels above the free surface combined with collocation-points to avoid high order singularity with shifting up-stream to satisfy the radiation condition. The Wigley hull was selected to validate these two methods and the wave pattern and wave resistance were presented in this chapter.
     The linear direct boundary element method in time domain was used to simulate the wave generated by ship hull motion. Wigley hull was used to study the influence of the free surface, grid structure along the hull surface and time domain on the simulation results. The simulation results of free surface wave pattern and linear wave resistance were also presented. The open stern-static pressure mended and virtual appendage were used to computed wave pattern and wave resistance of ship hull, the simulation results matched with the experimental results.
     The strong non-linear directed boundary element method was presented which was used to simulate the flow around Wigley hull. To save the computation time, the dimension of simulation domain was set which increase the dimension of simulation domain had no effect on the simulation results. The grid regeneration technology was adopted during simulation procedure while the ship hull moving forward inside the simulation domain. The Wigley hull was used to test the numerical scheme developed in this thesis. The comparison of wave pattern between fixing and moving simulation domain was made and the non-linear wave generation simulation results for submerge body near the free surface and catamaran were presented.
     The influence on the wave making resistance of the distance between the twin hulls for catamaran was discussed also. Chapter five studied the influence of asymmetry flow of twin hulls. The hull body was considered as the lifted body because of the difference of the flow between the hulls. The simulation results of wave pattern for catamaran using Wigley hull as the submerge body with the consideration of the asymmetry effects of the hulls were presented. This simulation result was compared with the simulation result which trailing vortex was not considered.
     Finally the viscous flow around the Wigley hull with free surface was studied. The numerical technologies include finite volume method and volume of free surface method. The standard k-εturbulent model was employed in viscous simulation. The simulation results of wave profile along ship hull and wave contour on free surface were presented. The simulation results matched well with the results using potential method and available experimental data.
引文
[1]Michell J H.The wave resistance of a ship.Philosophical Magazine,1898,45(5):106-123.
    [2]Havelock T H.The theory of wave resistance.Proceedings of the Royal Society of London,Series A,1932,138:339-348.
    [3]Inui T.Wave-making resistance of ships.Transactions of the Society of Naval Architects and Marine Engineers,1962,70:282-326.
    [4]Hsiung C C.Optiamal ship forms for minimum wave resistance.JSR,1981,25:95-116.
    [5]Wilson M B,Hsu C C,Jenkins D S.Experiments and predictions of the resistance characteristics of a wave cancellation multihull ship concept.33~(rd)American Towing Tank Conference,1993,103-112.
    [6]Yang C et al.Practical CFD applications to design of a wave cancellation multihull ship.23th Symp on Naval Ship Hydrodynamics,France,2000.
    [7]Noblesse F,Yang C.Fourier-Kochin formulation of wave diffraction-Radi ation by ships or offshore structures.Ship Technology Research,1995,42:115-139.
    [8]Noblesse F,Yang C,Chen X B.Boundary-integral representation of linear free surface potential flows.JSR,1997,41(1):10-16.
    [9]黄鼎良.小水线面双体船性能原理.北京:国防工业出版社,1993.
    [10]Lu X P,Huang Y,Shi Z K.Wave resistance of wave piercing catamarans.Journal of Hydrodynamics,Ser.B,2000(4):88-98.
    [11]陈军等.用线性兴波阻力理论计算穿浪双体船的兴波阻力.海军工程大学学报,2002,14(3):53-58.
    [12]应业炬等.穿浪双体船型优化设计方法.浙江海洋学院学报,2003,22(2):137-142.
    [13]Brard R.The representation of a given ship form by singularity distribution when the boundary condition on free surface is linearized.Journal of Ship Research,1972,16:79-92.
    [14]Wehausen J V.The wave resistance of ships.Advances in Applied Mechanics,1973,13:93-245.
    [15]Tulin M P.Ship wave resistance-a survey.Proc.8~(th) U.S.National Congress on Applied Mechanics,UCLA,1978.
    [16]Proceedings of International Seminar on Wave Resistance,Tokyo,1976.
    [17]刘应中.船舶兴波阻力理论.北京:国防工业出版社,2003.
    [18]程天柱等.兴波阻力理论及其在船型设计中的应用.武汉:华中工学院出版社,1987.
    [19]李世谟.兴波阻力理论基础.北京:人民交通出版社,1986.
    [20]范余明,蔡荣泉,周琰.Dawson方法在球首选型中的应用.舰船科学技术,1997,153(2):6-10.
    [21]葛维桢,冯有章.用Guilloton方法计算船舶兴波特性.舰船科学技术,1985(1):22-26.
    [22]叶恒奎.用tent函数计算兴波阻力及优化船型问题.中国造船,1985(1):28-39.
    [23]叶恒奎.以线性兴波理论计算改良船型的探讨.华中工学院学报,1983,11(6):135-140.
    [24]李培勇等.超细长三体船阻力计算研究.船舶工程,2002(2):10-12.
    [25]李江华等.三体船构形与兴波阻力关系研究.哈尔滨工程大学学报,2002,23(1):26-32.
    [26]韩开佳等.三体船的兴波阻力计算.哈尔滨工程大学学报,2000,21(1):6-10.
    [27]Guevel P,Vaussy P,Kobus J M.The distribution of singularities kinematically equivalent to a moving hull in the presence of a free surface.International Shipbuilding Progress,1974.
    [28]Kayo Y.A note on the uniqueness of wave-making resistance when the double-body potential in used as the zero-order appoximation. Transactions of the West-Japan Society of Naval Architects, 1978.
    [29] Wehausen J V, Reichert G, Gauthey J R. Ships of minimum wave resistance. Berkeley: University of California. Institute Engineering.Research, 1961.
    [30] Eggers K W H. Second-order contributions to ship wave and wave resistance. Proc. 6th Symp. on Naval Hydro. 1966. 649-672.
    [31 ] Kitazawa R, Kajitani H. Computation of wave resistance by the low speed theory imposing accurate hull surface condition. First Workshop, 1979.
    [32] Gadd G E. Wave resistance calculation by Guilloton's method. Royal Institution of Naval Architects Suppl Papers, 1973, 115: 377-392.
    [33] Ogilvie T F. Wave resistance: the low speed limit. Rep.002, Department of Naval Architecture and Marine Engineering, University of Michigan,1968.
    [34] Baba E, Takekuma K. A study on free surface flow around the bow of slowly moving full forms. Journal of the Society of Naval Architects of Japan, 1975, 137: 1-10.
    
    [35] Newman J N. Linearized wave resistance theory. Proceedings of International Seminar on Wave Resistance, Tokyo, 1976. 31 -34.
    [36] Dawson C W. A practical computer method for solving ship-wave problems, Proc. of 2nd Int. Conf. on Numer. Ship Hydrodynamics,Berkeley, 1977.
    [37] Hess J L, Smith A M O. Calculations of non-lifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, 1964, 8(2):22-44.
    [38] Musker A J. A panel method for predicting ship wave resistance. In:Seventeenth Symposium on Naval Hydrodynamics, 1988. 143-149.
    [39] Calisal S M, Goren O, Okan B. On an iterative solution for nonlinear wave calculations. Journal of Ship Research, 1991, 35(1):1-14.
    [40]Scragg C,Talcott J.Numerical solution of the Dawson free surface problem using Havelock singularities.In:Eighteenth Symposium on Naval Hydrodynamics,1991.259-271.
    [41]Raven H C.Nonlinear ship motion computations using the RAPID method.Proceedings of the 6~(th) International Conference on Numerical Ship Hydrodynamics,1994.95-118.
    [42]Bruzzone D,Cassella P,Zotti Ⅰ.Resistance components of a Wigley trimaran:experimental and numerical investigation.In:Proceedings of the Fourth International Conference on Hydrodynamics,2000.115-120.
    [43]Millward A,Nicolaou D,Rigby S G.Numerical modeling of the water flow around a fast ship with a transom stern.International Journal of Maritime Engineering,2003,1:181-194.
    [44]Jaehoon Y.Design of ship's bow form by potential-based panel method.Ocean Engineering,2007,34:1089-1095.
    [45]Tarafder M S,Suzuki K.Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method.Ocean Engineering,2008,35:536-544.
    [46]Raven H C.A practical nonlinear method for calculating ship wavemaking and wave resistance.Proc.19~(th) Symp.on Naval Hydrodynamics,1992.
    [47]Letcher J S.Properties of finite-difference operators for the steady-wave problem.Journal of Ship Research,1993,37(1):1-7.
    [48]高高.船波问题的辐射条件、自由面条件的研究及面元法误差分析:博士论文.武汉:武汉交通科技大学,1997.
    [49]Janson G,Mi Z X,Soding H.Rankine source methods for the calculation of free-surface flows with lift:PHD thesis.Sweden:Chalmers University of Techology,1997.
    [50]Webster W C.The flow about arbitrary three-dimensional smooth bodies.JSR,1975,19(4):206-218.
    [51]糜振星.Dawson法兴波阻力计算中的数值方法探讨.第一届船舶阻力会议论文集,1986.32-41.
    [52]Jensen G..Computation of the steady state potential flow around a ship considering the nonlinear boundary condition of the free surface:PHD Thesis.German:Institute fuer Schiffbau,1988.
    [53]李继先.非线性船舶兴波问题的半解析半数值求解方法及其应用:博士学位论文.武汉:武汉交通科技大学,1992.
    [54]高高.船舶兴波问题面元法计算中自由面离散的稳定性分析.水动力学研究与进展,Ser.A,2002,17(1):53-60.
    [55]Hsin C Y,Kerwin J E,Newmann J N.A higher-order panel method based on B-splines.6~(th) ISCN,1993.133-150.
    [56]Kouh J S,Suen J B.A 3D potential-based and desingularized high order panel method.Ocean Engineering,2001(28):1499-1516.
    [57]Gao G,Ma L.A raised panel method based on NURBS for three-surface potential flows with forward speed.Journal of Hydrodynamics,Ser.B,2002(2):112-120.
    [58]Pablo M C,Robert V W,Fred S.An optimization approach for fairing of ship hull forms.Ocean Engineering,2006(33):2105-2118.
    [59]Perez F,Suarez J A.Quasi-developable B-spline surfaces in ship hull design.Computer-Aided Design,2007(39):853-862.
    [60]Karman V T.Calculation of pressure distribution on airship hulls.NACA Trchnical Memorandum,1930.
    [61]Rigby S G,Nicolaou D,Sproston J L et al.Numerical modeling of the water flow around ship hulls.JSR,2001,45(2):85-94.
    [62]Cao Y,Schultz W,Beck R F.Three-dimensional,unsteady computations of nonlinear waves caused by underwater disturbances.In:Proc.18th Symposium on Naval Hydrodynamics,1990.417-426.
    [63]Cao Y,Lee T H,Beck R F.Computation of nonlinear waves generated by floating bodies.In:7~(th) International Workshop on Water Waves and Floating Bodies,1992.47-52.
    [64]Beck R F,Cao Y,Scorpio S et al.Nonlinear ship motion computations using the desingularized method.In:Proc.20th Symposium on Naval Hydrodynamics,1994.227-246.
    [65]Subramani A,Beck R F,Scorpio S.Fully nonlinear free-surface flow computations for arbitrary and complex hull forms.In:Proc.20th Symposium on Naval Hydrodynamics,1994.47-58.
    [66]Longuet-Higgins M S,Cokelet E D.The deformation of steep surface waves on water.Ⅰ:A numerical method of computation.In:Proceedings of Royal Society of London,1976.1-26.
    [67]Faltinsen O.Numerical solution of transient nonlinear free surface motion outside or inside moving bodies.In:Proceedings of the 2~(nd) International Conference on Numerical Ship Hydrodynamics,Berkeley,California,1977.347-357.
    [68]Dommermuth D G,Yue D.Numerical simulations of nonlinear axisymmetric flows with a free surface.Journal of Fluid Mech.,1987,178:195-219.
    [69]Zhou Z,Gu M.Numerical research of nonlinear body-wave interactions.In:Proc.18th Symposium on Naval Hydrodynamics,1990.
    [70]Xu H,Yue D.Computations of fully nonlinear three-dimensional water waves.19th ONR Symposium on Naval Hydrodynamics,Seoul,Korea,1992.
    [71]Kara F,Tang C Q,Vassalos D.Time domain three-dimensional fully nonlinear computations of steady body-wave interaction problem.Ocean Engineering,2007,34:776-789.
    [72]Yasukawa H.Calculation of free-surface flow around a ship in shallow water by rankine source method.Fifth International Conference on Numerical Ship Hydrodynamics,1989.643-653.
    [73]Lee S J.Computation of wave resistance in the water of finite depth using a panel method.The Journal SNAK92,1992:130-135.
    [74]Kim K C,Jansson Y C,Larsson L.Linear and nonlinear calculations of the free surface potential flow around ships in shallow water.In:Proc.20th Symposium on Naval Hydrodynamics,1994.408-425.
    [75]Xiong X,Wu X.A study on manoeuvring hydrodynamic forces acting on 3-d ship hulls with free surface effect in restricted water.International Shipbuilding Progress,1996,43(433):48-69.
    [76]Hofman M,Kozarski V.Shallow water resistance charts for preliminary vessel design.International Shipbuilding Progress 47,2000.61-76.
    [77]Miao Q,Xia J.Numerical study of bank effects on a ship traveling in a channel.In:Eighth International Conference on Numerical Ship Hydrodynamics,2003.
    [78]Tarafder S.Third order contribution to the wave-making resistance of a ship at finite depth of water.Ocean Engineering,2007,34:32-44.
    [79]Monacella V J.The disturbance due to a slender ship oscillating in waves in a fluid of finite depth.Journal of Ship Research,1964,10(4):242-252.
    [80]Tuck E O,Taylor P J.Shallow wave problems in ship hydrodynamics.In:Proc.Eigth Symposium on Naval Hydrodynamics,1970.627-658.
    [81]Maruo H,Tachibana T.An investigation into the sinkage of a ship at the transcritical speed in shallow water.Journal of the Society of Naval Architects of Japan,1981(150):56-62.
    [82]Pettersen B.Calculation of potential flow about three dimensional bodies in shallow water with particular application to ship maneuvering.Journal of Ship Research,1982,26(3):149-165.
    [83]Gourlay T P.Ship squat in water of varying depth.International Journal of Maritime Engineering,Part Al,2003,145:1-12.
    [84]Chandraprabha S,Molland A F.A numerical prediction of wash wave and wave resistance of high speed displacement ships in deep and shallow water.In:Thailand Conference on Mechanical Engineering,2004,10:18-24.
    [85]Chen B H.Computations of 3D Transom stern flows.Proc.5~(th) Int.Conf.on Numer.Ship Hydrodynamies,Japan,1989.
    [86]Raven H C.Nonlinear ship wave calculations using the RAPID method.Proc 6~(th) Int.Conf.On Numerical ship Hydrodynamics,Iowa City,1993.
    [87]卢晓平,董祖舜.用薄船理论计算高速圆舭艇浅水兴波阻力.95年船舶阻力与性能学术讨论会论文集.威海:中国造船编辑部,1995年.94-98.
    [88]贺五洲,程道明,俞汉祥.方尾舰船及加装尾板的兴波阻力计算.中国造船,1998(2):13-18.
    [89]Couse P R,Wellicome J F,Molland A F.An improved method for the theoretical prediction of the wave resistance of transom-stern hulls using as lender body approch.ISP,1998,45(444):332-349.
    [90]Miao Q M,Wang C H.Ship Waves by direct boundary element method.Journal of Ship Mechanics,2003,7(6):27-36.
    [91]Bingham H,Korsmeyer F T,Newmann J N.Prediction of the seakeeping characteristics of ships.In:Proc.20th Symposium on Naval Hydrodynamics,1994.177-196.
    [92]J.-B.Song,M.L.Banner,Influence ofmean water depth and a subsurface sandbar on the onset and strength of wave breaking,J.Phys.Ocean Engineering.2004,34(4):950-961.
    [93]夏国泽.船舶流体力学.第一版.武汉:华中科技大学出版社,2003.193-196.
    [94]Gadd G E.The approximate calculation of turbulent boundary layer development on ship hulls.RINA,1970(7):339-350.
    [95]Patel V C,Nakayama A,Damian R.An experimental study of thick turbulent boundary layer near the tail of a body of revolution. Iowa Institute of Hydraulic Research, Report 142, 1973.
    [96] Patel V C. On the equations of a thick axisymmetric turbulent boundary layer. Iowa Institute of Hydraulic Research, Report 143, 1973.
    [97] Patel V C, Nakayama A, Damian R. Measurements in the thick axisymmetric turbulent boundary layer near the tail of a body of revolution. Journal of Fluid Mechanics, 1974, 63: 345-362.
    [98] Patel V C. A simple integral method for the calculation of thick axisymmetric turbulent boundary layer. The Aeronautical Quarterly, 1974,25: 47-58.
    [99] Patel V C, Lee Y T, Guven O. Measurements in the thick axisymmetric turbulent boundary layer and the near wake of a low-drag body of revolution. In: Proc. Symposium on Turbulent Shear Flow, Perm. State Univ., 1977.29-36.
    [ 100] Patel V C, Lee Y T. Thick axisymmetric turbulent boundary layer and near wake of a low-drag body of revolution. Iowa Institute of Hydraulic Research, Report 210, 1977.
    [101] Bradshaw P. Calculation of three-dimensional turbulent boundary layers.Journal of Fluid Mechanics Digital Archive, 1971, 46(3): 417-445.
    [102] Hatano S, Mori K, Suzuki T. Calculation of velocity distributions in ship wake. Journal of Society of Naval Architects of Japan, 1978, 16: 46-60.
    [103] Mori K, Doi Y. Approximate prediction of flow field around ship stern by asymptotic expansion method. Journal of the Society of Naval Architects of Japan, 1978, 144: 454-463.
    [104] Spalding D B. Calculation procedure of 3-D parabolic and partially parabolic flows. Imperial College Report, 1975.
    [105] Muraoka K. Calculation of thick boundary layer and wake of ships by a partially parabolic method. Proc. 13th Symposium on Naval Hydrodyna- mics,1980,601-616.
    [106]Chen H C,Patel V C.Calculation of stern flows by a time-marching solution of the partially-parabolic equations.In:Proc.13th Symposium on Naval Hydrodynamics,1984.505-523.
    [107]Patel V C,Chen H C,Ju S.Computations of ship stern and wake flow and comparisions with experiments.Journal of Ship Research,1990,34(3):179-193.
    [108]刘应中,张怀新,李谊乐等.21世纪的船舶性能计算和RANS方程.船舶力学,2001,5(5):66-84.
    [109]Orszag S A.Numerical simulation of turbulent flows.In:Frost W,Moulden T H,eds.Handbook of turbulence.New York:Plenum Press,1977.281-313.
    [110]Moin P,Kim J.Numerical investigations of turbulent channel flow.Journal of Fluid Meehanics,1982,118:341-377.
    [111]Ferziger J H.High-level simulation of turbulent flows.In:Essers J A,ed.Computational methods for turbulent flows,transonic and viscous flows.Washington DC:Hemisphere,1983.93-182.
    [112]Anderson D A,Tannehill J C,Pleteher R H.Computational fluid mechanics and heat transfer.Washington D C:Hemisphere,1984.199-201.
    [113]Markatos N C.The mathematical modeling of turbulence flows.Application Mathematical Modeling,1986,10:190-220.
    [114]Li X L,Fu D X,Ma Y W.DNS of compressible turbulent boundary layer over a blunt wedge.Science in China,Ser.G,2005,48(2):129-141.
    [115]Kogaki T,Kobayashi T,Taniguchi N.Large eddy simulation of flow around a rectangular cylinder.Fluid Dynamics Research,1997,20:11-24.
    [116]Jordan S A,Ragab S A.A large eddy simulation near wake of a circular cylinder.Journal of Fluids Engineering,1998,120:243-252.
    [117]Yang Z Y.Large eddy simulation of fully developed turbulent flow in a rotating pipe.International Journal of Numerical Methods Fluids,2000,33:681-694.
    [118]Kolmogorov A N.Turbulent flow equations of incompressible fluid.Bulletin of Academic of Science of Soviet Union,Ser.Physics,1942,6:56-58.
    [119]Rodi W,Spalding D B.A two-parameter model of turbulence,and it's application to separated and reattached flows.Numerical Heat Transfer,1984,7:59-75.
    [120]Constantinescu G S.Simulation of airflow arotmd rain gauges:Comparison of LES with PANS models.Advances in Water Resources,2007,30:43-58.
    [121]Cheng Y,Lien F S,Yee E et al.A comparison of Large Eddy Simulation with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes.Journal of Wind Engineering and Industrial Aerodynamics,2003,91:1301-1328.
    [122]张楠,沈泓萃,姚惠之.潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究.船舶力学,2005,9(1):1-12.
    [123]许坤梅,张平.半闭圆管冲击射流湍流换热数值模拟.北京理工大学学报,2003,23(5):540-544.
    [124]Zhang Z G.CFD studies on the large diameter jet impingement flow.ASME Heat Transfer/Fluids Engineering Summer Conference.2004.11-15.
    [125]Pan Z Y.Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using PANS code.Journal of Fluids and Structures,2007,23:23-37.
    [126]Harlow F H,Welch J E.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface.Physics of Fluids,1965,8:2182-2189.
    [127]Miyata H.,Katsumata M.,Lee Y G..A finite-difference simulation method for strongly interacting two-layer flow.Journal of SNAJ,1988,163:1-16.
    [128]Hwang W S,Stoehr R A.Molten metal flow pattern predicted for complete solidification analysis of net shape casting.Mater Sci.Technol,1988,4:240-250.
    [129]Bingham H F,Korsmeyer,Newman J.Prediction of the seakeeping characteristics of ships.Proc.20th Symp.Naval Hydro.,Santa Barbara,CA,1994:27-47.
    [130]Raad P E,Chen S,Johnson D B.The introduction of micro cells to treat pressure in free surface fluid flow problems.J.Fluids Eng.,1995,117:683-690.
    [131]Chen S,Johnson D B,Raad P E et al.The surface marker and micro cell method.Int.J.Numer.Meth.Fluids,1997,25:749-778.
    [132]Jeong J H,Yang D Y.Three-dimensional finite element analysis of transient fluid flow with free-surface using marker surface method and adaptive grid refinement.Int.J.Numer.Meth.Fluids,1999,29:657-684.
    [133]Hirt C W,Nichols B D.Volume of fluid method for the dynamics of free surface fluid flow.J.Comput.Physics,1981,39:201-225.
    [134]Gao Q X.Numerical simulation of free surface flow around ship hull.Journal of Ship Mechanics,2002,6(3):28-34.
    [135]刘诚.浅堤附近波浪场精细模拟的PLIC-VOF模型.水科学进展,2002,17(5):133-137.
    [136]Tseng F G,Yang I D.Fluid filling into micro-fabricated reservoirs.Sensors and Actuators,2002,97:131-138.
    [137]Dang H P.Numerical simulation of breaking waves using a two-phase flow model.Applied Mathematical Modeling,2004,28:983-1005.
    [138]Hur D S.Direct 3-D numerical simulation of wave forces on asymmetric structures.Coastal Engineering,2004,51:407-420.
    [139]李玲,陈永灿,李永红.三维VOF模型及其在溢洪道水流计算中的应用.水力发电学报,2007,26(2):83-87.
    [140]Bai K J,Choo S M,Chung S K et al.Numerical solutions for nonlinear free surface flows by finite element methods.Applied Mathematics and Computation,2005,163:941-959.
    [141]Ma Q W,Wu G X,Taylor R E.Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves part 1:methodology and numerical procedure.Int.J.Numerical Method Fluids,2001,36:256-285.
    [142]Huerta A,Liu W K.Viscous flow with large free surface motion.Comput.Meths.Appl.Mech.Engrg.,1988,69:277-324.
    [143]Ye H K,Sun J L,Li G A et al.Free surface mesh tracing analysis in the arbitrary Lagrangian-Eulerian finite element method.Journal of Ship Mechanics,2005,9(3):11-18.
    [144]Tezduyar T E,Behr M,Liou J A.A new strategy for finite element computations involving moving boundaries and interfaces-the deforming space domain/space-time procedure:Ⅰ.the concept and the preliminary numerical tests.Comp.Methods Appl.Mech.Engrg.,1992,94:339-351.
    [145]Kumar M,Subramanian V A.A numerical and experimental study on tank wall influences in drag estimation.Ocean Engineering,2007,34:192-205.
    [146]Brebbia C A.The boundary element for engineering.Pentech Press Limited,1978.
    [147]Brebbia C A.Boundary element techniques in engineering.Pentech Press Limited,1980.
    [148]Woodward F A,Tinoco E N,Larson J W.Analysis and design of supersonic wing-body combinations,including flow properties in the near field.NASA CR-73106,1967.
    [149] Drimer N, Agnon Y. An improved low-order boundary element method for breaking surface waves. Wave Motion, 2006, 43: 241-258.
    [150] Sakir B. Prediction of wave pattern and wave resistance of surface piercingbodies by a boundary element method. Int. J. Numer. Meth.Fluids, 2008, 56: 305-329.
    [151] Dommermuth D G, Yue D K. Numerical simulations of nonlinear axisymmetric flows with a free surface. J. Fluid Mech. 1987,178:195-219.
    [152] Chen C Y, Nobless F. Comparison between theoretical predictions of wave resistance and experimental data for the Wigley hull. Journal of Ship Research, 1983, 27(4): 215-226.
    [153] Ye H K, Hsiung C C. Computation of added wave resistance of a restrained floating body in the time-domain. International Shipbuilding Progress,1997, 44 (1) : 27-57.
    [154] Farell C. On the wave resistance of a submerged spheroid. Journal of Ship Research, 1973, 17 (1) : 1-11.
    [155] Tarafder M S, Suzuki K. Computation of wave-making resistance of a catamaran in deep water using a potential-based panel method. Ocean Engineering, 2007, 34: 1892-1900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700