用户名: 密码: 验证码:
源信号为AR模型的独立成分分析算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独立成分分析(Independent Component Analysis,ICA)是一种新的数据处理与分析方法,目的在于从观测信号中分离或提取出相互统计独立的未知源信号。用ICA来解决盲源分离(Blind Source Separation,BSS)问题已经引起了广泛的关注,并已成功地应用到语音信号处理、通信、人脸识别、图像特征提取、医学信号处理等众多领域。本论文对源信号为自回归(Autoregressive,AR)模型的独立成分分析算法及其应用进行了研究,主要成果如下:
     1.对源信号为AR模型的无噪ICA算法进行了研究。首先详细地推导了源信号为AR(1)时模型的对数似然函数,然后给出了三种情况下的ICA学习算法:(1)当新息的概率密度函数为广义高斯分布时,极大化模型的对数似然函数提出了一个梯度算法;(2)由于前一个算法中的参数较多,运行起来较复杂。为克服此不足,用一个非二次光滑的偶函数来近似代替新息的对数概率密度函数时,提出了一个批算法和一个在线算法,并对这两个算法进行了理论分析。应用这两个算法对人工合成的混合信号进行分离的同时又应用批算法对混合的图像进行了分离,均取得了很好的分离效果;(3)由于批算法的收敛性依赖于学习率的选择且收敛速度较慢,为了克服这个不足,利用近似牛顿法极大化模型的对数似然函数给出了一个不动点算法。计算机仿真实验结果表明不动点算法的收敛速度较快且应用起来更为简单。
     2.对源信号为AR模型的有噪ICA算法进行了研究。对于这种有噪模型,分别对噪声协方差矩阵已知和未知两种情况下的算法进行了探讨。在噪声协方差矩阵已知的情况下,通过最大化新息的负熵,提出了一个不动点算法。计算机仿真实验结果表明同已有的梯度算法相比不动点算法具有较快的收敛速度,同时应用该算法对有噪的自然混合图像和纹理图像分别进行分离,均取得了很好的分离效果;在噪声协方差矩阵未知的情况下,通过对已有的复杂寻踪梯度算法的改进,提出了一个改进梯度算法和一个新算法:其中包括了对解混矩阵和噪声协方差矩阵进行估计的迭代公式。计算机仿真实验结果表明这两个算法都能够很好地对人工合成的有噪信号进行分离。由于新算法中只涉及一个学习率的选择,因此算法应用起来较简单且收敛速度较快。
     3.对源信号为AR模型、方差非平稳变化的无噪ICA算法进行了研究。2005年,Hyv(?)rinen给出了这种情况下模型的对数似然函数,并提出了一个梯度上升算法,但该算法的收敛性依赖于学习率的正确选择。为克服此不足,利用近似牛顿法极大化模型的对数似然函数,推导出了一个不动点算法。计算机仿真实验结果表明同已有的梯度上升算法相比不动点算法具有较快的收敛速度且应用起来更为简单。
     4.对源信号为AR模型、方差非平稳变化的有噪ICA算法进行了研究。对于这种有噪模型,分别对噪声协方差矩阵已知和未知两种情况下的算法进行了讨论。在噪声协方差矩阵已知的情况下,利用高斯矩的性质,给出了有噪模型的对数似然函数,通过极大化对数似然函数提出了一个梯度上升算法。但是由于噪声协方差矩阵已知往往是不现实的,因此又对噪声协方差矩阵未知情况下的算法进行了研究。通过对上述梯度算法的改进,提出了一个新梯度算法:其中包括了对解混矩阵和噪声协方差矩阵进行估计的迭代公式。计算机仿真实验结果表明这两个算法都能对人工合成的有噪信号进行很好的分离。
     5.对源信号为AR模型的无噪和有噪两种情况下的胎儿心电信号盲提取算法进行了研究。在无噪模型中,利用近似牛顿法极小化目标函数,给出了一个新梯度算法。计算机仿真实验结果表明该算法不但能够较好地对人工合成信号进行胎儿心电信号的提取,而且对某个孕妇真实的心电信号也进行了较好的胎儿心电信号的提取;在有噪模型中,利用高斯矩的性质给出了胎儿心电信号提取的目标函数,提出了一个梯度下降算法。计算机仿真实验验证了算法的有效性和可行性。
Independent component analysis(ICA) is a new data processing and analysis technique for extracting independent sources given only observed data that are mixtures of unknown sources.Recently,blind source separation by ICA has received great attention due to its potential signal processing applications such as speech signal processing, telecommunications,face recognition,image feature extraction and medical signal processing, ect.This dissertation is devoted to the study of several algorithms for temporal independent component analysis and their applications by using AR source model.The main achievements are as follows:
     1.The algorithms of noise-free independent component,analysis with AR source model were studied.The log-likelihood of the model is derived in detail when each source is a first-order AR model,then the ICA learning algorithms are proposed in three cases.(1) A gradient algorithm is given by maximizing log-likelihood of the model when the probability density function of innovation is generalized Gaussian distribution; (2) There are many parameters in the gradient algorithm,and the functions are complexity.So we use a nonquadratic function approximate the logarithm of the probability density function of the innovation process,a batch and an on-line algorithms are introduced and their theoretics analysis are carried out simultaneously.Computer simulations show that the algorithms can separate mixed signals,and the batch algorithm can separate mixed images and.achieve better separation effect;(3) There is a learning rate in the batch algorithm which influenced the convergence speed.In order to overcome drawback:a fixed-point algorithm is derived using approximate Newton method by maximizing log-likelihood function of the model.Computer simulations verify the fixed-point algorithm converges faster than the batch algorithm and it is easy to implement due to it does not need any learning rate.
     2.The algorithms of noisy independent component analysis with AR source model were studied when the noise covariance is known and the noise covariance is unknown. When the noise covariance matrix is known,a fixed-point algorithm is proposed by maximizing the negentropy of innovation.Computer simulations show that the fixedpoint algorithm converges faster than the existing gradient algorithm,and can separate the mixed images and achieve better separation effect.When the noise covariance is unknown,an improved gradient algorithm and a new noisy algorithm are introduced to estimate the mixing matrix and noise covariance matrix simultaneously.Computer simulations verify the two algorithms can separate the mixed signals.Comparison results show that the new noisy algorithm converges faster than the improved gradient algorithm,and it is easy to implement due to there is only one learning rate to be chosen.
     3.The algorithm of noise-free independent component analysis were studied with AR source model and nonstationary variances.In 2005,the log-likelihood of the model was given and a gradient algorithm was proposed by maximizing log-likelihood of the model by Hyv(a|¨)rinen.But the convergence speed is influenced by the choice of the learning rate.In order to overcome this drawback,a fixed-point algorithm is proposed using approximate Newton method by maximizing log-likelihood of the model.Computer simulations show that the fixed-point algorithm converges faster than the gradient algorithm,and it is more implement due to it does not need any learning rate.
     4.The algorithms of noisy independent component analysis were studied with AR source model and nonstationary variances when the noise covariance matrix is known and the noise covariance matrix is unknown.When the noise covariance matrix is known, the log-likelihood function of the model is given by using the property of Gaussian moments and a gradient algorithm is introduced by maximizing the log-likelihood function of the model;when the noise covariance matrix is unknown,a new gradient algorithm is introduced by developing the gradient algorithm to estimate unmixed matrix and noise covariance matrix simultaneously.Computer simulations show that the two algorithms can separate the artificial mixed signals and achieve better separation effect.
     5.The algorithms of blind extraction of FECG with AR model were studied.A new gradient algorithm is given using approximate Newton method by minimizing objective function when Gaussian noise is not present.Computer simulations show that the algorithm can extract FECG from the artificial signals and the real-world ECG data:When Gaussian noise is present in the model,an objective function is given by utilizing the property of Gaussian moments,and a gradient descent algorithm is proposed.Computer simulations verify the gradient,descent algorithm is effective and feasible.
引文
[1]Hyv(a|¨)rinen A,Karhunen J,Oja E.Independent Component Analysis.John Wiley & Sons,New York,2001.
    [2]Roberts S,Everson R.Independent component analysis:Principles and Practice.Cambridge,U.K.:Cambridge Univ.Press,2001.
    [3]杨行峻,郑君里.人工神经网络与盲信号处理.北京:清华大学出版社,2003.
    [4]高隽.智能信息处理方法导论.北京:机械工业出版社,2003.
    [5]Karhunen J,Joutsensalo J.Representation and separation of singals using nonlinear PCA type learning.Neural Networks,1994,7(1):113-127.
    [6]Karhunen J.Pajunen P.Oja E.Nonlinear PCA type approaches for source separation and independent component analysis.In:Proceedings of the 1995 IEEE International Conferences on Neural Networks(ICNN'95),1995,995-1000.
    [7]Oja E.The nonlinear PCA learning rule and signal separation-Mathematics analysis.Neurocomputing,1997,17:25-45.
    [8]Cardoso J F,Comon P.Independent component analysis:a survey of some algebraic methods.In:Proceedings of IEEE Symposium on Circuits and Systems.1996,2:93-96.
    [9]Hyv(a|¨)rinen A,Oja E.Independent component analysis:algorithms and applications.Neural Networks,2000,13(4):411-430.
    [10]Lee T W.Independent component analysis:Theory and Applications.Boston,Kluwer,Academic Publishers,1998.
    [11]Keshia N L.A survey paper on independent component analysis.In:Proceedings of the Thirty-fourth Southeastern Symposium on System Theory,2002,239-242.
    [12]Lewicki M S,Sejnowski T J.Learning overcomplete representations.Neural Computations,2000.12(2):337-365.
    [13]Cichocki A,Armari S I.Adaptive blind signal and image processing learning algorithms and applications.John Wiley & Sons,New York,2002.
    [14]Girolami M.Self-organising neural networks-independent component analysis and blind source separation.Springer-Verlag,1999.
    [15]Sanchez A V D.Frontiers of research in BSS/ICA.Neurocomputing,2002,49:7-23.
    [16]Cichocki A,Karhunen J,Kasprrzak W et al.Neural Networks for blind separation with unknown number of sources.Neurocomputing,1999,24:55-93.
    [17]Amari S.Natural gradient for over-and under-complete bases in ICA.Neural Computation.1999,11(8):1875-1883.
    [18]Hyv(a|¨)rinen A.Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood.Neurocomputing,1998,22(1-3):49-67.
    [19] Attias H. Independent factor analysis. Neural Computation, 1999, 11(5): 803-852.
    
    [20] Comon P, Jutten C, Herault J. Independent component analysis-a new concept? Signal Processing, 1994, 36: 287-314.
    
    [21] Hyvarinen A. Complexity pursuit: separating interesting component from time-series. Neural Computation, 2001, 13(4): 883-898.
    
    [22] Girolami M. A variational method for learning sparse and overcomplete representation. Neural Computation, 2001, 13: 2517-2532.
    
    [23] Lewicki M S. Olshausen B A. Probabilistic framework for the adaptation and comparison of image codes. Journal of the Optical Society of America: Optics, Image Science, and Vision, 1999, 16(7): 1587-1601.
    
    [24] Li Y, Cichock A, Amari S. Sparse component analysis for blind source separation with less sensors than sources. The 4th International Symposium on Independent Component Analysis and Blind Source Separation (ICA2003), Japan, 2003, 89-94.
    
    [25 ]Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary. Neural Computation. 2001. 13(4): 863-882.
    
    [26] Zibulevsky M, Pearlmutter B A, Bofill P et al. Blind source separation by sparse decomposition in a signal dictionary. In: S. Robers and R. Everson (Eds.). Independent Component Analysis: Principles and Practice, Cambridge University Press. 2001.
    
    [27] Cover Y M. Thomas J A. Elements of Information Theory. John Wiley & Sons, New York. 1991.
    
    [28] Bishop C M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, 1995.
    
    [29] Mackay D J C. Information theory, inference, and learning algorithms. Cambridge University Press, 2003.
    
    [30] Gaeta M, Lacoume J L. Sources separation without a priori knowledge: The maximum likelihood solution. Signal Processing V: Theories and Application, 1990, 621-623.
    
    [31] Pearlmutter B A, Parra L C. A context-sensitive generalization of ICA. In: Proceedings International Conference on Neural Information Processing. Hong Kong, 1996, 151-157.
    
    [32] Papoulas A. Probability, random variables and stochastic processes. 2nd ed. McGraw-Hill New York, 1984.
    
    [33] Lee T W, Girolami M, Bell A J et al. A unifying information-theoretic framework for independent component analysis. Computers and Mathematics with Applications. 2000, 39(11): 1-21.
    
    [34] Mackay D J C. Maximum likelihood and covariant algorithms for independent component analysis. Available online at: ftp://wol.ra.phy.cam.ac.uk/pub/mackay/ica.pa.gz,1996.
    
    [35] Firedman J H, Tukey J W. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions of computers C-23, 1974, 9: 881-890.
    [36]Huber P.Projection pursuit.Annals of Statistics,1985,13(2):435-475.
    [37]Jones M,Sibson R.What is projection pursuit? Journal of the Royal Statistial Society,Ser.A,1987,150:1-36.
    [38]Xu L.One-bit-matching theorem for ICA,convex-concave programming on polyhedral set,and distribution approximation for combinatorics.Neural Computation.2007,19(2):546-569.
    [39]Liu Z.Y,Chiu K C,Xu L.One-bit-matching conjecture for independent component analysis.Neural Computation.2004,16(2):383-399.
    [40]Choi S,Cichocki A,Amari S.Flexible independent component analysis.Neural Networks for Signal Processing,1998.8:83-93.
    [41]Amari S,Cichocki A.Adaptive blind signal processing-neural network approaches.In:Proceedings of the IEEE.1998.86(10):2026-2048.
    [42]Zhang L,Amari S,Cichocki A.Natural gradient approach to blind separation of overand undercomplete mixtures.In:Proceedings of International Workshop on Independent Component Analysis and Signal Separation(ICA'99).1999,455-460.
    [43]Cardoso J F,Laheld B H.Equivariant adaptive source separation.IEEE Transactions on Signal Processing,1996,44(12):3017-3030.
    [44]倪晋平.水声信号盲分离技术研究:西北工业大学博士学位论文,2002.
    [45]Amari S I.Natural gradient works efficiently in learning.Neural Computation,1998,10:251-276.
    [46]Amari S I,Cichocki A,Yang H.A new learning algorithm for blind source separation.Advances in Neural Information Processing Systems,MIT Press,Cambridge,MA,1996,8:757-763.
    [47]Amari S I,Chen T P,Cichocki A.Stability analysis of learning algorithms for blind source separation.Neural Networks.1997,10:1345-1351.
    [48]Hyv(a|¨)rinen A,Oja E.A fast fixed-point algorithm for independent component analysis.Neural Computation,1997,9(7):1483-1492.
    [49]Hyv(a|¨)rinen A.A family of fixed-point algorithm for independent component analysis.In:Proceedings of IEEE International Conferences on Acoustics,Speech and Signal Processing (ICASSP'97),Munich,Germany,1997,3917-3920.
    [50]Hyv(a|¨)rinen A.Fast and robust fixed-point algorithms for independent component analysis.IEEE Transactions on Neural Networks,1999,10(3):626-633.
    [51]Hyv(a|¨)rinen A.A new approximation of differential entropy for independent component analysis and projection pursuit.Advances in Neural Information Processing System,MIT Press,Cambridge,MA,1998.10:273-279.
    [52]Ans B,Herault J,Jutten C.Adaptive neural architectures:detection of primitives.In:Proceedings of COGNITIVA'05,1985,593-597.
    [53] Herault J, Jutten C. Space or time adaptive signal processing by neural network models. In: Neural Networks for computing: AIP conference proceedings 151, New York, 1986.
    [54] Jutten C, Herault J. Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture, Signal Processing, 1991, 24(1): 1-10.
    [55] Sorouchyari E. Blind separation of sources, part III: stability analysis. Signal Processing, 1991, 24(1): 21-29.
    [56] Comon P, Jutten C, Herault J. Blind separation of sources, part II: problems statement. Signal Processing, 1991, 24(1): 11-20.
    [57] Cardoso J F. Blind identification of independent component with higher-order statistics. In: Proceedings Workshop on Higher-order Spectral Analysis, 1989, 157-160.
    [58] Comom P. Separation of stochastic processes, In: Proceedings Workshop on Higher-order Spectral Analysis, 1989, 174-179.
    [59] Cardoso J F, Souloumiac A. Blind beamforming for non Gaussian signals. IEEE Proceedings- F, 1993, 44(2): 362-370.
    
    [60] Cichocki A, Moszczynski L. A new learning algorithm for blind separation of sources. Electronics Letters, 1992, 28(21): 1386-1387.
    [61] Cichocki A, Unbehauen R, Rummert E. Robust learning algorithm for blind separation of signals. Electronics Letters, 1994, 30(17): 1986-1987.
    
    [62] Cichocki A, Unbehauen R. Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Transactions on Circuit and Systems, 1996, 43(11): 894-906.
    [63] Burel G. Blind separation of sources: a nonlinear neural algorithm. Neural Networks. 1992, 5(6): 937-947.
    [64] Nadal J P, Parga N. Nonlinear neurons in the low noise limit: a factorial code maximizes information transfer. Network: Computation in Neural Systems, 1994, 5: 565-581.
    [65] Oja E, Ogawa H, Wangviwattana J. Learning in nonlinear constrained Hebbian networks. In: Proceedings International Conference on Artificial Neural Networks, Espoo, Finland, 1991, 385-390.
    [66] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blins deconvolution. Neural Computation, 1995, 7: 1129-1159.
    [67] Bell A J, Sejnowski T J. Fast blind separation based on information theory. In: Proceedings of International Symposium on nonlinear Theory and Applications, 1995, 1: 43-47.
    [68] Bell A J, Sejnowski T J. A non-linear information maximization algorithm that performs blind separation. Advances in Neural Information Processing Systems 7, MIT Press, 1995, 467-473.
    
    [69] Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Computa- tion, 1999, 11(2): 417-441.
    
    [70] Cardoso J F. Informax and maximimumlikelihood for blind separation. IEEE Signal Processing Letters, 1997, 4(4): 112-113.
    
    [71] Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: relations with other approaches. Neurocomputing, 1998, 22: 5-20.
    
    [72] Oja E. Nonlinear PCA criterion and maximum likelihood in independent component analysis. In: Proceedings of International Workshop on Independent Component Analysis and Signal Seperation (ICA'99). 1999, 143-148.
    
    [73] Hyvarinen A. Independent component analysis for time-dependent stochastic processes. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN'98). Skovde. Sweden. 1998, 10: 273-279.
    
    [74] Murata N, Lkeda S, Ziehe A. An approach to blind separation based on temporal structure of speech signals. Neurocomputing, 2001. 41: 1-24.
    
    [75] Cichocki A, Douglas S C, Amari S I. Robust techniques for independent component analysis (ICA) with noise data. Neurocomputing. 1998, 22(1-3): 113-139.
    [76] Hojen-Sorensen P A d E R. Winther O. Hansen L K. Mean-field approaches to independent component analysis. Neural Computation. 2002, 14(4): 889-918.
    [77] Hyvarinen A. Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estiamtion. Neural Computation, 1999. 11(7): 1739-1768.
    [78] Moulines E, Cardoso J P. Gassiat E. Maximum likelihood for blind separation and decon-volution of noisy signals using mixture models. In: Proceedings of IEEE Conferences on Acoustics. Speech. and Signal Processing, 1997, 5: 3617-3620.
    [79] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations. Signal Processing, 2001. 81(11): 2353-2362.
    [80] Harmeling S, et al. Nonlinear blind source separation using kernel feature spaces. In: Proceedings of International Workshop on Independent Component Analysis and Signal Separation(ICA2001). California, USA, 2001, 102-107.
    [81] Harmeling S. Ziehe A. Kawanabe M et al. Kernel-based nonlinear blind source separation. Neural Computation, 2003. 15: 1089-1124.
    [82] Hyvarinen A. Pajunen P. Nonlinear independent component analysis: Existence and uniqueness. Neural Networks, 1999, 12: 429-439.
    [83] Lappalainen H. Honlela A. Bayesian nonlinear independent component analysis by multilayer perceptrons. Advances in Independent Component Analysis. Springer, 2000: 93-121.
    [84] Lee T W, Kohler B, Orglmeister R. Blind source separation of nonlinear mixing models. Neural Networks for Signal Processing, 1997, 406-415.
    Pajunen P, Karhunen J. A maximum likelihood approach to nonlinear blind source separation. In: Proceedings of the International Conference on Artificial Neural Networks, Lausanne, 1997, 541-546.
    [86] Taleb A, Jutten C. Nonlinear source separation: the post-nonlinear mixtures, ESANN'97, 1997, 279-284.
    [87] Matsuoka K, Ohya M, Kawamoto M. A neural net for blind source separation of nonsta- tionary signals. Neural Netowrks, 1995, 8(3): 411-419.
    [88] Pham D T, Cardoso J F. Blind separation of instantaneous mixtures of non stationary sources. IEEE Transactions on Signal Processing, 2001, 49(9): 1837-1848.
    [89] Hyvarinen A. Blind source separation by nonstationarity of variance: a cumulant-based approach. IEEE Transactions on Neural Networks, 2001, 12(6): 1471-1474.
    [90] Tong L, Liu R W. Soon V C et al. Indeterminacy and identifiability of blind identification. IEEE Transactions on Circuits Systems. 1991, 38: 499-509.
    
    [91] Belouchrani A, Abed Meraim K, Cardoso J F et al. A blind source separation technique based on second order statistics, IEEE Transactions on Signal Processing, 1997, 45 (2): 434-444.
    
    [92] Ziehe A, Muller K R. TDSEP- an efficient algorithm for blind separation using time structure. In: Proceedings International Conference on Artificial Neural Networks (ICANN'98). Skovde, Sweden, 1998, 675-680.
    
    [93] Molgedey L, Schuster H G. Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters, 1994, 72: 3634-3636.
    [94] Pham D T. Blind separation of instantaneous mixtures of sources via the Gaussian mutual information criterion. Signal Processing. 2001, 81: 855-870.
    
    [95] Kawamoto M, Matsuoka K, Oya M. Blind separation of sources using temporal correlation of the observed signals, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E80-A(4) 1997, 695-704.
    
    [96] Amari S I. Estimating functions of independent component analysis for temporally correlated signals. Neural Computation. 2000, 12 (9): 2083-2107.
    [97] Degerine S, Malki R. Second-order blind separation of sources based on canonical partial innovations. IEEE Transactions on Signal Processing, 2000, 48 (3): 629-641.
    [98] Choi S, Cichocki A, Amari S. Equivariant nonstationary source separation. Neural Networks, 2002, 15: 121-130.
    [99] Pajunen P. Blind source separation using algorithmic information theory. Neurocomputing. 1998, 22: 35-48.
    
    [100] Muller K R, Philips P, Ziehe A. JADE_(td): Combining higher-order statistics and temporal information for blind source separation (with noise). In: Proceedings of International Workshop on Independent Component Analysis and Signal Separation (ICA'99), Aussois, France, 1999, 87-92.
    [101] Hild II K E, Attias H T, Nagarajan S S. An EM method for spatio-temporal blind source separation using an AR-MOG source model.In:Proceedings International Workshop on Independent Component Analysis and Signal Separation(ICA'06),Charleston,USA,2006,98-105.
    [102]Hyv(a|¨)rinen A.A unifying model for blind separation of independent sources.Signal Processing,2005,85:1419-1427.
    [103]Hyv(a|¨)rinen A.Gaussian moments for noisy independent component analysis.IEEE Signal Processing Letters,1999,6(6):145-147.
    [104]Hyv(a|¨)rinen A.Fast ICA for noisy data using Gaussian moments.In:Proceeding of the International Symposium on Circuits and Systems,Orlando.FL,1999,57-61.
    [105]Shi Z,Zhang C.Gaussian moments for noisy complexity pursuit.Neurocomputing,2006,69:917-921.
    [106]Lappalainen H.Ensemble learning for independent component analysis.In:Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation:ICA'99,1999,7-12.
    [107]Welling M,Weber M.A constrained EM algorithm for independent component analysis.Neural Computation,2001,13(3):677-689.
    [108]Bell A,Sejnowski T.The “independent component analysis” of natural scenes are edge filters.Vision Research,1997,37:3327-3338.
    [109]Olshausen B A.Field D J.Emergence of simple-cell receptive field properties by learning a sparse code for natural images.Nature.1996,381:607-609.
    [110]Bell A.Sejnowski T.Learning higher-order structure of a natural sound.Network:Computation in Neural Systems.1996,7:261-266.
    [111]唐焕文,唐一源,郭崇慧,陈克伟.神经信息学及其应用,科学出版社,2007.
    [112]Mckeown M J,Makeig S,Brown G G et al.Analysis of fMRI data by blind separation into spatial independent component anlaysis.Human Brain Mapping,1998,6:160-188.
    [113]Cristescu R,Ristaniemi T,Joutsensalo J.Delay estimation in CDMA communications using a fast ICA algorithm.In:Proceedings International Workshop on Independent Component Analysis and Blind Signal Separation(ICA2000),Helsinki,Finland,2000:105-110.
    [114]Bingham E.Advances independent component analysis with applications to data mining.Unpublished doctoral dissertation,Helsinki University of Technology,2003.
    [115]Barros A K,Cichocki A.Extraction of specific signals with temporal structure.Neural Computation.2001,13(9):1995-2003.
    [116]Cichocki A,Thawonmas R,Amari S.Sequential blind signal extraction in order specified by stochastics properties.Electronics Letters,1997,33:64-65.
    [117]Malouche Z,Macchi O.Adaptive unsupervised signal extraction of one component of a linear mixture with a single neuron.IEEE Transactions on Neural Networks,1998,9:123-138.
    [118]Cichocki A,Thawonmas R.On-line algorithm for blind signal extraction of arbitrarily distributed,but temporally correlated sources using second order statistics.Neural Processing Letters,2000,12:91-98.
    [119]Zhang Z L,Yi Z.Extraction of temporally correlated sources with its application to noninvasive fetal electrocardiogram extration.Neurocomputing,2006,69:894-899.
    [120]Zhang Z L,Yi Z.Robust extraction of specific signals with temporal structure.Neurocomputing,2006,69:888-893.
    [121]Shi Z W,Zhang C.Semi-blind source extraction for fetal electrocardiogram extraction by combining non-Gaussianity and time-correlation.Neurocomputing,2007,70:1574-1581.
    [122]Cruces S,Cichocki A,Castedo L.Blind signal extraction in Gaussian noise.In:Proceedings of International Workshop on Independent Component Analysis and Blind Source Separation,2002,63-68.
    [123]Liu W,Mandic D P.A normalised kurtosis based algorithm for blind source extraction from noisy measurernents.Signal Processing,2006,86(7):1580-1585.
    [124]Liu W,Mandic D P,Cichocki A.Blind second-order source extraction of instantaneous noisy mixtures.IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2006,53(9):931-935.
    [125]汪军,何振亚.基于高阶谱的信号盲分离.东南大学学报,1996,26(5):75-78.
    [126]何振亚,杨绿溪,鲁子奕.非线性Informax自组织算法的盲源分离机理.数据采集与处理,1998,13(4):303-305.
    [127]刘琚,梅良模,何振亚.一种盲信号分离的信息理论方法.山东大学学报(自然科学版),1998,33(4):398-403.
    [128]刘琚,顾明亮,何振亚.一种新的瞬时混迭信号盲分离的自适应算法.电路与系统学报,1998,3(4):66-71.
    [129]刘琚,鲁子奕,何振亚,梅良模.基于信息理论准则的盲源分离方法.应用科学学报,1999,17(2):156-162.
    [130]陈阳,杨绿溪,何振亚.盲源分离H-J网络的稳定性分析.东南大学学报,2000,30(3):16-20.
    [131]刘琚,聂开宝,李道真,何振亚.基于递归神经网络的信息理论盲源分离准则.电路与系统学报,2001,6(1):40-44.
    [132]刘琚,孙建德,张新刚.基于ICA的数字水印的方法.电子学报,2004,32(4):657-660.
    [133]刘琚,何振亚.盲源分离和盲反卷积.电子学报,2002,30(4):570-576.
    [134]胡波,凌燮亭.Hebbian无导师学习原理的盲均衡.(Ⅰ)最小相位通道.通信学报,1994,15(5):17-24.
    [135]胡波,凌燮亭.Hebbian无导师学习原理的盲均衡.(Ⅱ)非最小相位通道.通信学报,1994,15(6):17-22.
    [136]凌燮亭.延时狭带信号的自学习盲分离.电子学报,1995,23(1):28-33.
    [137]张贤达,朱孝龙,保铮.基于分阶段学习的盲信号分离.中国科学,E辑,2002,32(5):693-703.
    [138]Wang Gang,Hu Dewen.The existence of spurious equilibrium in FastICA.Lecture Notes in Computer Science.2004,3173:708-713.
    [139]Zhang Liqing,Cichocki A,Amari S I.Self-adaptive blind source separation based on activation functions adaptation.IEEE Transactions on Neural Networks.2004,15(2):233-244.
    [140]吴小培,詹长安,周荷琴等.采用独立分量分析方法消除信号中的工频干扰.中国科学技术大学学报,2000,30(6):671-676.
    [141]李全政,高小榕,欧阳婧.胸阻抗信号中的呼吸波的去除.清华大学学报(自然科学版),2000,49(9):13-16.
    [142]洪波,唐庆玉,杨福生等.ICA在视觉诱发电位的少次提取与波形分析中的应用.中国生物医学工程学报,2000.19(3):334-341.
    [143]胎儿心电信号提取的算法研究:郑州大学硕士学位论文,2007.
    [144]Nocedal J,Wright S J.Numerical Optimization.Springer.1999.
    [145]De Moor D(Ed.).Daisy:Database for the identification of systems.http://www.esat.kuleuven.ac.be/sista/daisy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700