用户名: 密码: 验证码:
基于移动反应界面电泳的样本富集与分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳(CE)是一种简便、高效、快速的分离分析技术,但低的检测灵敏度限制了CE的发展和应用。CE在线富集方法通过对实验条件和实验方法的调控实现了样品在线浓缩,从而提高了检测灵敏度。作为CE在线富集方法之一的移动反应界面(MRB)方法经过近四十多年的发展,已经建立了较为全面的两性电解质富集理论,实现了实际样品中两性电解质的高效富集,但MRB富集两性电解质的方法中仍有部分机理未阐明,此外,MRB对其他目标物,如生物样本、金属离子的富集方法探索和机理研究还没有开展。
     本论文围绕着MRB技术,对MRB富集两性电解质的机理进行阐述,拓展MRB在生物样本和金属离子等方面的研究新领域,发展高灵敏度、高选择性的MRB分析新方法,为电泳学发展提供新模式。主要研究内容和结论如下:
     1.对CE中应用弱酸与弱碱或强碱形成MRB富集两性电解质进行理论比较研究和实验对比验证。结果表明,MRB速度在MRB富集中具有重要意义;在MRB体系中弱碱比强碱更适合用作样品缓冲液;所发展的理论可以用于预测富集效果,设计实验条件。这一理论和实验结果对CE中设计实验条件富集低丰度的两性电解质具有重要指导意义。
     2.将MRB与亲和毛细管电泳(ACE)相结合,提出移动亲和界面(MAB)的概念,以金属离子Ni(Ⅱ)和His为模型,建立MAB-ACE方法。实验结果表明,基于His和Ni(Ⅱ)特异性亲和相互作用和有效的实验条件控制,His和Ni(Ⅱ)可以形成MAB;MAB-ACE方法可以从20种基本氨基酸和尿样中选择性富集、分离His,而不受其他物质的干扰。MAB-ACE在尿样中选择性分离His的结果与氨基酸分析仪得到的结果一致,证明此方法的有效性。在最优实验条件下,His的检出限(LOD)为43ng/mL(S/N=3),线性范围为1.0-150μM,日内差和日间差均小于5%。初步实验结果表明,MAB-ACE可以应用于复杂生物样本中目标分析物的特异性分离。
     3.在MRB物化模型基础上,以金属离子Co(Ⅱ)和Cu(Ⅱ)及EDTA为模型,建立了新型的基于移动络合界面(MCB)的金属离子分离ITP模式。相关实验结果验证了对这种新型ITP的理论预测,即:这种新的ITP分离模式中存在三个界面,即MCB,移动交换界面(MSB)和络合物界面(CB);金属离子根据稳定常数的不同得到分离;这种分离模式是一种不同于传统ITP的新型的ITP。这种基于MCB的ITP分离模式为生物样本和环境样本中的金属离子分离开辟了新的道路,并为后续的MRB研究奠定了基础。
     4.对基于MCB的ITP模式开展理论研究。理论研究的结果表明:(1)由MCB和MSB组成的多重MCB(m-MCB)体系在稳定状态下,MCB和MSB的移动速度相等,形成一种新型的富集和分离金属离子的ITP模式;(2)稳定状态下,m-MCB体系中的MCB移动速度和方向受络合剂和具有最大稳定常数的金属离子通量影响,而与其他具有较小稳定常数的金属离子无关;(3) m-MCB体系中,可以实现金属离子的可控富集。实验结果证实了所建立的新型ITP模型和控制理论的正确性。这些发现对于应用这种新型ITP模式在环境和生物样品中分离和富集金属离子具有指导意义。
Capillary electrophoresis (CE) is an analytical technique which has manyadvantages, such as ease of operation, high separation efficiency and short analysistime. However, the low sensitivity hinders the development of CE. The on-linestacking methods that are preformed through controlling the conditions and methodsof the experiments are useful for improving the sensitivity of CE. As one of theon-line stacking methods, the moving reaction boundary (MRB) has already formedsome theories for the stacking of the zwitterions, and can achieve the effective stacking inthe real samples. However, some mechanisms in the stacking of zwitterions by MRBare still unknown, and the method and theoretic research for some real samples, suchas biological matrix and metal ions, have not been developed in MRB.
     The aim of this paper is to indicate the mechanism of MRB in the stacking ofzwitterion, broaden the scope of MRB in the analysis for the biological matrix andmetal ions, develop the new methods with good sensitivity and selectivity, andsupply alternative mode for the development of electrophoresis. The main researchcontents and gained conclusions are that
     1. We performed the comparative theoretical and experimental study on samplestacking by MRB formed by weak or strong alkali in CE. The theoretical andexperimental results unveil that:(1) MRB velocity possesses key importance tothe design of MRB stacking conditions;(2) compared with strong alkali, weakalkali is more suitable to be used as the sample buffer;(3) the advanced theorycan be employed to predict the effect of the sample stacking and to design theexperimental conditions. The proposed theoretic and experimental results holdobvious significances for the on-column stacking of low abundance zwitterionsin CE.
     2. We advanced the concept of moving affinity boundary (MAB) using metal ionNi(II) and histidine (His) as the model inorganic ion and ligand, respectively,developed the simple method of MAB affinity capillary electrophoresis (MAB-ACE). The experiments manifested that (1) based on the selectiveaffinity interaction and the effective control of affinity conditions, a MAB couldbe created with the model metal ion and ligand;(2) the MAB-ACE couldspecifically capture His rather than other amino acids, or numerous metabolitesin the mix solution of twenty amino acids and human urine. The analyses of Hisin raw urine by the MAB-ACE are in agreement with those via the standardamino acid analyzer, indicating the reliability of the developed method.Additionally, the MAB-ACE with UV detector had good sensitivity (LOD=43ng/mL, S/N=3),1.0-150μM linearity and <5%intra-/inter-day variations. Thenovel method has an evident potential application for capture of a targetmetabolite in complex biological sample.
     3. We advanced a novel separation mode of isotachophoresis (ITP) based on thecontinuous moving chelation boundary (MCB) formed with EDTA and twometal ions of Co(II) and Cu(II). The relevant experimental results verified thefollowing theoretical predictions:(1) there are three boundaries in the wholesystem, viz., a sharp MCB, a wide moving substitution boundary (MSB) and asharp complex boundary (CB);(2) the original low concentration Co(II) andCu(II) are chemically separated according to their stability constants;(3) thenovel ITP is relied on MRB, rather than MBS which is the base for the classicITP. These findings provide guidance for the development of the MRB and theMCB-based ITP separation of metal ions in environmental and biologicalmatrices.
     4. We developed the relevant model and theory of the novel ITP in the multi-moving chelationboundary (m-MCB) system. The theoretical results indicated that:(i) at the steady state ofm-MCB, the boundary velocities are equal to each other, resulting in a novel ITP stackingand separation mode of metal ions;(ii) the boundary velocity and direction are mainlycontrolled by the fluxes of the chelator and the metal ion with the maximum lgK rather thanother metal ions with smaller lgK values; and (iii) a controllable focusing of metal ionscould be simultaneously achieved in the m-MCB system. All of the experimental resultsverified the validity of the developed model and theory of ITP in m-MCB system. These findings provide guidance for the development of ITP separation and stacking of metal ionsin environmental and biological sample matrices.
引文
[1] Hjertén, S. Free zone electrophoresis. Chromatogr. Rev.1967,9,122-219.
    [2] Jorgenson, J. W.; Lukacs, K.D. Capillary zone electrophoresis. Science1983,222,266-272.
    [3] Khaledi, M. G. High Performance Capillary Electrophoresis, Theory, Techniquesand Applications. New York, Wiley/Interscience,1998,1-15.
    [4]林炳承,毛细管电泳导论,科学出版社,北京,1996,5-15.
    [5]陈义,毛细管电泳技术及应用,化学工业出版社,北京,2000,1-20.
    [6]邓延倬,何金兰,高效毛细管电泳,科学出版社,北京,1996,1-5.
    [7]王杰,丁洁,高效毛细管电泳技术.中国医药工业杂志1997,28,327-332.
    [8]毛煜,徐建明,毛细管电泳技术和应用新进展.化学研究与应用2001,13,4-9.
    [9] Bocek, P.; Deml, M.; Gebauer, P.; Dolnik, V. Analytical Isotachophoresis, VCH,New Yor,1988.
    [10]Breadmore, M. C. Recent advances in enhancing the sensitivity of electrophoresisand electrochromatography in capillaries and microchips. Electrophoresis2007,28,254-281.
    [11]Terabe, S.; Otsuka, K.; Ichihara, K.; et al. Electrokinetic separations with micellarsolutions and open-tubular capillaries. Anal. Chem.1984,56,111-113.
    [12]叶明亮,邹汉法,刘震,朱军,张玉奎,开管毛细管电色谱进展.分析测试学报1999,18,78-82.
    [13]林秀丽,主沉浮,毛细管电色谱研究进展.化学研究与应用1999,11,340-343.
    [14]Rebscher, H.; Pyell, U. In-column versus on-column fluorescence detection incapillary electrochromatography. J. Chromatogr.1996,737,171-180.
    [15]Yan, C.; Dadoo, R.; Zare, R. N.;et al. Gradient elution in capillaryelectrochromatography. Anal. Chem.1996,68,2726-2730.
    [16]芮建中,邹汉法,毛细管电色谱及其在药物分析中的应用.药物分析杂志1999,19,64-68.
    [17]熊建辉,张维冰,许国旺,张玉奎,非水毛细管电泳进展.色谱2000,18,218-223.
    [18]Riekkola, M. L.; Jussila, M.; Porras, S. P.; Valko, I. E. Non-aqueous capillaryelectrophoresis. J. Chromatogr. A2000,892,155-170.
    [19]胡琴,田颂九,宋景政,许鸣镝,非水毛细管电泳技术及其在药物分析中的应用.药物分析杂志2001,21,218-224.
    [20]Steiner, F.; Hassel, M. Nonaqueous capillary electrophoresis: A versatile completionof electrophoretic separation techniques. Electrophoresis2000,21,3994-4016.
    [21]林炳承,高效毛细管电泳的发展.生物化学与生物物理进展1992,19,269-273.
    [22]Lin, C. H.; Kaneta, T. On-line sample concentration techniques in capillaryelectrophoresis: Velocity gradient techniques and sample concentration techniquesfor biomolecules. Electrophoresis2004,25,4058-4073.
    [23]Verpillot, R.; Esselmann, H.; Mohamadi, M. R.;et al. Analysis of amyloid-β peptidesin cerebrospinal fluid samples by capillary electrophoresis coupled with LIFdetection. Anal. Chem.2011,83,1696-1703.
    [24]Brambilla, D.; Verpillot, R.; Taverna, M.; et al. New method based on capillaryelectrophoresis with laser-induced fluorescence detection (CE-LIF) to monitorinteraction between nanoparticles and the amyloid-β peptide. Anal. Chem.2010,82,10083-10089.
    [25]Szabo, Z.; Guttman, A.; Rejtar, T.; Karger, B.L. Improved sample preparationmethod for glycan analysis of glycoproteins by CE-LIF and CE-MS. Electrophoresis2010,31,1389-1395.
    [26]梁振,段继诚,张维冰,张玉奎,毛细管电泳-电喷雾质谱联用中缓冲液pH对质谱检测灵敏度的影响.色谱,2003,21,9-12.
    [27]李廷富,毛细管电泳与质谱联用技术.国外医学临床生物化学与检验学分册,2002,23,352-353.
    [28]陈继锋,金庆辉,赵建龙,徐元森,毛细管电泳与电泳芯片检测方法的研究.化学世界,2002,2,94-97.
    [29]Mainka, A.; B chmann, K. UV detection of derivatized carbonyl compounds in rainsamples in capillary electrophoresis using sample stacking and a Z-shaped flow cell.J. Chromatogr. A1997,767,241-247.
    [30]Albin, M.; Grossman, P. D.; Moring, S. E. Sensitivity enhancement for capillaryelectrophoresis. Anal. Chem.1993,65,489A-497A.
    [31] Burgi, D. S.; Chien, R. L. Improvement in the method of sample satcking for gravityinjection in capillary zone electrophoresis. Anal. Biochem.1992,202,306-309.
    [32] Burgi, D. S. Large volume stacking of anions in capillary electrophoresis using anelectroosmotic flow modifier as a pump. Anal. Chem.1993,65,3726-3729.
    [33] Chien, R.; Burgi, D. S. Sample stacking of an extremely large injection volume inhigh-performance capillary electrophoresis. Anal. Chem.1992,64,1046-1050.
    [34] Veraart, J. R.; Lingeman, H.; Brinkman, U. A. Coupling of biological samplehandling and capillary electrophoresis. J. Chromatogr. A1999,856,483-514.
    [35] Britz-McKibbin, P.; Terabe, S. On-line preconcentration strategies for trace analysisof metabolites by capillary electrophoresis. J. Chromatogr. A2003,1000,917-934.
    [36] Malá, Z.; Krivankova, L.; Gebauer, P.; Bocek, P. Contemporary sample stacking inCE: A sophisticated tool based on simple principles. Electrophoresis2007,28,243-253.
    [37] Malá, Z.; Slampova, A.; Gebauer, P.; Bocek, P. Contemporary sample stacking in CE.Electrophoresis2009,30,215-229.
    [38] Malá, Z.; Gebauer, P.; Bocek, P. Contemporary sample stacking in analyticalelectrophoresis. Electrophoresis2011,32,116-126.
    [39]Chien, R.-L.; Burgi, D. S. Sample stacking of an extremely large injection volumein high-performance capillary electrophoresis. Anal. Chem.1992,64,1046-1050.
    [40]Burgi, D. S.; Chien, R.-L. Improvement in the method of sample stacking forgravity injection in capillary zone electrophoresis. Anal. Biochem.1992,202,306-309.
    [41]Chien, R.-L.; Burgi, D. S. Field amplified sample injection in high-performancecapillary electrophoresis. J. Chromatogr.1991,559,141-152.
    [42]Malitesta, C.; Palmisano, F.; Torsi, L.; et al. Glucose fast-response amperometricsensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem.1990,62,2735-2740.
    [43]Wang, S. F.; Yang, P.; Cheng, Y. Y. Analysis of tetracycline residues in bovine milkby CE-MS with field-amplified sample stacking. Electrophoresis2007,28,4173-4179.
    [44]Lagarrigue, M.; Bossee, A.; Begos, A.; et al. Field-amplified sample stacking for thedetection of chemical warfare agent degradation products in low-conductivitymatrices by capillary electrophoresis-mass spectrometry. J. Chromatogr. A2008,1178,239-247.
    [45]Zinellu, A.; Sotgia, S.; Usai, M. F.; et al. Improved method for plasma ADMA,SDMA, and arginine quantification by field-amplified sample injection capillaryelectrophoresis UV detection. Anal. Bioanal. Chem.2011,399,1815-1821.
    [46]Erny, G. L.; Cifuentes, A. Field amplified separation in capillary electrophoresis: Acapillary electrophoresis mode. Anal. Chem.2006,78,7557-7562.
    [47]Hadwiger, M. E.; Torchia, S. R.; Lunte, C. E.; et al. Optimization of the separationand detection of the enantiomers of isoproterenol in microdialysis samples bycyclodextrin-modified capillary electrophoresis using electrochemical detection. J.Chromatogr. B1996,681,241-249.
    [48]Xiong, Y.; Park, S. R.; Swerdlow, H. Base stacking: pH mediated on-column sampleconcentration for capillary DNA sequencing. Anal. Chem.1998,70,3605-3611.
    [49]Zhao, Y. P.; Lunte, C. E. pH-Mediated field amplification on-columnpreconcentration of anions in physiological samples for capillary electrophoresis.Anal. Chem.1999,71,3985-3991.
    [50]Bykova, L.; Holland, L. A. Stacking enhanced determination of steroids by CE.Electrophoresis2008,29,3794-3800.
    [51]Arnett, S. D.; Lunte, C. E. Investigation of the mechanism of pH-mediated stackingof anions for the analysis of physiological samples by capillary electrophoresis.Electrophoresis2003,24,1745-1752.
    [52]Britz-McKbbin, P.; Wong, J.; Chen, D. D. Y., Analysis of epinephrine from fifteendifferent dental anesthetic formulations by capillary electrophoresis. J. Chromatogr.A1999,853,535-540.
    [53]Britz-McKbbin, P.; Chen, D. D. Y. Selective focusing of catecholamines and weaklyacidic compounds by capillary electrophoresis using a dynamic pH junction. Anal.Chem.2000,72,1242-1252.
    [54]Aebersold, R.; Morrison, H. D., Analysis of dilute peptide samples by capillary zoneelectrophoresis. J. Chromatogr.1990,516,79-88.
    [55]Wang, S. J.; Tseng, W. L.; Lin, Y. W.; et al. On-line concentration of trace proteins bypH junctions in capillary electrophoresis with UV absorption detection. JChromatogr., A2002,979,261-270.
    [56]Quirino, J. P.; Terabe, S. On-line concentration of neutral analytes for micellarelectrokinetic chromatography I. Normal stacking mode. J.Chromatogr., A1997,781,119-128.
    [57]Quirino, J. P.; Terabe, S. Exceeding5000-fold concentration of dulite analytes inmicellar electrokinetic chromatography. Science1998,282,465-468.
    [58]Quirino, J. P.; Kim, J. B.; Terabe, S. Sweeping: concentration mechanism andapplications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr.A2002,965,357-373.
    [59]Aranas, A. T.; Guidote, Jr. A. M.; Quirino, J. P. Sweeping and new on-line samplepreconcentration techniques in capillary electrophoresis. Anal. Bioanal. Chem.2009,394,175-185.
    [60]Quirino, J. P.; Terabe, S. Sweeping of analyte zones in electrokineticchromatography. Anal. Chem.1999,71,1638-1644.
    [61]Markuszewski, M. J.; Britz-McKibbin, P.; Terabe, S.; et al. Determination ofpyridine and adenine nucleotide metabolites in Bacillus subtilis cell extract bysweeping borate complexation capillary electrophoresis. J. Chromatogr. A2003,989,293-301.
    [62]Sun, S. W.; Tseng, H. M. Sensitivity improvement on detection of coptidis alkaloidsby sweeping in capillary electrophoresis. J. Pharm. Biomed. Anal.2005,37,39-45.
    [63]Isoo, K.; Terabe, S. Analysis of metal ions by sweeping via dynamic complexationand cation-selective exhaustive injection in capillary electrophoresis. Anal. Chem.2003,75,6789-6798.
    [64]Jong, Y. J.; Ho, H. Y.; Ko, W. K.; et al. On-line stacking and sweeping capillaryelectrophoresis for detecting heroin metabolites in human urine. J. Chromatogr.A2009,1216,7570-7575.
    [65]Jin, Y.; Meng, L. C.; Li, M. X.; et al. Highly sensitive detection of melamine and itsderivatives by capillary electrophoresis coupled with online preconcentrationtechniques. Electrophoresis2010,31,3913-3920.
    [66]Quirino, J. P.; Haddad, P. Online sample preconcentration in capillaryelectrophoresis using analyte focusing by micelle collapse. Anal. Chem.2008,80,6824-6829.
    [67]Quirino, J. P.; Haddad, P. Neutral analyte focusing by micelle collapse in partial-filling MEKC with UV and ESI-MS detection. Electrophoresis2009,30,1670-1674.
    [68]Foret. F.; Szoko, E.; Karger, B. L. On-column transient and coupled columnisotachophoretic preconcentration of protein samples in capillary zoneelectrophoresis. J. Chromatogr.1992,608,3-12.
    [69]Reinhoud, N. J.; Tjaden, U. R.; van der Greef, J. Automated isotachophoretic analytefocusing for capillary zone electrophoresis in a single capillary using hydrodynamicback-pressure programming. J. Chromatogr.1993,641,155-162.
    [70]Bergmann, J.; Jaehde, U.; Mazereeuw, M.; et al. Potential of on-lineisotachophoresis-capillary zone electrophoresis with hydrodynamic counterflow inthe analysis of various basic proteins and recombinant human interleukin-3. J.Chromatogr. A1996,734,381-389.
    [71]Gebauer, P.; Bo ek, P. Recent progress in capillary isotachophoresis. Electrophoresis2000,21,3898-3904.
    [72]Wolters, A. M.; Jayawickrama, D. A.; Larive, C. K.; et al. Capillaryisotachophoresis/NMR: Extension to trace impurity analysis and improvedinstrumental coupling. Anal. Chem.2002,74,2306-2313.
    [73]Timerbaev, A. R.; Hirokawa, T. Recent advances of transient isotachophoresis-capillary electrophoresis in the analysis of small ions from high-conductivitymatrices. Electrophoresis2006,27,323-340.
    [74]Zhang, Z. X.; Zhang, X. W.; Wang, J. J.; et al. Sequential preconcentration bycoupling of field amplified sample injection with pseudo isotachophoresis–acidstacking for analysis of alkaloids in capillary electrophoresis Anal. Bioanal. Chem.2008,390,1645-1652.
    [75]Chen, Y.; Xu, L. J.; Zhang, L.; et al. Separation and determination of peptidehormones by capillary electrophoresis with laser-induced fluorescence coupled withtransient pseudo-isotachophoresis preconcentration. Anal Biochem.2008,380,297-302.
    [76]Yan, N.; Zhu, Z.F.; Ding, N.; et al. In-line preconcentration of oxidized and reducedglutathione in capillary zone electrophoresis using transient isotachophoresis understrong counter-electroosmotic flow. J. Chromatogr. A2009,1216,8665-8670.
    [77]Zheng, L. H.; Zhang, L.; Tong, P.; et al. Highly sensitive transient isotachophoresissample stacking coupling with capillary electrophoresis-amperometric detection foranalysis of doping substances. Talanta2010,81,1288-1294.
    [78]Friedberg, M. A.; Hinsdale, M.; Shihabi, Z. K., Effect of pH and ions in the sampleon stacking in capillary electrophoresis, J. Chromatogr. A1997,781,35-42.
    [79]Britz-McKbbin, P.; Bebault, G. M.; Chen, D. D. Y. Velocity-difference inducedfocusing of nucleotides in capillary electrophoresis with a dynamic pH junction.Anal. Chem.2000,72,1729-1735.
    [80]Bier, M. Electrophoresis: Theory, Methods, and Applications, Academic Press,1959.
    [81]Everaerts, F. M.; Beckers, J. L.; Verheggen, Th. P. E. M. Isotachophoresis: theory,Instrumentation and Application, Elsevier Scientific Publishing Co.,1976.
    [82]Gebauer, P.; Mala, Z.; Bocek, P. Recent progress in capillary ITP. Electrophoresis2007,28,26-32.
    [83]Gebauer, P.; Mala, Z.; Bocek, P. Recent progress in analytical capillary ITP.Electrophoresis2009,30,29-35.
    [84]Gebauer, P.; Mala, Z.; Bocek, P. Recent progress in analytical capillaryisotachophoresis. Electrophoresis2011,32,83-89.
    [85]Khurana, T. K.; Santiago, J. G. Sample zone dynamics in peak modeisotachophoresis. Anal. Chem.2008,80,6300-6307.
    [86]Chambers, R. D.; Santiago, J. G. Imaging and quantification of isotachophoresiszones using nonfocusing fluorescent tracers. Anal. Chem.2009,81,3022-3028.
    [87]Khurana, T. K.; Santiago, J. G. Preconcentration, separation, and indirect detection ofnonfluorescent analytes using fluorescent mobility markers. Anal. Chem.2008,80,279-286.
    [88]Persat, A.; Marshall, L. A.; Santiago, J. G. Purification of nucleic acids from wholeblood using isotachophoresis. Anal. Chem.2009,81,9507-9511.
    [89]Bercovici, M.; Kaigala, G. V.; Backhouse, C. J.; Santiago, J. G. Fluorescent carrierampholytes assay for portable, label-free detection of chemical toxins in tap water.Anal. Chem.2010,82,1858-1866.
    [90]Bercovici, M.; Kaigala, G. V.; Santiago, J. G. Method for analyte identification usingisotachophoresis and a fluorescent carrier ampholyte assay. Anal. Chem.2010,82,2134-2138.
    [91]Persat, A.; Chivukula, R. R.; Mendell, J. T.; et al. Quantification of global microRNAabundance by selective isotachophoresis. Anal. Chem.2010,82,9631-9635.
    [92]Persat, A.; Santiago, J. G. MicroRNA profiling by simultaneous selectiveisotachophoresis and hybridization with molecular beacons. Anal. Chem.2011,83,2310-2316.
    [93]Breadmore, M. C.; Quirino, J. P.100000-fold concentration of anions in capillaryzone electrophoresis using electroosmotic flow controlled counterflowisotachophoresis stacking under field amplified conditions. Anal. Chem.2008,80,6373-6381.
    [94]Breadmore, M. C. Electroosmotic flow-balanced isotachophoretic stacking withcontinuous electrokinetic injection for the concentration of anions in highconductivity samples. J. Chromatogr. A2010,1217,3900-3906.
    [95]Eldridge, S. L.; Almeida, V. K.; Korir, A. K.; et al. Separation and analysis of tracedegradants in a pharmaceutical formulation using on-line capillaryisotachophoresis-NMR. Anal. Chem.2007,79,8446-8453.
    [96]Shackman, J. G.; Ross, D. Gradient elution isotachophoresis for enrichment andseparation of biomolecules. Anal. Chem.2007,79,6641-6649.
    [97]Davis, N. I.; Mamunooru, M.; Vyas, C. A.; et al. Capillary and microfluidic gradientelution isotachophoresis coupled to capillary zone electrophoresis for femtomolaramino acid detection limits. Anal. Chem.2009,81,5452-5459.
    [98]Hirokawa, T.; Okamoto, H.; Gas, B. High-sensitive capillary zone electrophoresisanalysis by electrokinetic injection with transient isotachophoretic preconcentration:Electrokinetic supercharging. Electrophoresis2003,24,498–504.
    [99]Okamoto, H.; Hirokawa, T. Application of electrokinetic supercharging capillaryzone electrophoresis to rare-earth ore samples. J. Chromatogr. A2003,990,335–341.
    [100] Xu, Z. Q.; Nakamura, K.; Timerbaev, A. R.; et al. Another approach toward over100000-fold sensitivity increase in capillary electrophoresis: electrokineticsupercharging with optimized sample injection. Anal. Chem.2011,83,398-401.
    [101] Shim, S. H.; Riaz, A.; Choi, K. W.; Chung, D. S. Dual stacking of unbuffered salinesamples, transient isotachophoresis plus induced pH junction focusing.Electrophoresis2003,24,1603-1611.
    [102] Britz-McKibbin, P.; Markuszewski, M. J.; Iyanagi, T. et al. Picomolar analysis offlavins in biological samples by dynamic pH junction-sweeping capillaryelectrophoresis with laser-induced fluorescence detection. Anal Biochem.2003,313,89-96.
    [103] Britz-McKibbin, P.; Otsuka, K.; Terabe, S. On-line focusing of flavin derivativesusing dynamic pH junction-sweeping capillary electrophoresis with laser-inducedfluorescence detection. Anal. Chem.2002,74,3736-3743.
    [104] Britz-McKibbin, P.; Nishioka, T.; Terabe, S. Sensitive and high-throughputanalyses of purine metabolites by dynamic pH junction multiplexed capillaryelectrophoresis: A new tool for metabolomic studies. Anal Sci.2003,19,99-104.
    [105] Baidoo, E. E. K.; Benke, P. I.; Neusulss, C.; et al. Capillary electrophoresis-fouriertransform ion cyclotron resonance mass spectrometry for the identification ofcationic metabolites via pH-mediated stacking-transient isotachophoretic method.Anal. Chem.2008,80,3112-3122.
    [106] Horakova, J.; Petr, J.; Maier, V.; et al. Combination of large volume samplestacking and dynamic pH junction for on-line preconcentration of weak electrolytesby capillary electrophoresis in comparison with isotachophoretic techniques. J.Chromatogr. A2007,1155,193-198.
    [107] Zhang, H. G.; Zhu, J. H.; Qi, S. D.; et al. Extremely large volume electrokineticstacking of cationic molecules in MEKC by EOF modulation with strong acids insample solutions. Anal. Chem.2009,81,8886-8891.
    [108] Dawod, M.; Breadmore, M. C.; Guijt, R. M.; et al. Strategies for the on-linepreconcentration and separation of hypolipidaemic drugs using micellarelectrokinetic chromatography. J. Chromatogr. A2010,1217,386-396.
    [109] Cheng, H. L.; Chiou, S. S.; Liao, Y. M.; et al. Analysis of methotrexate and its eightmetabolites in cerebrospinal fluid by solid-phase extraction and triple-stackingcapillary electrophoresis. Anal. Bioanal. Chem.2010,398,2183-2190.
    [110] Wang, Z. Y.; Liu, C.; Kang, J. W. A highly sensitive method for enantioseparationof fenoprofen and amino acid derivatives by capillary electrophoresis with on-linesample preconcentration. J. Chromatogr. A2011,1218,1775-1779.
    [111] Zhang, Z. X.; Du, X. Z.; Li, X. M. Sweeping with electrokinetic injection andanalyte focusing by micelle collapse in two-dimensional separation via integrationof micellar electrokinetic chromatography with capillary zone electrophoresis. Anal.Chem.2011,83,1291-1299.
    [112] Li, J. H.; Cai, Z. W. Stacking and separation of urinary porphyrins in capillaryelectrophoresis: optimization of concentration efficiency and resolution. Talanta2008,77,331-339.
    [113] Shihabi, Z. K. Enhanced detection in capillary electrophoresis: exampledetermination of serum mycophenolic acid. Electrophoresis2009,30,1516-1521.
    [114] Tuma, P.; Soukupova, M.; Samcova, E.; et al. A determination of submicromolarconcentrations of glycine in periaqueductal gray matter microdialyzates usingcapillary zone electrophoresis with contactless conductivity detection.Electrophoresis2009,30,3436-3441.
    [115] Yu, L. S.; Xu, X. Q.; Huang, L.; et al. Separation and detection of isoquinolinealkaloids using MEEKC coupled with field-amplified sample injection induced byACN. Electrophoresis2009,30,661-667.
    [116] Mandaji, M.; Rubensam, G.; Hoff, R. B.; et al. Sample stacking in CZE usingdynamic thermal junction I. Analytes with low dpKa/dT crossing a single thermallyinduced pH junction in a BGE with high dpH/dT. Electrophoresis2009,30,1501-1509.
    [117] Mandaji, M.; Rubensam, G.; Hoff, R. B.; et al. Sample stacking in CZE usingdynamic thermal junctions II: analytes with high dpKa/dT crossing a single thermaljunction in a BGE with low dpH/dT. Electrophoresis2009,30,1510-1515.
    [118] Deman, J.; Rigole, W. Chemical reaction during electromigration of ions. J. Phys.Chem.1970,74,1122-1126.
    [119] Deman, J. Precipitation during electromigration of ions. Anal. Chem.1970,42,321-324.
    [120] Pospichal, J.; Deml, M.; Bo ek, P. Electrically controlled electrofousing ofampholytes between two zones of modified electrolyte with two different values ofpH. J. Chromatogr.1993,638,179-186.
    [121] Cao, C. X.; Fan, L. Y.; Zhang, W. Review on the theory of moving reactionboundary, electromigration reaction methods and applications in isoelectricfocusing and sample pre-concentration. Analyst,2008,133,1139-1157.
    [122] Cao C. X. Moving chemical reaction boundary formed by weak reactionelectrolytes: Theory. Acta Chem. Scand.1998,52,709-713.
    [123] Cao, C. X.; Zhang, W.; Qin, W. H.; et al. Quantitative predictions to conditions ofzwitterionic stacking by moving chemical reaction boundary created with weakelectrolytic buffers in capillary zone electrophoresis. Anal. Chem.2005,77,955-963.
    [124] Jin, J.; Shao, J.; Li, S.; et al. Computer simulation on a continuous MCR inEDTA-based sample sweeping in CE. J. Chromatogr. A2009,1216,4913-4922.
    [125] Fan, L. Y.; Li, C. J.; Zhang, W.; et al. Quantitative investigation on movingchelation boundary within continuous EDTA-based sample sweeping system incapillary electrophoresis. Electrophoresis2008,29,3989-3998.
    [126] Zhang, W.; Chen, J. F.; Fan, L. Y.; et al. A novel isotachophoresis of cobalt andcopper complexes by metal ion substitution reaction in a continuous MCB. Analyst2010,135,140-148.
    [127] Fan, L. Y.; Yan, W.; Cao, C. X.; et al. Experiments on MIBs and theircharacteristics of focusing and probing of both guest and host target molecules.Anal. Chim. Acta2009,650,111-117.
    [128] Meng, J.; Zhang, W.; Cao, C. X.; et al. Moving affinity boundary electrophoresisand its exclusive capture of target metabolite in human urine. Analyst2010,135,1592-1599.
    [129] Chen, Q.; Fan, L. Y.; Zhang, W.; et al. Separation and determination of abuseddrugs clenbuterol and salbutamol form complex extractants in swine feed bycapillary zone electrophoresis with simple pretreatment. Talanta2008,76,282-287.
    [130] Wang, Q. L.; Fan, L. Y.; Zhang, W.; et al., Sensitive analysis of two barbiturates inhuman urine by capillary electrophoresis with sample stacking induced by movingreaction boundary. Anal. Chim. Acta2006,580,200-205.
    [131] Wang, X.; Zhang, W.; Fan, L. Y.; et al. Sensitive quantitative determination ofoxymatrine and matrine in rat plasma by capillary electrophoresis with stackinginduced by moving reaction boundary. Anal. Chim. Acta2007,594,290-296.
    [132] Li, M.; Fan, L. Y.; Zhang, W.; et al. Stacking and quantitative analysis of lovastatinin urine samples by transient moving reaction boundary method in capillaryelectrophoresis. Anal. Bioanal. Chem.2007,387,2719-2725.
    [133] Cao, C. X.; He, Y. Z.; Li, M.; et al. Improving separation efficiency of capillaryzone electrophoresis of tryptophan and phenylalanine with the transient movingchemical reaction boundary method. J. Chromatogr. A2002,952,39-46.
    [134] Qin, W. H.; Cao, C. X.; Zhang, W.; et al. Quantitative predictions to selectivestacking of zwitterions by moving chemical reaction boundary in capillaryelectrophoresis. Electrophoresis2005,26,3113-3124.
    [135] Zhu, W.; Zhang, W.; Fan, L. Y.; et al. Study on mechanism of stacking of zwitterionin highly saline biologic sample by transient moving reaction boundary created byformic buffer and conjugate base in capillary electrophoresis. Talanta2009,78,1194-1200.
    [136] Cao, C. X.; He, Y. Z.; Li, M.; et al. Stacking ionizable analytes in a sample matrixwith high dalt by a transient moving chemical reaction boundary method incapillary zone electrophoresis. Anal. Chem.2002,74,4167-4174.
    [1] Haglund, H.; Tiselius, A. Zone electrophoresis in a glass powder column. Acta Chem.Scand.1950,4,957-962.
    [2] Chien, R.-L.; Burgi, D. S. Field amplified sample injection in high-performancecapillary electrophoresis. J. Chromatogr.1991,559,141-152.
    [3] Chien, R.-L.; Helmer, J. C. Electroosmotic properties and peak broadening infield-amplified capillary electrophoresis. Anal. Chem.1991,63,1354-1361.
    [4] Chien, R.-L.; Burgi, D. S. Optimization in sample stacking for high-performancecapillary electrophoresis. Anal. Chem.1991,63,2042-2047.
    [5] Chien, R.-L.; Burgi, D. S. On-column sample concentration using field amplificationin CZE. Anal. Chem.1992,64,489A-496A.
    [6] Chien, R.-L.; Burgi, D. S. Sample stacking of an extremely large injection volume inhigh-performance capillary electrophoresis. Anal. Chem.1992,64,1046-1050.
    [7] Chien, R.-L.; Burgi, D. S. Field-amplified polarity-switching sample injection inhigh-performance capillary electrophoresis. J. Chromatogr.1991,559,153-161.
    [8] Zhang, Y. K.; Zhu, J.; Zhang, L. H.; et al. High-efficiency on-line concentrationtechnique of capillary electrochromatography. Anal. Chem.2000,72,5744-5747.
    [9] Ornstein,L. Disc electrophoresis,1. Background and theory. Ann. N. Y. Acad. Sci.1964,121,321-349.
    [10]Davis, B. J. Disc Electrophoresis.2, Method and application to human serumproteins.Ann. N. Y. Acad. Sci.1964,121,404-427.
    [11]MacInnes, D. A.; Longsworth, L. G. Transference numbers by the method of movingboundaries theory, practice, and results Chem. Rev.1932,11,171-230.
    [12]Dole, V. P. A theory of moving boundary systems formed by strong electrolytes. J.Am. Chem. Soc.1945,67,1119-1126.
    [13]Longsworth, L. G. Moving boundary studies on salt mixtures.J. Am. Chem. Soc.,1945,67,1109-1119.
    [14]Svensson, H. The behaviour of weak electrolytes in moving boundary systems.1.The moving boundary equation. Acta Chem. Scand.1948,2,841-855.
    [15]Alberty, R. A. Moving boundary systems formed by weak electrolytes. Theory ofsimple systems formed by weak acids and bases. J. Am. Chem. Soc.1950,72,2361-2367.
    [16]Nichol, J. C. Moving boundary systems formed by weak acids and bases-anexperimental study. J. Am. Chem. Soc.1950,72,2367-2374.
    [17]Dismukes, E. B.; Alberty, R. A. Weak electrolyte moving boundary systemsanalogous to the electrophoresis of a single protein. J. Am. Chem. Soc.1954,76,191-197.
    [18]Gebauer, P.; Thormann, W.; Bo ek, P. Sample self-stacking and sample stacking inzone electrophoresis with major sample components of like charge: General modeland scheme of possible modes. Electrophoresis1995,16,2039-2050.
    [19]Weinberger, R. Capillary electrophoresis. Am. Lab.1996,28,61-64.
    [20]Andersson, E. K. M. Impurities at a level of0.01%in foscarnet sodium determinedby capillary zone electrophoresis with indirect UV detection and sample self-stacking.J. Chromatogr. A1999,846,245-253.
    [21]Gebauer, P.; Krivánková, L.; Pantucková, P.; et al. Sample self-stacking in capillaryzone electrophoresis: Behavior of samples containing multiple major coioniccomponents. Electrophoresis2000,21,2797-2808.
    [22]Hirokawa, T.; Okamoto, H.; Ikuta, N. Operational modes for transientisotachophoretic preconcentration-capillary zone electrophoresis and detectableconcentration of rare earth ions. Electrophoresis2001,22,3483-3489.
    [23]Andersson, E. K. M.; Hagglund, I. Sample matrix influence on the choice ofbackground electrolyte for the analysis of bases with capillary zone electrophoresis. J.Chromatogr. A2002,979,11-25.
    [24]Shihabi, Z. K. Transient pseudo-isotachophoresis for sample concentration in capillaryelectrophoresis. Electrophoresis2002,23,1612-1617.
    [25]Shihabi, Z. K. Stacking for nonaqueous capillary electrophoresis. Electrophoresis2002,23,1628-1632.
    [26]Hadwiger, M. E.; Torchia, S. R.; Park, S. R.; et al. Optimization of the separation anddetection of the enantiomers of isoproterenol in microdialysis samples bycyclodextrin-modified capillary electrophoresis using electrochemical detection. J.Chromatogr. B1996,681,241-249.
    [27]Zhao, Y. P.; Lunte, C. E. pH-mediated field amplification on-column preconcentrationof anions in physiological samples for capillary electrophoresis. Anal. Chem.1999,71,3985-3991.
    [28]Ward, E. M.; Smyth, M. R.; O'Kennedy, R.; et al. Application of capillaryelectrophoresis with pH-mediated sample stacking to analysis of coumarin metabolitesin microsomal incubations. J Pharmaceut. Biomed.2003,32,813-822.
    [29]Arnett, S. D.; Lunte, C. E. Investigation of the mechanism of pH-mediated stackingof anions for the analysis of physiological samples by capillary electrophoresis.Electrophoresis2003,24,1745-1752.
    [30]Britz-McKibbin, P.; Wong, J.; Chen, D. D. Y. Analysis of epinephrine from fifteendifferent dental anesthetic formulations by capillary electrophoresis. J. Chromatogr. A1999,853,535-540.
    [31]Britz-McKibbin, P.; Chen, D. D. Y. Selective focusing of catecholamines and weaklyacidic compounds by capillary electrophoresis using a dynamic pH junction. Anal.Chem.2000,72,1242-1252.
    [32]Britz-McKibbin, P.; Ichihashi, T.; Tsubota, K.; et al. Complementary on-line focusingstrategies for steroids by capillary electrophoresis. J. Chromatogr. A2003,1013,65-76.
    [33]Britz-McKibbin, P.; Terabe, S. High sensitivity analyses of metabolites in biologicalsamples by capillary electrophoresis using dynamic pH junction-sweeping. Chem. Rec.2002,2,397-404.
    [34]Britz-McKibbin, P.; Otsuka, K.; Terabe, S. On-line focusing of flavin derivatives usingdynamic pH junction-sweeping capillary electrophoresis with laser-inducedfluorescence detection..Anal. Chem.2002,74,3736-3743.
    [35]Britz-McKibbin, P.; Markuszewski, M. J.; Iyanagi, T.; et al. Picomolar analysis offlavins in biological samples by dynamic pH junction-sweeping capillaryelectrophoresis with laser-induced fluorescence detection. Anal. Biochem.2003,313,89-96.
    [36]Britz-McKibbin, P.; Terabe, S. On-line preconcentration strategies for trace analysisof metabolites by capillary electrophoresis. J. Chromatogr. A2003,1000,917-934.
    [37]Markuszewski, M. J.; Britz-McKibbin, P.; Terabe, S.; et al. Determination of pyridineand adenine nucleotide metabolites in Bacillus subtilis cell extract by sweeping boratecomplexation capillary electrophoresis. J. Chromatogr. A2003,989,293-301.
    [38]Kim, J. B.; Britz-McKibbin, P.; Hirokawa, T.; et al. Mechanistic study on analytefocusing by dynamic pH junction in capillary electrophoresis using computersimulation. Anal. Chem.2003,75,3986-3993.
    [39]Quirino, J. P.; Terabe, S. Exceeding5000-fold concentration of dulite analytes inmicellar electrokinetic chromatography. Science1998,282,465-468.
    [40]Quirino, J. P.; Terabe, S. Approaching a million-fold sensitivity increase in capillaryelectrophoresis with direct ultraviolet detection: Cation-selective exhaustive injectionand sweeping. Anal. Chem.2000,72,1023-1030.
    [41]Sera, Y.; Matsubara, N.; Otsuka, K.; Terabe, S. Sweeping on a microchip:Concentration profiles of the focused zone in micellar electrokinetic chromatography.Electrophoresis2001,22,3509-3513.
    [42]Monton, M. R. N.; Quirino, J. P.; Otsuka, K.; et al. Separation and on-linepreconcentration by sweeping of charged analytes in electrokinetic chromatographywith nonionic micelles. J. Chromatogr. A2001,939,99-108.
    [43]Quirino, J. P.; Kim, J. B.; Terabe, S. Sweeping: concentration mechanism andapplications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A2002,965,357-373.
    [44]Palmer, J.; Munro, N. J.; Landers, J. P. A universal concept for stacking neutralanalytes in micellar electrokinetic chromatography. Anal. Chem.1999,71,1679-1687.
    [45]Palmer, J.; Landers,J. P. Stacking neutral analytes in capillary electrokineticchromatography with high-salt sample matrixes. Anal. Chem.2000,72,1941-1943.
    [46]Palmer, J.; Burgi, D. S.; Munro, N. J.; et al. Electrokinetic stacking of neutral analytesin high salt matrices-from the capillary to the microchip. Anal. Chem.2001,73,725-731.
    [47]Palmer, J.; Burgi, D. S.; Landers, J. P. Electrokinetic stacking injection of neutralanalytes under continuous conductivity conditions. Anal. Chem.2002,74,632-638.
    [48]Cao, C. X. Moving chemical reaction boundary and isoelectric focusing I. Conditionalequations for Svensson–Tiselius‘differential equation of solute concentrationdistribution in idealized isoelectric focusing at steady state. J. Chromatogr. A1998,813,153-171.
    [49]Cao, C. X.; Fan, L. Y.; Zhang, W. Review on the theory of moving reaction boundary,electromigration reaction methods and applications in isoelectric focusing and samplepre-concentration. Analyst2008,133,1139-1157.
    [50]Deman,J.; Rigole, W. Chemical reaction during electromigration of ions. J. Phys.Chem.1970,74,1122-1126.
    [51]Deman, J. Precipitation during electromigration of ions. Anal. Chem.1970,42,321-324.
    [52]Pospichal, J.; Deml, M.; Bo ek, P. Electrically controlled electrofousing of ampholytesbetween two zones of modified electrolyte with two different values of pH. J.Chromatogr.1993,638,179-186.
    [53]Svensson, H. Isoelectric fractionation, analysis, and characterization of ampholytes innatural pH gradients. I. The differential equation of solute concentrations at a steadystate and its solution for simple cases. Acta Chem. Scand.1961,15,325-341.
    [54]Svensson, H. Isoelectric Fractionation, Analysis, and Characterization of Ampholytesin Natural pH Gradients. II. Buffering Capacity and Conductance of IsoionicAmpholytes. Acta Chem. Scand.1962,16,456-466.
    [55]Cao, C. X.; He, Y. Z.; Li, M.; et al. Stacking ionizable analytes in a sample matrixwith high dalt by a transient moving chemical reaction boundary method in capillaryzone electrophoresis. Anal. Chem.2002,74,4167-4174.
    [56]Cao, C. X.; Zhang, W.; Qin, W. H.; et al. Quantitative predictions to conditions ofzwitterionic stacking by moving chemical reaction boundary created with weakelectrolytic buffers in capillary zone electrophoresis. Anal. Chem.2005,77,955-963.
    [57]Fan, L. Y.; Li, C. J.; Zhang, W.; et al. Quantitative investigation on moving chelationboundary within continuous EDTA-based sample sweeping system in capillaryelectrophoresis. Electrophoresis2008,29,3989-3998.
    [58]Jin, J.; Shao, J.; Li, S.; et al. Computer simulation on a continuous MCR inEDTA-based sample sweeping in CE. J. Chromatogr. A,2009,1216,4913-4922.
    [59]Zhang, W.; Chen, J. F.; Fan, L. Y.; et al. A novel isotachophoresis of cobalt andcopper complexes by metal ion substitution reaction in a continuous MCB. Analyst2010,135,140-148.
    [60]Zhang, W.; Jin, J.; Fan, L. Y.; et al. Theoretical and experimental investigations onrelationship between Kohlrausch regulating function/inequality and moving reactionboundary in electrophoresis. J. Sep. Sci.2009,32,2123-2131.
    [61]Isoo, K.; Terabe, S. Analysis of metal ions by sweeping via dynamic complexationand cation-selective exhaustive injection in capillary electrophoresis. Anal. Chem.2003,75,6789-6798.
    [62]Wang, X.; Zhang, W.; Fan, L. Y.; et al. Sensitive quantitative determination ofoxymatrine and matrine in rat plasma by capillary electrophoresis with stackinginduced by moving reaction boundary. Anal. Chim. Acta2007,594,290-296.
    [63]Zhu, W.; Zhang, W.; Fan, L. Y.; et al. Study on mechanism of stacking of zwitterionin highly saline biologic sample by transient moving reaction boundary created byformic buffer and conjugate base in capillary electrophoresis. Talanta2009,78,1194-1200.
    [64]Zhang, W.; Fan, L. Y.; Shao, J.; et al. Comparative study on sample stacking bymoving reaction boundary formed with weak acid and weak or strong base incapillary electrophoresis: II. Experiments. Talanta2011,84,547-557.
    [65]Adamson, A. W. A Textbook of Physical Chemistry, Academic Press Inc., New York,1973.
    [66]David, R. L. CRC Handbook of Chemistry and Physics,73rd ed., CRC Press, BocaRaton,1992-93.
    [67]Reijenga, J. C.; Kenndler, E. Computational simulation of migration and dispersionin free capillary zone electrophoresis, part I, Description of the theoretical model. J.Chromatogr. A1994,659,403-415.
    [68]Cao, C. X. Comparisons of the mobilities of salt ions obtained by the movingboundary method and two empirical equations in capillary electrophoresis. J.Chromatogr. A1997,771,374-378.
    [1] Cao, C. X.; Zhang, W.; Fan, L. Y.; et al. Comparative study on sample stacking bymoving reaction boundary formed with weak acid and weak or strong alkali incapillary electrophoresis: I. Theory. Talanta,2011,84,651-658.
    [2] Cao, C. X.; He, Y. Z.; Li, M.; et al. Stacking ionizable analytes in a sample matrixwith high dalt by a transient moving chemical reaction boundary method in capillaryzone electrophoresis. Anal. Chem.2002,74,4167-4174.
    [3] Cao, C. X.; Zhang, W.; Qin, W. H.; et al. Quantitative predictions to conditions ofzwitterionic stacking by moving chemical reaction boundary created with weakelectrolytic buffers in capillary zone electrophoresis. Anal. Chem.2005,77,955-963.
    [4] Zhu, W.; Zhang, W.; Fan, L. Y.; et al. Study on mechanism of stacking of zwitterionin highly saline biologic sample by transient moving reaction boundary created byformic buffer and conjugate base in capillary electrophoresis. Talanta2009,78,1194-1200.
    [5] Mckee, T.; Mckee, J. R. Biochemistry. Wm. C. Brown Publishers, Dubuque,2002.
    [6] Reijenga, J. C.; Kenndler, E. Computational simulation of migration and dispersionin free capillary zone electrophoresis, part I, Description of the theoretical model. J.Chromatogr. A1994,659,403-415.
    [7] Friedl, W.; Reijenga, J. C.; Kenndler, E. Ionic strength and charge number correctionfor mobilities of multivalent organic anions in capillary electrophoresis. J.Chromatogr. A1995,709,163-170.
    [8] Cao, C. X. Comparisons of the mobilities of salt ions obtained by the movingboundary method and two empirical equations in capillary electrophoresis. J.Chromatogr. A1997,771,374-378.
    [9] Haglund, H.; Tiselius, A. Zone electrophoresis in a glass powder column. Acta Chem.Scand.1950,4,957-962.
    [10]Chien, R.-L.; Burgi, D. S. Field amplified sample injection in high-performancecapillary electrophoresis. J. Chromatogr.1991,559,141-152.
    [11]Chien, R. L.; Burgi, D. S. Optimization in sample stacking for high-performancecapillary electrophoresis. Anal. Chem.1991,63,2042-2047.
    [12]Chien, R. L.; Burgi, D. S. On-column sample concentration using field amplificationin CZE. Anal. Chem.1992,64,489A-496A.
    [13]Chien, R. L.; Burgi, D. S. Sample stacking of an extremely large injection volume inhigh-performance capillary electrophoresis. Anal. Chem.1992,64,1046-1050.
    [1] Chu,Y. H.; Avila,L. Z.; Gao J. M.; et al. Affinity capillary electrophoresis. Acc. Chem.Res.1995,28,461-468.
    [2] Heegaard, N. H. H. Applications of affinity interactions in capillary electrophoresis.Electrophoresis2003,29,3879–3891.
    [3] Chen, Z.; Weber, S. G. Determination of binding constants by affinity capillaryelectrophoresis, electrospray ionization mass spectrometry and phase-distributionmethods. Trend Anal. Chem.2008,27,738-748.
    [4] Giovannoli, C.; Baggiani, C.; Anfossi, L.; et al. Aptamers and molecularly imprintedpolymers as artificial biomimetic receptors in affinity capillary electrophoresis andelectrochromatography. Electrophoresis2008,29,3349–3365.
    [5] Liu, X. J.; Dahdouh, F.; Salgado, M.; et al. Recent advances in affinity capillaryelectrophoresis. J. Pharma. Sci.2009,98,394-410.
    [6] Cheng, S. B.; Skinner, C. D.; Taylor, J.; et al. Development of a multi-channelmicrofluidic analysis system employing affinity capillary electrophoresis forimmunoassay. Anal. Chem.2001,73,1472-1479.
    [7] Malmstadt, N.; Hoffman, A. S.; Stayton, P. S.―Smart‖mobile affinity matrix formicrofluidic immunoassays. Lab on Chip2004,4,412-415.
    [8] Eppinger,J.; Funeriu, D. P.; Miyake, M.; et al. Enzyme microarrays: On-chipdetermination of inhibition constants based on affinity-label detection of enzymaticactivity. Angew. Chem. Intern2004,43,3806-3810.
    [9] Poetz,O.; Ostendorp, R.; Brocks, B.; et al. Protein microarrays for antibodyprofiling: Specificity and affinity determination on a chip. Proteomics2005,5,2402-2411.
    [10]Marchesini, G. R.; Buijs, J.; Haasnoot, W.; et al. Nanoscale affinity chip interface forcoupling inhibition SPR immunosensor screening with nano-LC TOF MS. Anal.Chem.2008,80,1159-1168.
    [11]Hong, J. W.; Chung, K. H.; Yoon, H. C. Fluorescence affinity sensing by using aself-contained fluid manoeuvring microfluidic chip. Analyst2008,133,499-504.
    [12]Einav, S.; Gerber, D.; Bryson, P. D.; et al. Discovery of a hepatitis C target and itspharmacological inhibitors by microfluidic affinity analysis. Nature Biotechnol2008,26,1019-1027.
    [13]Amankwa, L. N.; Kuhr, W. G. Trypsin-modified-fused-silica capillary microreactorfor peptide mapping by capillary zone electrophoresis. Anal. Chem.1992,64,1610-1613.
    [14]Licklider, L.; Kuhr, W. G. Optimization of online peptide mapping by capillary zoneelectrophoresis. Anal. Chem.1994,66,4400-4407.
    [15]Cao, P.; Stults, J. T. Phosphopeptide analysis by on-line immobilized metal-ionaffinity chromatography–capillary electrophoresis–electrospray ionization massspectrometry. J. Chromatogr. A1999,853,225-235.
    [16]Kotia, R. B. L. Li and L. B. McGown, Separation of nontarget compounds by DNAaptamers. Anal. Chem.2000,72,827–831.
    [17]Rehder-Silinski, M. A.; McGown, L. B. Capillary electrochromatographic separationof bovine milk proteins using a G-quartet DNA stationary phase. J. Chromatogr. A2003,1008,233–245.
    [18]Clark, S. L.; Remcho,V. T. Electrochromatographic retention studies on aflavin-binding RNA aptamer sorbent. Anal. Chem.2003,75,5692–5696.
    [19]Schweitz, L.; Andersson, L. I.; Nilsson, S. Capillary electrochromatography withpredetermined selectivity obtained through molecular imprinting. Anal. Chem.1997,69,1179–1183.
    [20]Schweitz, L.; Spegel, P.; Nilsson, S. Molecularly imprinted microparticles forcapillary electrochromatographicenantiomer separation of propranolol. Analyst2000,125,1899–1901.
    [21]Liu, Z. S.; Xu, X. L.; Yan, C.; et al. Mechanism of molecular recognition onmolecular imprinted monolith by capillary electrochromatography. J. Chromatogr. A2005,1087,20-28.
    [22] Nilsson, K.; Lindell, J.; Norrlow, O.; et al. Imprinted polymers as antibodymimetics and new affinity gels for selective separations in capillary electrophoresis.J. Chromatogr. A1994,680,57–61.
    [23] Schweitz, L. Molecularly imprinted polymer coatings for open-tubular capillaryelectrochromatography prepared by surface initiation. Anal. Chem.2002,74,1192–1196.
    [24]Heegaard, N. H. H. Kennedy, R. T. Identification, quantitation, and characterizationof biomolecules by capillary electrophoretic analysis of binding interactions.Electrophoresis1999,20,3122–3133.
    [25]Rundlett, K. L.; Armstrong, D. W. Methods for the determination of bindingconstants by capillary electrophoresis. Electrophoresis2001,22,1419–1427.
    [26]Tanaka, Y.; Terabe, S. Estimation of binding constants by capillary electrophoresis.J. Chromatogr. A2002,768,81–92.
    [27]Bao, J.; Regnier, F. E. Ultramicro enzyme assays in a capillary electrophoreticsystem. J. Chromatogr.1992,608,217–224.
    [28]Chiti, F.; Lorenzi, E. De; Grossi, S.; et al. A partially structured species ofβ2-microglobulin is significantly populated under physiological conditions andinvolved in fibrillogenesis. J. Biol. Chem.2001,276,46714–46721.
    [29]Zugel, S. A.; Burke, B. J.; Regnier, F. E.; et al. Electrophoretically mediatedmicroanalysis of leucine aminopeptidase using two-photon excited fluorescencedetection on a microchip. Anal. Chem.2000,72,5731–5735.
    [30]Pradelles, P.; Grassi, J.; Créminon, C.; et al. Immunometric assay of low molecularweight haptens containing primary amino groups. Anal. Chem.1994,66,16–22.
    [31]German, I.; Buchanan, D. D.; Kennedy, R. T. Aptamers as ligands in affinity probecapillary electrophoresis. Anal. Chem.1998,70,4540–4545.
    [32]Pavski, V.; Le, X. C. Detection of human immunodeficiency virus type1. Reversetranscriptase using aptamers as probes in affinity capillary electrophoresis. Anal.Chem.2001,73,6070–6076.
    [33] Zhang, H.; Wang, Z.; Li, X. F.; et al. Ultrasensitive detection of proteins byamplification of affinity aptamers Angew. Chem. Int. Ed. Eng.2006,45,1576–1580.
    [34]Guttman, A.; Cooke, N. Capillary gel affinity electrophoresis of DNA fragments.Anal. Chem.1991,63,2038-2042.
    [35]Baba, Y. Capillary affinity gel electrophoresis. Methods Mol. Biol.2001,163,347–354.
    [36]Takeo, K.; Nakamura, S. Dissociation constants of glucan phosphorylases of rabbittissues studied by polyacrylamide gel disc electrophoresis. Arch. Biochem. Biophys.1972,153,1–7.
    [37]Ellington, A. D.; Szostak, J. W. In vitro selection of RNA molecules that bindspecific ligands. Nature1990,346,818–822.
    [38]Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage T4DNA polymerase. Science1990,249,505–510.
    [39]Mendonsa, S. D.; Bowser, M. T. In vitro evolution of functional DNA usingcapillary electrophoresis. J. Am. Chem. Soc.2004,126,20–21.
    [40]Mendonsa, S. D.; Bowser, M. T. In vitro selection of aptamers with affinity forneuropeptide Y using capillary electrophoresis. J. Am. Chem. Soc.2005,127,9382–9383.
    [41]Mallikaratchy, P.; Stahelin, R. V.; Cao, Z.; et al. Selection of DNA ligands forprotein kinase C-. Chem. Commun.2006,30,3229–3231.
    [42]Berezovski, M. V.; Musheev, M. U.; Drabovich, A. P.; et al. Non-SELEX: selectionof aptamers without intermediate amplification of candidate oligonucleotides. Nat.Protoc.2006,1,1359–1369.
    [43]Berezovski, M. V.; Musheev, M. U.; Drabovich,A. P.; et al. Non-SELEX selectionof aptamers. J. Am. Chem. Soc.2006,128,1410–1411.
    [44]Berezovski, M.; Nutiu, R.; Li, Y.; et al. Affinity analysis of a protein-aptamercomplex using nonequilibrium capillary electrophoresis of equilibrium mixture. Anal.Chem.2003,75,1382-1386.
    [45]Berezovski, M.; Drabovich, A.; Krylova, S. M.; et al. Nonequilibrium capillaryelectrophoresis of equilibrium mixtures: A universal tool for development ofaptamers. J. Am. Chem. Soc.2005,127,3165-3171.
    [46] Petrov, A.; Okhonin, V.; Berezovski, M.; et al. Kinetic capillary electrophoresis(KCE): A conceptual platform for kinetic homogeneous affinity methods. J. Am.Chem. Soc.2005,127,17104-17110.
    [47]Krylov, S. N. Nonequilibrium capillary electrophoresis of equilibrium mixtures(NECEEM): A novel method for biomolecular screening. J. Biomol. Screen.2006,11,115–122.
    [48]Drabovich, A. P.; Okhonin, V.; Berezovski, M.; et al. Smart aptamers facilitatemulti-probe affinity analysis of proteins with ultra-wide dynamic range of measuredconcentrations. J. Am. Chem. Soc.2007,129,7260–7261.
    [49]Drabovich, A.; Berezovski, M.; Krylov, S. N. Selection of smart aptamers byequilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). J. Am.Chem. Soc.2005,127,11224–11225.
    [50]Drabovich, A. P.; Berezovski, M.; Okhonin, V.; et al. Selection of smart aptamers bymethods of kinetic capillary electrophoresis Anal. Chem.2006,78,3171–3178.
    [51]Deman, J. Precipitation during electromigration of ions. Anal. Chem.1970,42,321-324.
    [52]Deman, J.; Rigole, W. Chemical reaction during electromigration of ions. J. Phys.Chem.1970,74,1122-1126.
    [53]Deman, J. Separation of rare earth ions by precipitation during electromigration.Anal. Chem.1970,42,983-989.
    [54]Deman, J. Elutive displacement of precipitate formed during electromigration of ions.Anal. Chem.1970,42,1699-1705.
    [55]Cao, C. X.; Fan, L. Y.; Zhang, W. Review on the theory of moving reaction boundary,electromigration reaction methods and applications in isoelectric focusing andsample pre-concentration. Analyst2008,133,1139-1157.
    [56]Cao, C. X.; He, Y. Z.; Li, M.; et al. Stacking ionizable analytes in a sample matrixwith high dalt by a transient moving chemical reaction boundary method in capillaryzone electrophoresis. Anal. Chem.2002,74,4167-4174.
    [57]Cao, C. X.; Zhang, W.; Qin, W. H.; et al. Quantitative predictions to conditions ofzwitterionic stacking by moving chemical reaction boundary created with weakelectrolytic buffers in capillary zone electrophoresis. Anal. Chem.2005,77,955-963.
    [58]Jin, J.; Shao, J.; Li, S.; et al. Computer simulation on a continuous MCR inEDTA-based sample sweeping in CE. J. Chromatogr. A2009,1216,4913-4922.
    [59]Fan, L. Y.; Yan, W.; Cao, C. X.; et al. Experiments on MIBs and their characteristicsof focusing and probing of both guest and host target molecules. Anal. Chim. Acta2009,650,111-117.
    [60]Quirino, J. P.; Kim, J. B.; Terabe, S. Sweeping: concentration mechanism andapplications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr.A,2002,965,357-373.
    [61]Isoo, K.; Terabe, S. Analysis of metal ions by sweeping via dynamic complexationand cation-selective exhaustive injection in capillary electrophoresis. Anal. Chem.2003,75,6789-6798.
    [62]Feng, S.; Pan, C. S.; Jiang, X. G.; et al. Fe3+immobilized metal affinitychromatography with silica monolithic capillary column for phosphoproteomeanalysis. Proteomics2007,7,351-360.
    [63]Kaczmarek, P.; Jezowska-Bokczuk, M.; Bal, W.; et al. Determination of the stabilityconstants and oxidation susceptibility of nickel(II) complexes with2′-deoxyguanosine5′-triphosphate and L-histidine. J. Inorg. Biochem.2005,99,737-746.
    [64]Valenti, L. E.; De Pauli, C. P.; Giacomelli, C. E. The binding of Ni(II) ions tohexahistidine as a model system of the interaction between nickel and His-taggedproteins. J. Inorg. Biochem.2006,100,192-200.
    [65]Zhang, Y.; Akilesh, S.; Wilcox, D. E. Isothermal titration calorimetry measurementsof Ni(II) and Cu(II) binding to His, GlyGlyHis, HisGlyHis, and bovine serumalbumin: A critical evaluation. Inorg. Chem.2000,39,3057-3064.
    [66]Wu, J.; Fan, L. Y.; Zhang, W.; et al. Urine profiling by capillary electrophoresis withonline stacking of moving reaction boundary. Chinese J Chromatogr.2008,26,622-625.
    [67]Tan I. K.; Gajra, B. Plasma and urine amino acid profiles in a healthy adultpopulation of Singapore. Ann. Acad. Med.2006,35,468-475.
    [1] Deman, J.; Rigole, W. Chemical reaction during electromigration of ions. J. Phys.Chem.1970,74,1122-1126.
    [2] Deman, J. Precipitation during electromigration of ions. Anal. Chem.1970,42,321-324.
    [3] Deman, J. Elutive displacement of precipitate formed during electromigration of ions.Anal. Chem.1970,42,1699-1705.
    [4] Deman, J. Separation of rare earth ions by precipitation during electromigration.Anal. Chem.1970,42,983-989.
    [5] Cao, C. X.; Fan, L. Y.; Zhang, W. Review on the theory of moving reaction boundary,electromigration reaction methods and applications in isoelectric focusing andsample pre-concentration. Analyst2008,133,1139-1157.
    [6] Cao, C. X. Moving chemical reaction boundary and isoelectric focusing I.Conditional equations for Svensson–Tiselius‘differential equation of soluteconcentration distribution in idealized isoelectric focusing at steady state. J.Chromatogr. A1998,813,153-171.
    [7] Fan, L. Y.; Li, C. J.; Zhang, W.; et al. Quantitative investigation on moving chelationboundary within continuous EDTA-based sample sweeping system in capillaryelectrophoresis. Electrophoresis2008,29,3989-3998.
    [8] Jin, J.; Shao, J.; Li, S.; et al. Computer simulation on a continuous MCR inEDTA-based sample sweeping in CEJ. Chromatogr. A2009,1216,4913–4921.
    [9] Quirino, J. P.; Kim, J. B.; Terabe, S. Sweeping: concentration mechanism andapplications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A2002,965,357-373.
    [10] Isoo, K.; Terabe, S. Analysis of metal ions by sweeping via dynamic complexationand cation-selective exhaustive injection in capillary electrophoresis. Anal. Chem.2003,75,6789-6798.
    [11] Bier, M. Electrophoresis: Theory, Methods and Applications, Acadmic Press, NewYork,1959, pp.1-145.
    [12] Everaerts, F. M.; Beckers, J.; Verheggen, L. T. P. E. M. Isotachophoresis: Theory,Instrumentation and Applications, Elsevier Scientific Publishing Co., Amsterdam,1976, pp.1-61.
    [13] MacInnes, D. A.; Longsworth, L. G. Transference numbers by the method of movingboundaries theory, practice, and results. Chem. Rev.1932,11,171-230.
    [14] Dole, V. P. A theory of moving boundary systems formed by strong electrolytes. J.Am. Chem. Soc.1945,67,1119-1126.
    [15] Longsworth, L. G. Moving boundary studies on salt mixtures.J. Am. Chem. Soc.1945,67,1109-1119.
    [16] Svensson, H. The behaviour of weak electrolytes in moving boundary systems.1.The moving boundary equation. Acta Chem. Scand.1948,2,841-855.
    [17] Alberty, R. A. Moving boundary systems formed by weak electrolytes. Theory ofsimple systems formed by weak acids and bases. J. Am. Chem. Soc.1950,72,2361-2367.
    [18] Nichol, J. C. Moving boundary systems formed by weak acids and bases-anexperimental study. J. Am. Chem. Soc.1950,72,2367-2374.
    [19] Dismukes, E. B.; Alberty, R. A. Weak electrolyte moving boundary systemsanalogous to the electrophoresis of a single protein. J. Am. Chem. Soc.1954,76,191-197.
    [20] Nichol, J. C. Bolaform electrolytes.4. Conductance of alpha, omega-bispyridinumpolymethylene bromides and beta, beta‘-bisquaternary substituted diethyl ethers inmethanol. J. Am. Chem. Soc.1955,77,198-202.
    [21] Jovin, T. M. Multiphasic zone electrophoresis. I. Steady-state moving-boundarysystems formed by different electrolyte combinations. Biochem.1973,12,871-879.
    [22] Jovin, T. M. Multiphasic zone electrophoresis. II. Design of integrated discontinuousbuffer systems for analytical and preparative fractionation. Biochem.1973,12,879-890.
    [23] Jovin, T. M. Multiphasic zone electrophoresis. III. Further analysis and new forms ofdiscontinuous buffer systems. Biochem.1973,12,890-898.
    [24] Hjelmeland, L. M.; Chrambach, A. Formation of natural pH gradients in sequentialmoving boundary systems with solvent counterions. I. Theory. Electrophoresis1983,4,20-26.
    [25] Finlayson, G. R.; Chrambach, A. Isoelectric focusing in polyacrylamide gel and itspreparative application. Anal. Biochem.1971,40,292-311.
    [26] Nguyen, N. Y.; Chrambach, A. Nonisoelectric focusing in buffers. Anal. Biochem.1974,74,145-153.
    [27] Murel, A.; Kirjanen, I.; Kirret, O. Instability and non-linearity of the pH gradientformed in isoelectric focusing. J. Chromatogr.1979,174,1-11.
    [28] Hagedorn, R.; Fuhr, G. Steady state electrolysis and isoelectric focusing.Electrophoresis1990,11,281-289.
    [29] Baumann, G.; Chrambach, A. in Progress in isoelectric focusing andisotachophoresis, ed. Righetti, P. G. North-Holland Publishing Co., Amsterdam,1975,pp.13-23.
    [30] Chrambach, A.; Doerr, P.; Finlayson, G. D.; et al. Instability of pH gradients formedby isoelectric focusing in polyacrylamide gel. Ann. N. Y. Acad. Sci.1973,209,44-64.
    [31] Hjertén, S.; Zhu, M. D. Adaptation of the equipment for high-performanceelectrophoresis to isoelectric focusing. J. Chromatogr.1985,346,265-270.
    [32] Hjertén, S.; Elenbring, K.; Kilar, F.; et al. Carrier-free zone electrophoresis,displacement electrophoresis and isoelectric focusing in a high-performanceelectrophoresis apparatus. J. Chromatogr.1987,403,47-61.
    [33] Kilar, F.; Hjertén, S. Fast and high resolution analysis of human serum transferrin byhigh performance isoelectric focusing in capillaries. Electrophoresis1989,10,23-29.
    [34] Wu, J.; Pawliszyn, J. Fast analysis of proteins by isoelectric focusing performed incapillary array detected with concentration gradient imaging system. Electrophoresis1993,14,469-474.
    [35] Xu,Y. J.; Li, S.; Zhang, W.; et al. Moving reaction boundary and isoelectric focusing:IV. Systemic study on Hjerten‘s pH gradient mobilization. J. Sep. Sci.2009,32,585-596.
    [36] Pospichal, J.; Deml, M.; Bo ek, P. Electrically controlled electrofousing ofampholytes between two zones of modified electrolyte with two different values ofpH. J. Chromatogr.1993,638,179-186.
    [37] Guillo, C.; Karlinsey, J. M.; Landers, J. P. On-chip pump for pressure mobilization ofthe focused zones following microchip isoelectric focusing. Lab Chip2007,7,112-118.
    [38] Wu, X. Z.; Zhang, L. H.; Onoda, K. Isoelectric focusing sample injection forcapillary electrophoresis of proteins. Electrophoresis2005,26,563-570.
    [39] Nesbitt, C. A.; Jurcic, K.; Yeung, K. K. C. Nanoliter-volume protein enrichment,tryptic digestion, and partial separation based on isoelectric points by CE for MALDImass spectral analysis. Electrophoresis2008,29,466-474.
    [40] Cao, C. X.; Zhang, W.; Qin, W. H.; et al. Quantitative predictions to conditions ofzwitterionic stacking by moving chemical reaction boundary created with weakelectrolytic buffers in capillary zone electrophoresis. Anal. Chem.2005,77,955-963.
    [41] Breadmore, M. C.; Mosher, R. A.; Thormann, W. High-resolution computersimulations of stacking of weak bases using a transient pH boundary in capillaryelectrophoresis.1. concept and impact of sample ionic strength. Anal. Chem.2006,78,538-546.
    [42] Breadmore, M. C. Recent advances in enhancing the sensitivity of electrophoresisand electrochromatography in capillaries and microchips. Electrophoresis2007,28,254-281.
    [43] Zhang, W.; Jin, J.; Fan, L. Y.; et al. Theoretical and experimental investigations onrelationship between Kohlrausch regulating function/inequality and moving reactionboundary in electrophoresis. J. Sep. Sci.2009,32,2123-2131.
    [44] Rossella,G.; Aldo, P.; Daniela, S.; et al. Capillary zone electrophoresis (CZE) coupledto time-of-flight mass spectrometry (TOF-MS) applied to the analysis of illicit andcontrolled drugs in blood. Electrophoresis2008,29,4078-4087.
    [45] Pereira, M.; Lai, E. P. C.; Hollebone, B. Characterization of quantum dots usingcapillary zone electrophoresis. Electrophoresis2007,28,2874-2881.
    [46] Quirino, J. P.; Terabe, S.; Bocek, P. Sweeping of neutral analytes in electrokineticchromatography with high-salt-containing matrixes. Anal. Chem.2000,72,1934-1940.
    [47] Macia, A.; Vorrull, F.; Calull, M.; et al. Separation and on-column preconcentrationof some nonsteroidal anti-inflammatory drugs by microemulsion electrokineticcapillary chromatography using high-speed separations. Electrophoresis2005,26,970-979.
    [48] Ni, Y. N.; Peng, Z. H. Determination of mixed metal ions by complexometrictitration and nonlinear partial least squares calibration. Anal. Chim. Acta1995,304,217-222.
    [49] Vasconcelos, M. T.; Gomes,C. A. R. Limitations of ion chromatography withpost-column reaction for determination of heavy metals in waters containing strongchelating agents. J. Chromatogr. A1995,696,227-234.
    [50] Fangueiro, D.; Bermond, A.; Santos, E. Heavy metal mobility assessment insediments based on a kinetic approach of the EDTA extraction: search for optimalexperimental conditions. Anal. Chim. Acta2002,459,245-256.
    [51] Norkus, E.; Vaskelis, A.; Zakaite, I. Influence of ionic strength and OH-ionconcentration on the Cu(II) complex formation with EDTA in alkaline solutions.Talanta1996,43,465-470.
    [52] Gyliene, O.; Aikaite, J.; Nivinskiene, O. Recovery of EDTA from complex solutionusing Cu(II) as precipitant and Cu(II) subsequent removal by electrolysis. J. Hazard.Mater.2004, B116,119-124.
    [53] Oshima, M.; Motomizu, S.; Doi, H. Interaction of hydrophobic anions with cationicdyes and its application to the spectrophotometric determination of anionicsurfactants. Analyst1992,117,1643-1646.
    [54] Timerbaev, A. R. Recent advances and trends in capillary electrophoresis ofinorganic ions. Electrophoresis2002,23,3884-3906.
    [55] Johns, C.; Macka, M.; Haddad, P. R. Enhancement of detection sensitivity forindirect photometric detection of anions and cations in capillary electrophoresis.Electrophoresis2003,24,2150-2167.
    [56] Okamoto, H.; Timerbaev, A. R.; Hirokawa, T. Simultaneous determination of metalions, amino acids, and other small biogenic molecules in human serum by capillaryzone electrophoresis with transient isotachophoretic preconcentration. J. Sep. Sci.2005,28,522-528.
    [57] Takayanagi, T.; Motomizo, S. Chitosan as cationic polyelectrolyte for themodification of electroosmotic flow and its utilization for the separation of inorganicanions by capillary zone electrophoresis. Anal. Sci.2006,22,1241-1244.
    [58] Hirokawa, T.; Okamoto, H.; Gosyo, Y.; et al. Simultaneous monitoring of inorganiccations, amines and amino acids in human sweat by capillary electrophoresis. Anal.Chim. Acta2007,581,83-88.
    [59] Timerbaev, A. R. Inorganic analysis of biological fluids using capillaryelectrophoresis. J. Sep. Sci.2008,31,2012-2021.
    [60] Hutchinson, J. P.; Evenhuis, C. J.; Johns, C.; et al. Identification of inorganicimprovised explosive devices by analysis of post-blast residues using portablecapillary electrophoresis instrumentation and indirect photometric detection with alight-emitting diode. Anal. Chem.2007,79,7005-7013.
    [61] Ringbom, A. Complexation in Analytical Chemistry: A Guide for the CriticalSelection of Analytical Methods Based on Complexation Reactions, Interscience,New York,1963, pp.1-43.
    [62] Basolo, F.; Johnson, R. Coordination Chemistry: The Chemistry of Metal Complexes,W.A. Benjamin, Inc., New York,1964, pp.54-62.
    [63] Lappin, G. A.; Laranjeira, M. C. M.; Peacock, R. D. Kinetics and mechanism ofreduction of a nickel(IV) oxime-imine complex by Co(edta)2-. Stereospecificsynthesis of a stereoselective oxidant. Inorg. Chem.1983,22,786-791.
    [64] Brucher, E.; Laurenczy, G. Aminopolycarboxylates of rare earths.9. Kinetic study ofexchange reactions between the cerium(III)-ethylenediaminetetraacetate complexand lead(II), nickel(II) and cobalt(II) ions. Inorg. Chem.1983,22,338-342.
    [1] Bier, M. Electrophoresis: Theory, Methods, and Applications, Academic Press,1959.
    [2] Everaerts, F. M.; Beckers, J. L.; Verheggen, Th. P. E. M. Isotachophoresis: theory,Instrumentation and Application, Elsevier Scientific Publishing Co.,1976.
    [3] Foret, F.; Szoko, E.; Karger, B. L. On-column transient and coupled columnisotachophoretic preconcentration of protein samples in capillary zoneelectrophoresis.J. Chromatogr.1992,608,3-12.
    [4] Reinhoud, N. J.; Tjaden, U. R.; van der Greef, J. Automated isotachophoretic analytefocusing for capillary zone electrophoresis in a single capillary using hydrodynamicback-pressure programming. J. Chromatogr.1993,641,155-162.
    [5] Zhang, Z. X.; Zhang, X. W.; Wang, J. J.; et al. Sequential preconcentration bycoupling of field amplified sample injection with pseudo isotachophoresis–acidstacking for analysis of alkaloids in capillary electrophoresis Anal. Bioanal. Chem.2008,390,1645-1652.
    [6] Chen, Y.; Xu, L. J.; Zhang, L.; et al. Separation and determination of peptidehormones by capillary electrophoresis with laser-induced fluorescence coupled withtransient pseudo-isotachophoresis preconcentration. Anal. Biochem.2008,380,297-302.
    [7] Yan, N.; Zhu, Z.F.; Ding, N.; et al. In-line preconcentration of oxidized and reducedglutathione in capillary zone electrophoresis using transient isotachophoresis understrong counter-electroosmotic flow. J. Chromatogr. A2009,1216,8665-8670.
    [8] Zheng, L. H.; Zhang, L.; Tong, P.; et al. Highly sensitive transient isotachophoresissample stacking coupling with capillary electrophoresis-amperometric detection foranalysis of doping substances. Talanta2010,81,1288-1294.
    [9] Friedberg, M. A.; Hinsdale, M.; Shihabi, Z. K., Effect of pH and ions in the sampleon stacking in capillary electrophoresis, J. Chromatogr. A1997,781,35-42.
    [10]Britz-McKbbin, P.; Bebault, G. M.; Chen, D. D. Y. Velocity-difference inducedfocusing of nucleotides in capillary electrophoresis with a dynamic pH junction.Anal. Chem.2000,72,1729-1735.
    [11]Bergmann, J.; Jaehde, U.; Mazereeuw, M.; et al. Potential of on-lineisotachophoresis-capillary zone electrophoresis with hydrodynamic counterflow inthe analysis of various basic proteins and recombinant human interleukin-3. J.Chromatogr. A1996,734,381-389.
    [12]Gebauer, P.; Bo ek, P. Recent progress in capillary isotachophoresis. Electrophoresis2000,21,3898-3904.
    [13]Wolters, A. M.; Jayawickrama, D. A.; Larive, C. K.; et al. Capillaryisotachophoresis/NMR: Extension to trace impurity analysis and improvedinstrumental coupling. Anal. Chem.2002,74,2306-2313.
    [14]Timerbaev, A. R.; Hirokawa, T. Recent advances of transient isotachophoresis-capillary electrophoresis in the analysis of small ions from high-conductivitymatrices. Electrophoresis2006,27,323-340.
    [15] Gebauer, P.; Mala, Z.; Bocek, P. Recent progress in capillary ITP. Electrophoresis2007,28,26-32.
    [16]Gebauer, P.; Mala, Z.; Bocek, P. Recent progress in analytical capillary ITP.Electrophoresis2009,30,29-35.
    [17]Gebauer, P.; Mala, Z.; Bocek, P. Recent progress in analytical capillaryisotachophoresis. Electrophoresis2011,32,83-89.
    [18]Khurana, T. K.; Santiago, J. G. Sample zone dynamics in peak modeisotachophoresis. Anal. Chem.2008,80,6300-6307.
    [19]Persat, A.; Marshall, L. A.; Santiago, J. G. Purification of nucleic acids from wholeblood using isotachophoresis. Anal. Chem.2009,81,9507-9511.
    [20]Khurana, T. K.; Santiago, J. G. Preconcentration, separation, and indirect detection ofnonfluorescent analytes using fluorescent mobility markers. Anal. Chem.2008,80,279-286.
    [21]Chambers, R. D.; Santiago, J. G. Imaging and quantification of isotachophoresiszones using nonfocusing fluorescent tracers. Anal. Chem.2009,81,3022-3028.
    [22]Bercovici, M.; Kaigala, G. V.; Backhouse, C. J.; Santiago, J. G. Fluorescent carrierampholytes assay for portable, label-free detection of chemical toxins in tap water.Anal. Chem.2010,82,1858-1866.
    [23]Bercovici, M.; Kaigala, G. V.; Santiago, J. G. Method for analyte identification usingisotachophoresis and a fluorescent carrier ampholyte assay. Anal. Chem.2010,82,2134-2138.
    [24]Persat, A.; Chivukula, R. R.; Mendell, J. T.; et al. Quantification of global microRNAabundance by selective isotachophoresis. Anal. Chem.2010,82,9631-9635.
    [25]Persat, A.; Santiago, J. G. MicroRNA profiling by simultaneous selectiveisotachophoresis and hybridization with molecular beacons. Anal. Chem.2011,83,2310-2316.
    [26]Bahga, S. S.; Chambers, R. D.; Santiago, J. G. Coupled isotachophoreticpreconcentration and electrophoretic separation using bidirectional isotachophoresis.Anal. Chem.2011,83,6154-6162.
    [27]Bercovici, M.; Kaigala, G. V.; Mach, K. E.; et al. Rapid detection of urinary tractinfections using isotachophoresis and molecular beacons. Anal. Chem.2011,83,4110-4117.
    [28]Bahga, S. S.; Kaigala, G. V.; Bercovici, M.; Santiago, J. G. High-sensitivitydetection using isotachophoresis with variable cross-section geometry.Electrophoresis2011,32,563-572.
    [29]Breadmore, M. C.; Quirino, J. P.100000-fold concentration of anions in capillaryzone electrophoresis using electroosmotic flow controlled counterflowisotachophoresis stacking under field amplified conditions. Anal. Chem.2008,80,6373-6381.
    [30]Breadmore, M. C. Electroosmotic flow-balanced isotachophoretic stacking withcontinuous electrokinetic injection for the concentration of anions in highconductivity samples. J. Chromatogr. A2010,1217,3900-3906.
    [31]Shackman, J. G.; Ross, D. Gradient elution isotachophoresis for enrichment andseparation of biomolecules. Anal. Chem.2007,79,6641-6649.
    [32]Davis, N. I.; Mamunooru, M.; Vyas, C. A.; et al. Capillary and microfluidic gradientelution isotachophoresis coupled to capillary zone electrophoresis for femtomolaramino acid detection limits. Anal. Chem.2009,81,5452-5459.
    [33]Deman, J.; Rigole, W. Chemical reaction during electromigration of ions. J. Phys.Chem.1970,74,1122-1126.
    [34]Deman, J. Precipitation during electromigration of ions. Anal. Chem.1970,42,321-324.
    [35]Deman, J. Elutive displacement of precipitate formed during electromigration of ions.Anal. Chem.1970,42,1699-1705.
    [36]Deman, J. Separation of rare earth ions by precipitation during electromigration.Anal. Chem.1970,42,983-989.
    [37]Pospichal, J.; Deml, M.; Bo ek, P. Electrically controlled electrofousing ofampholytes between two zones of modified electrolyte with two different values ofpH. J. Chromatogr.1993,638,179-186.
    [38]Cao, C. X. Moving chemical reaction boundary and isoelectric focusing I.Conditional equations for Svensson–Tiselius‘differential equation of soluteconcentration distribution in idealized isoelectric focusing at steady state. J.Chromatogr. A1998,813,153-171.
    [39]Cao, C. X.; Fan, L. Y.; Zhang, W. Review on the theory of moving reaction boundary,electromigration reaction methods and applications in isoelectric focusing andsample pre-concentration. Analyst2008,133,1139-1157.
    [40]Cao, C. X.; Zhang, W.; Qin, W. H.; et al. Quantitative predictions to conditions ofzwitterionic stacking by moving chemical reaction boundary created with weakelectrolytic buffers in capillary zone electrophoresis. Anal. Chem.2005,77,955-963.
    [41]Fan, L. Y.; Yan, W.; Cao, C. X.; et al. Experiments on MIBs and their characteristicsof focusing and probing of both guest and host target molecules. Anal. Chim. Acta2009,650,111-117.
    [42]Meng, J.; Zhang, W.; Cao, C. X.; et al. Moving affinity boundary electrophoresis andits exclusive capture of target metabolite in human urine. Analyst2010,135,1592-1599.
    [43]Fan, L. Y.; Li, C. J.; Zhang, W.; et al. Quantitative investigation on moving chelationboundary within continuous EDTA-based sample sweeping system in capillaryelectrophoresis. Electrophoresis2008,29,3989-3998.
    [44]Quirino, J. P.; Kim, J. B.; Terabe, S. Sweeping: concentration mechanism andapplications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A2002,965,357-373.
    [45]Isoo, K.; Terabe, S. Analysis of metal ions by sweeping via dynamic complexationand cation-selective exhaustive injection in capillary electrophoresis. Anal. Chem.2003,75,6789-6798.
    [46]Jin, J.; Shao, J.; Li, S.; et al. Computer simulation on a continuous MCR inEDTA-based sample sweeping in CE. J. Chromatogr. A2009,1216,4913-4922.
    [47]Zhang, W.; Jin, J.; Fan, L. Y.; et al. Theoretical and experimental investigations onrelationship between Kohlrausch regulating function/inequality and moving reactionboundary in electrophoresis. J. Sep. Sci.2009,32,2123-2131.
    [48]Zhang, W.; Chen, J. F.; Fan, L. Y.; et al. A novel isotachophoresis of cobalt andcopper complexes by metal ion substitution reaction in a continuous MCB. Analyst2010,135,140-148.
    [49]Tiselius, A.; Svensson, H. The influence of electrolyte concentration on theelectrophoretic mobility of egg albumin. Trans. Faraday Soc.1940,35,16-22.
    [50]Alberty, R. A. Moving boundary systems formed by weak electrolytes. Theory ofsimple systems formed by weak acids and bases. J. Am. Chem. Soc.1950,72,2361-2367
    [51]Cao,C. X. Moving chemical reaction boundary and isoelectric focusing II. Existenceof quasi/equal fluxes (or transference numbers) of hydrogen and hydroxyl ions instationary electrolysis and Svensson‘s isoelectric focusing. J. Chromatogr. A1998,813,173-177.
    [52]Atkins, P. De Paula, J. Atkins’ physical chemistry,7thEd, Oxford university press,2002.
    [53]Cao, C. X. Comparisons of the mobilities of salt ions obtained by the movingboundary method and two empirical equations in capillary electrophoresis. J.Chromatogr. A1997,771,374-378.
    [54]Ringbom, A. Complexation in Analytical Chemistry: A Guide for the CriticalSelection of Analytical Methods Based on Complexation Reactions, Interscience,1963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700