用户名: 密码: 验证码:
镍薄膜超快热化动力学的实验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对计算机数据传输速率的要求不断提高。这就要求数据的读出过程需要较宽的电子传输带宽,写入过程需要较短的反转时间。目前的主要障碍在于写入过程,磁性存储装置中的磁性层转换特性限制了磁性装置速度的提高。为了克服这个困难,需要对磁性层在超快时间尺度内的动力学过程进行研究,得到其发生特性转换的时间,进而改进计算机中现有的磁性存储装置。因此,本文对典型的3d金属镍及其复合膜在飞秒激光下的超快热化过程进行了详细研究。
     首先,采用磁控溅射技术制备了不同厚度的Ni薄膜及其复合膜,对部分样品进行了500℃真空退火,利用扫描电子显微镜和原子力显微镜对退火前后的样品进行表征,发现退火后的薄膜结晶性增强了;对于Cu/Ni复合膜,较厚的Cu层使薄膜退火后的结晶性更好,晶粒多而均匀;退火使得复合膜Cu/Ni比Cr/Ni更有利于薄膜表面晶粒的生长。
     其次,对已制备好的薄膜样品,采用飞秒激光泵浦-探测技术测试了其在不同参数条件下的瞬态反射率信号,重点研究了泵浦光与探测光功率、散热层和退火对瞬态反射率曲线的影响,获得以下结论:受飞秒激光脉冲激发后,Ni薄膜瞬态反射率在约0.2ps时从稳定值突变至极值,随后有一个较缓慢的恢复过程,并且在15ps,30ps和45ps附近出现了应力回波产生的尖峰;泵浦光功率的升高,使得反射率变化率突变的幅值增大;探测光与泵浦光功率之比的减小可以提高系统的信噪比;不同散热层下薄膜瞬态反射率急剧下降的时间是一致的,但是具有较大电子比热容常数和强电子声子耦合常数的散热层如Cr更能提高瞬态热传导的散射效率。退火后的复合膜相比退火前在突变后的恢复过程进行得更快,Cu层较厚时退火后的瞬态反射率恢复率比Cu层较薄时大;相比Cr(40nm)/Ni(40nm),复合膜Cu(40nm)/Ni(40nm)具有较小的晶格失配率,退火更有利于后者内部电子和声子以扩散方式进行的热传递。
     最后,采用有限差分法对三温模型进行了数值求解,并对Ni薄膜和NiFe薄膜的超快热化过程进行了模拟。引进一个相当于自旋比热容常数的系数γ_s来描述自旋比热随自旋温度的变化趋势;结合实验对镍铁合金薄膜受激发后的反射率变化进行了模拟,发现镍薄膜电子温度峰值与激光功率几乎成正比,且修改后的模型相比原始模型得到的模拟结果与实验结果更接近;最后,对不同厚度的镍薄膜在飞秒激光作用下的热化动力学进行了分析,发现当薄膜厚度小于光透深度时,电子、自旋的峰值温度明显高于较厚薄膜,这与实验结果一致。
At present, data transfer rate of computer keep rising. To improve the rate of data transferring, a wide bandwidth of electronic transmission is required for read-out process, and a short inversion time is needed for writing process. At present the main obstacle is the writing process, in which the conversion characteristics of magnetic layers limits the speed of magnetic installation. In order to overcome this difficulty, the dynamic process in the ultrafast time scale must be studied, for obtaining the occurrence time of the characteristics conversion and improving existing magnetic device in computer. In this paper, the ultrafast thermalization process of the typical 3d metal Ni films and its composite films have been studied in detail under femtosecond laser.
     At first. Ni films and its composite films with different thickness were prepared by Magnetron sputtering, and some samples were annealed at 500℃in vacuum, and examined of the surface features using scanning electron microscopy and atomic force microscopy, and found that annealing enhanced the crystalline of the thin films. Cu / Ni composite film with thicker Cu layer after annealing has better crystalline, with more homogeneous grains; Annealing is more favorable to grain growth of sample Cu/Ni than Cr/Ni composite film, as Cu has a closer lattice parameters with Ni.
     Using femtosecond laser pump-probe technique, the author have tested transient reflectivity signal of Ni film sample prepared under different parameters, focusing on the effect of pump and probe optical power, cooling layer and annealing on the transient reflectivity curves, and from the experimental results we conferred that: After excitation by femtosecond laser pulses, transient reflectivity values of Ni films went up to the maximum at about 0.2ps, and then experienced a slow recovery process, and generated 3 peaks nearl5ps, 30ps and 45ps brought by stress waves; Pump power increasing makes the reflection magnitude flop increase approximately proportionally; Decreasing the ratio of probe power and pump power can improve the SNR of the system to obtain more accurate measurements; For Ni films with different cooling layers, the time points of transient reflectivity change are the same, but cooling layers with a larger electronic specific heat constant and the strong electron-phonon coupling constant, such as Cr can enhance the scattering efficiency of transient heat conduction, so that the transient reflectivity rate of the recovery process was faster. The composite film sample after annealing samples compared to unannealed samples had faster recovery process of transient reflectivity; Composite sample with thicker cooling layer after annealing had higher recovery rate of the transient reflectivity; Compared to Cr (40nm) / Ni (40nm), annealing was more conducive to Cu (40nm) / Ni (40nm) composite film as the lattice mismatch rate between Cu and Ni is smaller, heat transfer rate in the way of diffusion of electrons and phonons improved, making the film surface temperature decrease.
     Finally, the author carried out numerical computation based on three-temperature (3T) equations with finite- difference method, then modeled and analyzed the ultrafast thermalization process of the Ni film and NiFe thin films induced by femtosecond laser. A coefficient had been introduced to characterize temperature dependence of the specific heat of spin system, to optimize spin temperature. The author engaged in analytical research of reflectivity change of Ni films and found that the modified model matched ultimately the experiment results of Ni films, and studied the laser power dependence of peak value of reflectivity change. Also, the author investigated the ultrafast thermalization dynamics of Ni films with different thickness, it has been found that when the thickness of thin film is less than the depth of penetration, temperature of electron, spin system grow up obviously, compared with thicker films, which is agreeable with the experimental results.
引文
[1]Maarten van Kampen.Ultrafast spin dynamics in ferromagnetic metals[M].Ph.D.Thesis,Technology University Eindhoven,2003,8-64
    [2]刘公强,乐志强,沈德芳等.磁光学[M].上海:上海科学技术出版社,2001,5.
    [3]刘长隆,周明,袁冬青,陈磊.飞秒激光探测超快磁动力学的研究进展[J].超快光学,2007,44(09):60-64
    [4]M.Djordjevic,M.L(u|¨)ttich,P.Mosehkau etc.Comprehensive view on ultrafast dynamics of ferromagnetic films[J].Phys.Stat.Sol,2006,3(5):1347-1358.
    [5]J.A.von Segner,De raritate Luminis,Gottingen 1740
    [6]C.de la Tour,Ann.Chim.Phys.12,167(1819)
    [7]C.Weatstone,Phil.Trans.1834,583(1835)
    [8]A.Topler,Ann.Physik und Chemic 131,180(1867)
    [9]黄仕华.半导体中超快动力学过程的研究[D].上海:复旦大学,2004.2
    [10]罗乐,麻晓敏,李建设,黄英,邓善熙.飞秒激光和大功率激光的发展与应用[J].合肥工业大学学报(自然科学版),2005,(12)
    [11]唐若琪.飞秒泵浦探测实验研究ZnSe中载流子超快动力学过程[D].长春:吉林大学,2004.6
    [12]R.L.Fork and B.I.Green et al.Appl.Phs.Lett.38,671(1981)
    [13]L.Fork,G.H.Brito Cruz,P.C.Becker,et al.Compression of optical pulses to six femtoseconds by using cubic phase compensation[J].Opt.Lett,1987,12(7):483
    [14]D.E.Spence,P.N.Kean,W.Sibbett.60-fs pulse generation from a self-mode-locked Ti:sapphire laser[J].Opt.Lett,1991,16:42
    [15]MATSUBARA E,YAMANE K,SEKIKAWAT,et al.Generation of 2.6 fs optical pulses using induced-phasemodulation in a gas-filled hollow fiber[J].JOSA B,2007,24(4):985-989
    [16]Keller U.Recent developments in compact ultrafast lasers[J].Nature,2004,424(14):831
    [17]袁冬青,周明,戴起勋.GaAs载流子的超快动力学特性[J].激光与光电子学进展,2006,43(1):41-44
    [18]J.Guena,M.Lintz,M.-A.Bouchiat.Proposal for high-precision atomi-parity violation measurements by amplification of the asymmetry by stimulated emission in a transverse electric and magnetic field pump-probe experiment[J].Opt.Soc.Am.B,2005,22(1):21-28
    [19]I.Aoshima,K.Nishibayashi,I.Souma et al..Ultrafast spin injection from Cd_(1-x)Mn_xTe magnetic barriers into a CdTe quantum well studied by pump-probe spectroscopy[J].Journal of Luminescence,2006,119-120:437-441
    [20]A.Rudenko,Th.Ergler,B.Feuerstein et al.Real-time observation of vibrational revival in the fastest molecular system[J].Chemical Physics,2006,329(1-3):193-202
    [21]D.H.Auston,C.V.Shank,Picosecond ellipsometry of transient electron-hole plasmas in germanium[J].Phys.Rev.Lett,1974,32(20):1120-1123
    [22]Fauchet Philippe M,Young Daniel A,Nighan Jr,William L,Fortmann Charles M.Picosecond cartier dynamics in a-Si_(0.5)Ge_(0.5):H measured with a free-electron laser[J].IEEE Journal of Quantum Electronics,1991,27(12):2714-2717
    [23]Cavalleri A,Siders C.W,Guo T,Wilson K,et al.Propagation of picosecond acoustic pulses in semiconductor heterostructures probed by ultrafast X-ray diffraction[J].IQEC,International Quantum Electronics Conference Proceedings,1999:306-307
    [24]John L.Hostetler.Investigation of Femtosecond Transient Thermoreflectance technique applied to characterization of microscale heat transfer properties in thin films[D],Thesis,University of Virginia,2001
    [25]Eesley,GL.,Observation of nonequilibrium electron heating in Copper[J].Physical Review Letters,1983.51(23):2140-2143
    [26]Fujimoto,J.G,et al.Femtosecond laser interaction with metallictungsten and nonequilibrium electron and lattice temperatures[J].Physical Review Letters,53,1837-1840(1984)
    [27]Elsayed-Ali,H.E.,etal.,Time-resolved observation of electron-phonon relaxation in copper[J].Physical Review Letters,1987.58(12):1212-1215
    [28]Wright Oliver B,Gusev Vitalyi E.Ultrafast generation of acoustic waves in copper[J].IEEE Transactions on Ultrasonics,Ferroelectdcs,and Frequency Control,1995,42(3):331-338
    [29]Brorson S.D,et al.Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors[J].Physical Review Letters,1990,64(18):2172-2175
    [30]Elsayed-Ali,H.E.,etal.Femtosecond thermo-reflectivity and thermo-transmissivity of polycrystalline and single-crystalline gold films[J].Physical Review B,1991.43(5):4488-4491
    [31]W.S.Fann,R.Storz,H.W.K.Tometal.,Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films[J].Physical Review Letters,1992.68(18):2834-2837
    [32]Groeneveld,R.H.M.,R.SPrik,and A.Lagendijk,Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals[J].Physical.Review.B,1992.45(9):5079-5082
    [33]Qiu,T.Q.,et al.,Femtosceond Laser-Heating of Multilayer Metals.2Experiments[J].International Journal of Heat and Mass Transfer,1994,37(17):2799-2808
    [34]Hohlfeld J,et al.Time-resolved thermo-reflectivity of thin gold films and its dependence on film thickness[J].Applied Physics B:Lasers and Optics,1997,64(3):387-390
    [35]Hamanaka Y,Hayashi N,Nakamura A,Omi S.Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass[J].Journal of Luminescence,1998,76-77:221-225
    [36]Lysenko S,Jimenez J,Zhang G.,Liu H.Nonlinear optical dynamics of glass-embedded silver nanoparticles[J].Journal of Electronic Materials,2006,35(9):1715-1721
    [37]Park Sungnam,Pelton Matthew,Liu Mingzhao,Guyot-Sionnest Philippe,Scherer Norbert F.Ultrafast resonant dynamics of surface plasmons in gold nanorods[J].Journal of Physical Chemistry C,2007,111(1):116-123
    [38]Lysenko S,Jimenez J,Vikhnin V,Liu H.Excited state dynamics in silver nanoparticles embedded in phosphate glass[J].Journal of Luminescence,2008,128(5-6):821-823
    [39]Hiroaki Nakamura,Yasuo Ando,Shigemi Mizukami et al..Measurement of magnetization precession for NM/Ni80Fe20/NM(NM=Cu and Pt) using time-resolved kerr effect[J].J.Appl.Phys.2004,43,L787-L789
    [40]Th.Gerrits,T.J.Silva,J.P.Nibarger et al.Large-angle magnetization dynamics investigated by vector-resolved magnetization- induced optical second- harmonic generation[J].Appl.Phys.,2004,96(11):6023-6028
    [41]V.P.Zhukov,O.Andreyev,D.Hoffmann et al.Life times of excited electrons in Ta:Experimental time-resolved photoemission data and first- principles GW +T theory[J].Phys.Rev.B,2004,70,233106
    [42]E.Beaurepaire G.M.Turner,S.M.Harrel et al.Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses[J].Appl.Phys.Lett.2004,84(18):3465-3467
    [43]M.B.Agrant,S.I.Ashikovm,A.B.Granovskii,and GI.Rukman.Interaction of picosecond laser pulses with the electron,spin and Phonon subsystem of nickel[J].Sov.Phys.JETP,1984,59:804-806
    [44]A.vateriaus,T.Beutler,and F.Meier.Spin-lattice relaxation time of Ferromagnetic gadolinium determined with time-resolved spin-polarized photoemission[J].Phys.Rev.Lett,1991,67:3314-3317
    [45]A.Vaterlaus,T.Beutler,D.Guarisco,M.LultZ,and F.Meier.Spin-lattice relaxation in ferromagnets studied by time-resolved spin-polarized photoemission[J].Phys.Rev.B,1992,46:5280-5286
    [46]R.Wilks,R.J.Hicken Ultrafast demagnetization of Co25Ni75/Pt multilayers with perpendicular anisotropy at elevated temperatures[J].J.Appl.Phys.2005,97,10A705
    [47]Kristen S.Buchanan,Xiaobin Zhu,Alkiviathes Mellrum et al.Ultrafast dynamics of a ferromagnetic nanocomposite[J].Nano Letters,2005,5(2):383-387
    [48]Ganping Ju,Julius Hohlfeld,Bastiaan Bergman et al..Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films[J].Phys.Rev.Lett.,2004, 93(19),197403
    [49]E.Beaurepaire,J.C.Merle,A.Daunois et al.Ultrafast spin dynamics in ferromagnetic Nickel[J].Phys.Rev.Lett,1996,76(22):4250-4253
    [50]J.Hohlfeld,E.Matthias,R.Knorren,and K.H.Bennemann.Nonequilibrium magnetization dynamics of nickel[J].Phys.Rev.Lett.1997,78:4861-4864
    [51]J.Gudde,U.Conrad,V.Jahnke,J.Hohlfeld,and E.Matthias.Magnetization dynamics of Ni and Co films on Cu(001) and of bulk nickel surfaces[J].Phys.Rev.B,1999,59:R6608-R6611
    [52]J.Hohlfeld,J.Gudde,U.Conrad,O.Duhr,G.Korn,and E.Matthias.Ultrafast magnetization dynamies of nickel[J].APPI.Phys.B,1999,68:505-510
    [53]A.Scholl,L.Baumgarten,R.Jacquemin,and W.Eberhardt.Ultrafast spin Dynamics of ferromagnetic thin films observed by femtosceond spin-resolved two Photon Photoemission[J].Phys.Rev.Lett.,1997,79:5146-5149
    [54]R.Wilks,N.D.Hughes,R.J.Hicken.Investigation of ultrafast spin dynamics in a Ni thin film[J].Appl.Phys.,2002,91(10):8670-8672
    [55]M van Kampen,J T Kohlhepp,et al.Sub-picosecond electron and phonon dynamics in nickel[J].J.Phys:Condens.Matter,2005,17:6823
    [56]Ju G.P,Nurmikko A.V,Farrow R.F.C,Marks R.F et al.Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system,Phys.Rev.Lett.2001,82(18):3705-3708
    [57]Choi B.C,Belov M,Hiebert W.K,et al,Ultrafast magnetization reversal dynamics investigated by time domain imaging[J],Phys.Rev.Lett,2001,86(4):728-731
    [58]T.h.Gerrits,H.A.M.van den Berg,J.Hohlfeld et al,Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping[J],Nature,2002,418(6897):509-512
    [59]Alberto Comin,Massimiliano Rossic,Cristina Mozzatic etc.Femtosecond dynamics of Co thin films on Si support[J].Solid State Communications 2004,129(4):227-231
    [60]A.V.Kimel,A.Kirilyuk,A.Tsvetkov,et al.Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3[J],Nature,2004,429(6994):850-853
    [61]G.P.Zhang,W.H(u|¨)bner.Laser-induced ultrafast demagnetization in ferromagnetic metals[J].Phys.Rev.Lett,1999,85(14):3025-3028
    [62]J.Hohlfeld,Ultrafast electron-,lattice- and spin-dynamics in metals,Thesis,Freie University,Berlin,1998
    [63]任杨.磁性薄膜的光诱导超快自旋动力学研究[D].上海:复旦大学,2008.10-11
    [64]Kaganov,M.I.,I.M.LifshitZ,and L.V.rfanatarov,Relaxation between electrons and crystalline lattices[J].Sov.phys.JETP,1957.4(2):173-178
    [65]Anisimov,S.I.,B.L.Kapeliovieh,and T.LPerelman,Electron emission from Metal surfaces exposed to ultrashort laser pulses.Zhumal EksPerimental'noi Teoretieheskoi Fiziki, 1974.66:776-781
    [66]Allen P.B.Theory of thermal relaxation of electrons in metals[J].Physical Review Letters,1987,59(13):1460-1463
    [67]Qiu.T.Q.and C.L.Tien.Femtosecond Laser Heating of Multi-Layer Metals-I Analysis ·Ini ·J.HeatMass Transfer,1994,37(17):2789-2797
    [68]C.K.Sun et al.,Femtosecond-tunable measurement of electron thermalization in gold,Phys.Rev.B 50,(1994):15337-15348
    [69]W.H(u|¨)bner,G.P.Zhang.Ultrafast spin dynamics in nickel[J].Phys.Rev.B,1998,58(10):R5920-R5920
    [70]G.P.Zhang,W.H(u|¨)bner.Femtosecond spin dynamics in the time domain[J].J.Appl.Phys,1999,85(8):5657-5659
    [71]B.Koopmans,H.H.J.E.Kicken,M.van Kampen et al.Microscopic model for femtosecond magnetization dynamics[J].Journal of Magnetism and Magnetic Materials,2005,286:271-275
    [72]B.Koopmans,J.J.M.Ruigrok,F.Dalla Longa et al.Unifying ultrafast magnetization dynamics[J].Phys.Rev.Lett.2005,95:267207.1-267207.4
    [73]田民波,刘德令,薄膜科学与技术手册,机械工业出版社,(1991)
    [74]祝捷,唐大伟,程光华等.飞秒激光泵浦-探测热反射系统的建立与调试[J],工程热物理学报,2008,29(7):1227-1230
    [75]Brorson S D,Fujimoto J G.Ippen E P.Femtosecond Electronic Heat-Transfer Dynamics in Thin Gold Films[J].Phys.Rev.Lett,1987,59:1962-1965
    [76]Elsayed-Ali H E,Norris T B,Pessot M A,et al.Time-resolved observation of elecreon in Copper.Phys.Rev.Lett,1987,58:1212-1215
    [77]Guidoni L,Beaurepaire E and Bigot J Y 2002 Phys.Rev.Lett.89 17401
    [78]韩鹏.飞秒激光抽运-探测热反射系统建立及金属薄膜热输运过程研究[D].中国科学院研究生院,2008.6
    [79]J.Hohlfeld,S.-S.Wellershoff,J.G(u|¨)dde etc.Electron and lattice dynamics following optical excitation of metals[J],Chemical Physics 251(2000):237-258
    [80]K.Baberschke:Appl.Phys.A 62,417(1996)
    [81]J.Gudde,J.Hohlfeld,J.G.Muller,and E.Matthias.Damage threshold dependence on electron-phonon coupling in Au and Ni film[J].Appl.Surf.Sci.,1998,127-129:40-45
    [82]C.D.Stanciu,A.V.Kimel,F.Hansteen etc.Ultrafast spin dynamics across compensation points in ferromagnetic GdFeCo:The role of angular momentum compensation[J].Phys.Rev.B,2006,7:220402
    [83]J.Hohlfeld,Th.Gerrits,M,Bilderbeek,Th.Rasing,H.Awano,and N.Ohta.Fast magnetization reversal of GdFeCo induced by femtosecond laser pulses[J].Phys.Rev.B,2001,65:012413
    [84][美]C.基泰尔著;项金钟,吴兴惠译.固体物理导论[M].北京:化学工业出版社,2005: 102-105
    [85]Wael M.G.Ibrahim.Study of non-equilibrium electron dynamics in metals[D].Norfolk:Old Dominion University,2002:94
    [86]倪晓昌,王清月.飞秒、皮秒激光烧蚀金属表面的有限差分热分析[J].中国激光,2004,31(4):277-280.
    [87]吴雪峰.飞秒激光烧蚀金属的理论与实验研究[D].哈尔滨:哈尔滨工业大学,2006.12-15
    [88]Chickkov B N,Momma C,Nolte S et al.Femtosecond,picosecond and nanosecond laser ablation of solids[J].Appl Phys A,1996,63(2):109-115
    [89]C.Kittel.Introduction to solid state physics.John Wiley&Sons,New York,1976
    [90]K.-H.Hellwege and E.O.Madelung.Group Ⅲ:Landolt-B(o|¨)rnstein numerical data and functional relationships in science and technology,volume 19a.Springer-Vedag,New York,1986
    [91]H.Regensburger,R.Vollmer,and J.Kirschner.Time-resolved magnetization induced second-harmonic generation from the Ni(110) surface[J].Phys.Rev.B,61:14716,2000
    [92]刘国栋,王贵兵,李剑峰,付博,罗福.绝缘衬底上硅表面载流子的超快动力学研究[J].光学学报,2009,29(3):753-754
    [93]刘国栋,王贵兵,付博,江继军,王伟,平罗福.单晶硅表面载流子动力学的超快抽运探测[J].中国激光,2008,35(9):1365-1369
    [94]金卫凤.镍薄膜超快热化动力学及其微纳结构影响的研究[D],镇江:江苏大学,2008.45-46
    [95]Lan Jian,Lishan Liz,Sumei Wan etc.Microscopic Energy transport through photonelectron -phonon interactions during ultrashort laser ablation of wideband gap materials Part Ⅰ:photon absorption[J].Chinese Journal of Lasers,2009,36(4):779-781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700