用户名: 密码: 验证码:
红外全景成像系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外全景成像系统兼有红外成像和全景成像两方面的优势,红外成像因其波长特性,可以应用在一切具有热红外辐射的环境中,有效解决了特殊复杂场景对光学成像仪器工作环境的挑战;全景成像通过光学结构的有效设计,可以实现大视场、360°全景成像。红外全景成像系统被广泛的应用在红外全景监控、地下管道探测,医学内窥检查等多个领域,已经成为大视场成像领域中的热门研究方向,国内外研究工作者对红外全景成像技术做了大量研究和探索,并取得了一定的成果,然而满足实用要求的红外全景成像系统并不多见,在此背景下,研究并设计满足实用要求的红外全景成像系统无疑具有非常重要的意义。
     本文在查阅国内外文献的基础上,介绍了全景成像系统的背景以及国内外研究现状,介绍了红外成像材料的发展状况及应用,分析了全景成像系统的普遍特性和实现全景成像的方法,并对折反射全景成像法做了主要分析。以下是本文完成的主要工作:
     1.在文献[9]、[10]的基础上,对水平场景消畸变折反射全景成像系统和柱面场景消畸变折反射全景成像系统做了设计改进。运用反射面入射角正切值与反射角正切值成线性关系作为消畸变条件,代替场景坐标与像面坐标的线性关系,使设计的系统可以同时满足水平和柱面场景无畸变要求,改进后的系统在场景方向上具有一定的景深,有利于实现全景立体成像。最后运用实例设计验证了理论设计结果的正确性。
     2.在文献[15]的基础上,运用CODE-V软件设计了一款小型紧凑结构工作在3~5μm波段的红外全景镜头。和原参考文献中的设计对比,本文将全景环形模块的两个透射面和两个反射面全部设置为球面,降低了镜头加工的难度,相对孔径的优化设计提高了系统的灵敏度和分辨率,中继系统采用三片式结构,其中非球面和衍射面的运用有效的平衡了系统像差。最终得到的镜头在3~5μm波段工作,对±55°~±100°视场成像,F数为1.3,有效焦距为-0.53mm,总长64.5mm,最小分辨极限只有6.3μm,无热化分析显示,系统在-20℃~60℃温度环境下,性能稳定,像质优良。
     3.在文献[15]、[16]并参考专利US6611282的基础上,运用CODE-V软件设计了另一款红外全景镜头。和原参考文献中的设计对比,本设计结构的第一反射面为凸面结构,第二反射面为凹面结构,这种结构组合在保留原设计的优点之外,有效解决了原设计中视场角限制的问题。最终设计结果显示,系统在3~5μm红外波段工作,对±50°~±100°的全景视场成像,镜头总长151mm,F╱#值为1.5,后焦距26.68mm,可以满足红外全景监控、地下管道探测等特殊领域的应用。
Infrared panoramic imaging system has the advantages in both infrared and panoramic imaging. Considering the characteristics of wavelength, infrared imaging can be applied in all conditions with thermal infrared radiation, which could effectively tackle the challenges for optical imaging instruments made by special complicated scenes. By the effective design of optical instruments, panoramic imaging can achieve a large field of view and 360°panoramic imaging. Infrared panoramic system has been widely used in infrared panoramic surveillance, detection of underground pipes, medical endoscopic and many other fields. It has become a popular research direction in the large field of view. Domestic and foreign investigators have done a lot of researches and explorations on the infrared panoramic imaging, and have achieved some useful results. However, not so many infrared panoramic imaging system can meet the practical needs. Thus, undoubtedly, it is of great significant to invent and design the infrared panoramic imaging system that can be meet the practical needs.
     Based on both Chinese and foreign references, this paper introduces the background and current investigations of panoramic imaging systems; introduces the development and application of infrared imaging materials; analyzes the universal character of panoramic imaging system and the method of achieving panoramic imaging; and selecting analyzes the catadioptric panoramic imaging. The following are the main work in this paper:
     1. Using the linear relationship between the tangent angle of incidence and the reflection angle tangent as the condition of eliminating distortion replace the linear relationship between the scene coordinates and the image plane coordinates, a improvements based on the references of [9, 10] has been made to design catadioptric omnidirectional system with undistorted imaging for horizontal scene and cylindrical scene. The designed system can not only meet the distortionless imaging demands of the system horizontal Scene and the cylindrical scene, but also have a certain depth of field for being conductive to get a Panoramic stereo imaging system. Then the theoretical of the design has been verified by a example.
     2. Based on the reference of [15] and the use of CODE-V as the computer simulation tool, a new compact structure of small infrared panoramic lens which have a wave band 3~5μm was completed. Compare to the design of the original references, the difficulty of processing the lens was reduced by setting the model's two transmission surface and two reflection surface to sphere, and the optimizing of the relative aperture can improve system's sensitivity and resolution, and the system aberrations was effectively balanced by setting asphere and the diffraction surface in relay system. The lens had a wave band 3~5μm, a field of view±55°~±100°, F-number1.3, focus -0.53mm, overall length 64.5mm, and the resolution limit of the lens was only 6.3μm. The analysis of the athermalization indicated that, the optical system canwork steadily with high optical quality in the temperature range of -20℃~60℃.
     3. Based on the references of [15,16] and the patent US6611282, another infrared panoramic lens was completed. Compare to the design of the original references, the system in this paper has a first convex Reflector and a second concave Reflector, such a structure assemble not only retain the advantages of the original design, but also give a solution of the limit of the field view. The final results indicate that: in the 3~5 micron infrared wave band, the system has the panoramic field of±50°~±100°, and also has a total length of 151mm, a value of the f/number of 1.5, and a back focal length of 26.68mm, all of this meets to the application of the infrared panoramic surveillance and underground pipeline detection and other special fields.
引文
[1]Kriegman D,Triendl E,Binford T.Stereo vision and navigation in buildings for mobile robots[C].IEEE Transactions on Robotics and Automation,1989,5(6):792-802.
    [2]Kopilovic I,Vagvolgyi B,Sziranyi T.Application of panoramic annular lens for motion analysis tasks:surveillance and smoke detection[C].IEEE,Pattern Recognition,2000,4(1):714-717.
    [3]Carrieri,A.H.Panoramic infrared-imaging spectroradiometer model with reverse phase-modulated beam broadcasting[J].Applied Optics,1997,36(9):1952-1964.
    [4]肖潇,杨国光.全景成像技术的现状和进展[J].光学仪器,2007,29(4):84-89.
    [5]Jun-Wei Hsieh.Fast stitching algorithm for moving object detection and mosaic constmction[J].Image and Vision Computing,2004,22(4):291-306.
    [6]Baker S,Nayar S K.A theory of single-view point catadioptric image formation[J].International Journal of Computer Vision,1999,35(2):175-196.
    [7]曾吉勇,苏显渝.抛物面折反射全景成像系统[J].光电子.激光,2003,14(5):485-488.
    [8]曾吉勇,苏显渝.双曲面折反射全景成像系统[J].光学学报,2003,23(9):1138-1142.
    [9]曾吉勇,苏显渝.水平场景无畸变的折反射全景成像系统[J].光学学报,2003,23(5):636-640.
    [10]曾吉勇,苏显渝.柱面场景无畸变的折反射全景成像系统[J].光电工程,2003,30(1):42-45.
    [11]余磊,全景环形透镜扫描成像研究,浙江大学硕士学位论文,2008-5-5,11-16.
    [12]Spencer HM,Rodgers JM,Hoffman JM.Optical design of a panoramic,wide spectral band infrared fisheye lens[J].Proc SPIE,2006,Vol.6342:63421P.
    [13]Palmer,Troy A.;Alexay,Christopher C.An infrared modular panoramic imaging objective[J].Proc SPIE,2004,Vol.5406:92-96.
    [14]Greguss P.Panoramic imaging block for three-dimension space[P].US,4566763,1986-01-28.
    [15]Ian Powell.Panoramic lens[J].Applied Optics,1994,33(31):7356-7361.
    [16]Ian Powell.Design study of an infrared panoramic optical system[J].Applied Optics,1996,35(31):6190-6194.
    [17]Ian Powell,Panoramic fish-eye imaging system[P].US,5631778,1997-5-20.
    [18]Chahl J.S.,Srinivasan M.V.,Reflection surfaces for panoramic imaging[J].Applied Optics,1997,36(31):8276-8285.
    [19]Ishiguro H.,Development of low-cost compact omnidirectional vision sensors and their application[C].Proc.Int.Conf.Information Systems,Analysis and Synthesis,1998,433-439.
    [20]Kamazawa K,Yagi Y,Yachida M.Omnidirectional imaging with hyperboloidal projection[C].Proc.of Int.Conf.on Intelligent Robots and Systems,1993,1029-1034.
    [21]Svoboda T,Pajdla T,Hlavac V.Central panoramic cameras:geometry and design.Research Report,Center for Machine Perception.Czech Technical University,December,1997.
    [22]Hicks R A,Bajcsy R.Reflective surfaces as computational sensors[J].Image and Vision Computing,2001,19(11):773-777.
    [23]Hicks R A,Bajcsy R.Catadioptric Sensors That Approximate Wide-angle Perspective Projections[C].Proc.Conference on Computer Vision and Pattern Recognition,Hilton Head Island,South Carolina,2000,545-551.
    [24]白剑,牛爽,杨国光.全景光学环带凝视成像技术[J].红外与激光工程,2006,35(3):331-335.
    [25]程惠全,姚炜勇,杨国光,朱方明.全景环形成像的转像系统设计[J].光电工程,2006,29(2):16-19.
    [26]金豪.全景环形成像透镜的成像质量评价,浙江大学硕士学位论文,2006-5,9-13.
    [27]黄昆.固体物理学[M].上海科学技术出版社,1970.
    [28]黄昆,谢希德.半导休物理学[M].科学技术出版社,1958.
    [29]Pfann W G.Trans.AIME[M].1952.
    [30]Keek.pH and Goloy MJ E.phys[J].Rev 89.
    [31]周永溶.半导体材料[M].北京:北京理工大学出版社,1992.
    [32]张志坚.红外光学材料的现状与发展[J].云南冶金,2000,29(5):35-41.
    [33]张志坚.Sb、Cu杂质及低温(77°K)对锗晶体红外透明性的影响[J].云南冶金,1994,(4):35-38.
    [34]电子材料编辑部.大尺寸红外晶体材料[J].电子材料,1971,10(4):10-11.
    [35]张玉兰,李延君,吕凯,尹国华,李长江.硅金属单晶材料性能及加工技术研究[J].长春理工大学学报,2005,28(4):106-110.
    [36]王艳,宁立伟.氟化钙零件加工技术分析[J].湖南工程学院学报,2007,17(2):36-39.
    [37]王向阳,何莉,蔡以超等.CVT法生长GaP多晶[J].人工晶体学报,2004,33(5):860-862.
    [38]黄存新,杜洪兵等.中波红外光学材料的研究现状和发展趋势[J].人工晶体学报,2003,32(3):276-281.
    [39]曾吉勇,苏显渝,金国藩.基于双曲面折反射相机的柱面全景立体成像[J].光电子.激光,2006,17(6):728-732.
    [40]H.Brachvogel,Panoramic view objective using an aspherical lens[P].US,3552820,1967-5-29.
    [41]Rosendahl et al.Lens system for panoramic imagery[P].US,4395093,1983-7-26.
    [42]Cox,Panoramic lens[P].US,4484801,1984-11-27.
    [43]Ian Powell,Panoramic lens[P].US,5473474,1995-12-5.
    [44]Wallerstein at al.Panoramic imaging system[P].US,7019918,2006-3-28.
    [45]Shuang Niu,jian bai,Xi-yun Hou,and Guo-guang Yang,Design of a panoramic annular lens with a long focal length[J].Applied Optics,2007,46(32):7850-7857.
    [46]Sergey Trubko,Super wide-angle panoramic imaging apparatus[P].US,6611282,2003-8-26.
    [47]D.R.Matthys,J.A.Gilbert,and P.Greguss.Endoscopic measurement using radial metrology with digital correlation[J].Optical Engineering,1991,30(10):1455-1460.
    [48]赵秀丽,红外光学系统设计[M].北京:机械工业出版社,1986:3-5.
    [49]宋岩峰,邵晓鹏,徐军.实现复消色差的超常温混合红外光学系统[J].物理学报,2008,57(10):6298-6303.
    [50]金国藩,严瑛白,邬敏贤.二元光学[M].北京:国防工业出版社,1998.188-195.
    [51]李湘宁.大口径线视场菲涅尔准直透镜设计[J].激光与光电子学进展,2008,45(12):53-58.
    [52]CODE-V Optical Design Program,Reference manual[M].Optical Research Associates,2003-6.
    [53]温彦博,白剑,侯西云,杨国光.红外无热化混合光学系统设计[J].光学仪器,2005,27(5):82-86.
    [54]胡晓珍,李伟.硅晶片抛光加工工艺的实验研究[J].机械设计与制造,2009,(4):139-141.
    [55]郭延龙,王淑云,袁孝.金刚石膜及类金刚石膜的光学应用研究进展[J].激光与光电子学进展,2008,45(7):44-51.
    [56]石顺祥,张海兴,刘劲松.物理光学与应用光学[M].西安:西安电子科技大学出版社,2000,341-347.
    [57]马韬,多层衍射光学设计理论及其在混合光学系统中的应用,浙江大学博士学位论文,2006-6-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700