用户名: 密码: 验证码:
PBK/TOPK的组织分布及其在胆管癌中的表达和临床意义的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     PBK/TOPK是新发现的一种丝苏氨酸激酶,最初发现能够与PDZ结构域结合,文献报道它能与抑癌基因hDlg、P53蛋白、raf蛋白等多个分子结合相互作用,能激活p38MAPK、Erk、JNK等多个下游分子,作为蛋白激酶分子参与信号转导通路。既往研究表明在PBK/TOPK在除睾丸组织外的正常组织中表达量均较低,而在几种肿瘤中表达升高,从而引起大家的关注。然而文献从mRNA上分析了PBK/TOPK的组织分布,所涉及的肿瘤类型也很有限,况且在人胆管细胞癌组织的表达、临床意义及其生物学功能也未见报道。目前为止蛋白水平上PBK/TOPK在正常组织及常见肿瘤的组织分布尚未见报道。
     【目的】
     1.研究PBK/TOPK在人体正常组织和常见恶性肿瘤组织的表达,探讨其作为肿瘤标志物的可能性;2.组织芯片结果显示,肝脏中PBK/TOPK仅在正常胆管细胞和胆管癌细胞中呈特异表达,因此探讨在胆管癌手术标本的表达和与患者预后的关系;3.PBK/TOPK在胆管癌细胞系中的表达及其功能初步研究。
     【方法】
     1.应用免疫组织化学EnVision法,分别在含有人体19种正常组织和含有19种恶性肿瘤组织的组织芯片上进行PBK/ TOPK染色,检测PBK/TOPK蛋白的表达;2.应用EnVision法研究PBK/TOPK在74例胆管癌(包括57例手术标本和17例肝脏穿刺标本),33例肝细胞肝癌和10例正常肝脏标本的表达,并与胆管细胞标志物CK7和CK19进行比较,并用Ki67染色分析PBK/TOPK与细胞增殖的关系;3.对57例胆管癌手术患者进行生存期随访,其中24例获得随访结果,用Kaplan–Meier方法做生存曲线,并分析PBK/TOPK的表达与患者生存期之间的关系; 4.采用RT-PCR及Western Blot方法检测胆管细胞癌细胞系QBC939细胞中的PBK/TOPK分子的表达,并测序构建PBK/TOPK真核表达载体;5.用EGF刺激胆管癌细胞,从蛋白和mRNA水平检测PBK/TOPK表达的变化;并观察其过表达对细胞周期的影响;6.用siRNA抑制胆管癌细胞PBK/TOPK的表达,利用流式细胞仪检测细胞周期的变化;7.利用免疫组织化学方法,检测CD133在胆管癌中的表达,并用胆管癌细胞系研究其功能。
     【结果】
     结果1.在19种正常组织中,只有头皮的汗腺、睾丸的精原细胞、肝脏的胆管上皮、食管黏膜下腺体、胰腺外分泌部的导管上皮、前列腺的基底细胞和肾脏的远曲小管8种组织有不同数量细胞明确阳性表达;在19种人类常见恶性肿瘤组织中,乳腺癌、子宫颈癌、甲状腺癌等多种肿瘤组织中存在PBK/TOPK的大量、强阳性表达;2. PBK/TOPK在正常胆管中明确表达,但肝细胞为阴性,肝硬化组织中的反应性增生小胆管的表达明显增强,阳性部位在胆管细胞的胞浆中;在74例胆管癌中,68例中可见PBK/TOPK的阳性表达。而33例肝细胞肝癌均为阴性,统计学分析,两者间具有非常显著的差异(P<0.001)。PBK/TOPK染色和Ki67染色无明确的相关关系。此外,PBK/TOPK与CK7或CK19相比在鉴别肝细胞肝癌上更加特异。3.在57例手术切除的胆管癌患者中,有24例获得随访资料,利用Kaplan-Meier曲线分析表明,13例PBK/TOPK低表达患者的中位生存期为8个月,而高表达患者的中位生存期为14个月,两组中位生存时间有明显差异(P=0.013)。同时发现,高分化胆管癌的中位生存时间和低分化胆管癌也有统计学差异(P=0.011)。提示PBK/TOPK可以作为评价胆管细胞癌患者预后的一个指标。4.在胆管癌细胞系QBC939细胞中,检测到了PBK/TOPK的mRNA和蛋白;经测序比对发现mRNA与GenBank中PBK/TOPK基因符合率为100%,并成功构建真核表达载体;5. RNAi抑制PBK/TOPK表达后,经流式细胞仪分析表明,对细胞的周期无明显影响;6.经EGF刺激后,发现胆管癌细胞系中PBK/TOPKmRNA和蛋白水平均增加,不影响处于G1期细胞数,却使S期细胞增加, G2/M期细胞总数减少。
    
     【结论】
     1、首次系统研究了PBK/TOPK蛋白在人类正常组织和常见恶性肿瘤组织的表达,发现8种正常组织表达,在乳腺癌、甲状腺癌及子宫颈癌等多种恶性肿瘤组织中表达增加;2、发现PBK/TOPK在所有标本正常胆管上皮细胞和大部分胆管癌标本中表达,而正常肝细胞和肝细胞肝癌不表达,提示PBK/TOPK有助于肝内胆管癌和肝细胞肝癌的鉴别诊断;3、PBK/TOPK的表达与胆管癌患者的预后密切相关;4、在胆管癌细胞系中,EGF刺激可使PBK/TOPK的表达上调,并影响细胞周期中从S期到G2/M的进程,但是抑制PBK/TOPK表达不影响细胞周期;5、成功构建了PBK/TOPK的真核表达载体,为下一步研究PBK/TOPK的功能奠定了基础。
Background
     The increased expression of PBK/TOPK is associated with some malignant tumors, but PBK/TOPK expression and its function in primary liver cancer have not been studied. In our early study, it was found that PBK/TOPK was expressed only in normal bile duct but not in hepatocyte. In this study, we analyzed the expression of PBK/TOPK in hepatic primary cancer and explored its role in cholangiocarcinoma biology.
     Objectives
     1. To study the distribution of PBK/TOPK Protein in human normal and tumor tissues by immunohistochemsitry, and to know if it could be as a tumor marker; 2. To study PBK/TOPK expression in liver tissue, to reveal if PBK/TOPK expression was related to cholangiocarcinoma grade and to the patient prognosis; 3. To study PBK/TOPK physiological function in cholangiocarcinoma cell line.
     Methods
     1. The expression of PBK/TOPK was detected in normal tissues, including 19 types of normal human tissue and tumor tissues including, 19 types of tumors by using tissue chip assay and EnVision immunohistochemical staining. 2. 117 (74 cholangiocarcinomas, 33 hepatocellular carcinomas and 10 normal liver tissues) samples were prepared from paraffin-embedded surgical specimen. PBK/TOPK protein was detected by immunohistochemical staining and the relationship between PBK/TOPK and Ki67 labeling index and the tumor grade were assessed. The normal bile duct staining was used to set the score intensity and Image-Pro Plus 4.5 software was used to count and to analyze the immunostaining of PBK/TOPK and Ki67. 3. Among the 57 patients with surgical specimens of cholangiocarcinoma, clinical data for 24 patients were attained. The patients’survival time with cholangiocarcinoma and the relationship between PBK/TOPK and survival time were analyzed with the Kaplan–Meier method. 4. The mRNA and protein levels of PBK/TOPK in cholangiocarcinoma (QBC939) cells and other cell lines were examined by RT-PCR and Western Blot, and eukaryotic expression vector for PBK/TOPK was constructed. 5. The suppressive effect of PBK/TOPK with small interfere RNA in cholangiocarcinoma cell line was studied by detecting cell cycle. 6. QBC939 cells were stimulated with EGF and the alteration of mRNA and protein were detected; and cell cycle of the cells was examined by FCM analysis.
     Results
     1. PBK/TOPK was expressed in 8 normal tissues and special cells, such as the sweat glands of scalp, renal distal tubular epithelial cells, esophageal mucous gland, pancreatic ductal epithelial cells and biliary epithelium. High level expression of PBK/TOPK protein was observed especially in breast carcinoma, thyroid carcinoma, and cervical cancer.
     2. We found PBK/TOPK was usually expressed in normal bile duct epithelial cells, and much more expressed in cholangiocarcinomas (68/74) but never expressed in hepatocytes and hepatocellular carcinomas.Statistically, PBK/TOPK expression was significantly different between cholangiocarcinoma and hepatocellular carcinoma(P<0.001). There was no positive correlation between the expression of Ki67 and PBK/TOPK (P=0.286). A correlation between the expression of PBK/TOPK and the histopathological grading of the tumor was also not found(P=0.67).
     3. The median survival time was 8 months for13 patients with low expression of PBK/TOPK and 14 months for 11 patients with high expression of PBK/TOPK. Low expression of PBK/TOPK was predictive of poor survival of the patients with cholangiocarcinoma (P=0.013). It was also found that the median survival for the patients was related with the differentiation of cholangiocarcinoma (P=0.011) and the gender (P=0.009).
     4. We detected PBK/TOPK mRNA and Protein for by RT-PCR and Western blotting in cholangiocarcinoma cell line. PBK/TOPK gene was cloned from the total RNA of QBC939 cells by RT-PCR, and their sequences were identical to the report in GenBank. The full length eukaryotic expression vector pcDNA3.1+PBK/TOPK was constructed.
     5. After the stimulation with EGF (20ng/ml) for about 2h, the mRNA of PBK/TOPK in QBC939 cells began to increase and followed by the increased protein. Then we analyzed the cell cell cycle of QBC939 cells after the stimulation with EGF and found that the cell number of G1 phase remained stable but the cell number of G2/M period reduced with that of S phase increased.
     6. After the transfection of the siRNA into QBC939 cells, PBK/TOPK expression was decreased compared with the negative control. No significant difference was observed in the cell cycle profile between PBK/TOPK the transfected cells and the negative control.
     Conclusions
     PBK/TOPK is expressed in several normal tissues and some special cells,and certain carcinoma tissues strongly expressed PBK/TOPK. As PBK/TOPK was usually expressed in normal bile duct cell and most of human cholangiocarcinomas, but never in hepatocyte and hepatocelllular carcinomas, it indicates that PBK/TOPK protein could serve as a potential diagnostic marker to make the differential diagnosis of CC from HCC. Furthermore, the low expression of PBK/TOPK is predicative of poor survival in CC patients. EGF stimulation can enhance the expression of PBK/TOPK in cholangiocarcinoma cells but suppression of PBK/TOPK in cholangiocarcinoma cells with siRNA did not affect its cell cycle. The data indicate that PBK/TOPK may not be a key protein in cell cycle control for cholangiocarcinoma cells. However, the exact biologic function of PBK/TOPK in both normal bile duct epithelial cells and in cholangiocarcinoma cells needs to be further investigated in our future research work..
引文
[1] Gaudet S, Branton D, Lue RA. Characterization of PDZ-binding kinase, a mitotic kinase. Proc Natl Acad Sci U S A, 2000, 97(10): 5167-5172.
    [2] Nandi AK, Ford T, Fleksher D, Neuman B, Rapoport AP. Attenuation of DNA damage checkpoint by PBK, a novel mitotic kinase, involves protein-protein interaction with tumor suppressor p53. Biochem Biophys Res Commun, 2007, 358(1): 181-188.
    [3] Abe Y, Matsumoto S, Kito K, Ueda N. Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. J Biol Chem, 2000, 275(28): 21525-21531.
    [4] Yuryev A, Wennogle LP. Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid analysis. Genomics, 2003, 81(2): 112-125.
    [5] Zhu F, Zykova TA, Kang BS, Wang Z, Ebeling MC, Abe Y, Ma WY, Bode AM, Dong Z. Bidirectional signals transduced by TOPK-ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells. Gastroenterology, 2007, 133(1): 219-231.
    [6] Oh SM, Zhu F, Cho YY, Lee KW, Kang BS, Kim HG, Zykova T, Bode AM, Dong Z. T-lymphokine-activated killer cell-originated protein kinase functions as a positive regulator of c-Jun-NH2-kinase 1 signaling and H-Ras-induced cell transformation. Cancer Res, 2007, 67(11): 5186-5194.
    [7] Fujibuchi T, Abe Y, Takeuchi T, Ueda N, Shigemoto K, Yamamoto H, Kito K. Expression and phosphorylation of TOPK during spermatogenesis. Dev Growth Differ, 2005, 47(9): 637-644.
    [8] Dougherty JD, Garcia AD, Nakano I, Livingstone M, Norris B, Polakiewicz R, Wexler EM, Sofroniew MV, Kornblum HI, Geschwind DH. PBK/TOPK, a proliferating neural progenitor-specific mitogen-activated protein kinase kinase. J Neurosci, 2005, 25(46): 10773-10785.
    [9] Nandi AK, Rapoport AP. Expression of PDZ-binding kinase (PBK) is regulated by cell cycle-specific transcription factors E2F and CREB/ATF. Leuk Res, 2006, 30(4): 437-447.
    [10] Michelle S E KBD, Toretsky JA, et al. PBK/TOPK Is a Novel Mitotic Kinase Which is Upregulated in Burkitt’s Lymphoma and Other Highly Proliferative Malignant Cells. Blood Cells, Molecules, and Diseases, 2001, 27(5): 825-829.
    [11] Nandi A, Tidwell M, Karp J, Rapoport AP. Protein expression of PDZ-binding kinase is up-regulated in hematologic malignancies and strongly down-regulated during terminal differentiation of HL-60 leukemic cells. Blood Cells Mol Dis, 2004, 32(1): 240-245.
    [12] Park JH, Lin ML, Nishidate T, Nakamura Y, Katagiri T. PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res, 2006, 66(18): 9186-9195.
    [13] Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P, Thomas HC. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol, 2002, 37(6): 806-813.
    [14] Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology, 2005, 128(3): 620-626.
    [15] Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis, 2004, 24(2): 115-125.
    [16] Khan SA, Davidson BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, Thillainayagam AV, Thomas HC, Thursz MR, Wasan H. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut, 2002, 51 Suppl 6: VI1-9.
    [17] Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology, 2001, 33(6): 1353-1357.
    [18] Patel T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer, 2002, 2: 10.
    [19] Taylor-Robinson SD, Toledano MB, Arora S, Keegan TJ, Hargreaves S, Beck A, Khan SA, Elliott P, Thomas HC. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968-1998. Gut, 2001, 48(6): 816-820.
    [20] Simons-Evelyn M, Bailey-Dell K, Toretsky JA, Ross DD, Fenton R, Kalvakolanu D, Rapoport AP. PBK/TOPK is a novel mitotic kinase which is upregulated in Burkitt's lymphoma and other highly proliferative malignant cells. Blood Cells Mol Dis, 2001, 27(5): 825-829.
    [21] Matsumoto S, Abe Y, Fujibuchi T, Takeuchi T, Kito K, Ueda N, Shigemoto K, Gyo K. Characterization of a MAPKK-like protein kinase TOPK. Biochem Biophys Res Commun, 2004, 325(3): 997-1004.
    [22] Abe Y, Takeuchi T, Kagawa-Miki L, Ueda N, Shigemoto K, Yasukawa M, Kito K. A mitotic kinase TOPK enhances Cdk1/cyclin B1-dependent phosphorylation of PRC1 and promotes cytokinesis. J Mol Biol, 2007, 370(2): 231-245.
    [23] Cote S, Simard C, Lemieux R. Regulation of growth-related genes by interleukin-6 in murine myeloma cells. Cytokine, 2002, 20(3): 113-120.
    [24] Ayllon V, O'Connor R. PBK/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene, 2007, 26(24): 3451-3461.
    [25] Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci, 2004, 117(Pt 20): 4619-4628.
    [26] Qu Y, Adler V, Chu T, Platica O, Michl J, Pestka S, Izotova L, Boutjdir M, Pincus MR. Two dual specificity kinases are preferentially induced by wild-type rather than by oncogenic RAS-P21 in Xenopus oocytes. Front Biosci, 2006, 11: 2420-2427.
    [27] Zykova TA, Zhu F, Lu C, Higgins L, Tatsumi Y, Abe Y, Bode AM, Dong Z. Lymphokine-activated killer T-cell-originated protein kinase phosphorylation of histone H2AX prevents arsenite-induced apoptosis in RPMI7951 melanoma cells. Clin Cancer Res, 2006, 12(23): 6884-6893.
    [28]王健东,全志伟.胆管癌发生的分子机制.实用肿瘤杂志, 2007, 22(2): 96-98.
    [29] Broome U, Olsson R, Loof L, Bodemar G, Hultcrantz R, Danielsson A, Prytz H, Sandberg-Gertzen H, Wallerstedt S, Lindberg G. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut, 1996, 38(4): 610-615.
    [30] Pitt HA, Dooley WC, Yeo CJ, Cameron JL. Malignancies of the biliary tree. Curr Probl Surg, 1995, 32(1): 1-90.
    [31] Bergquist A, Glaumann H, Persson B, Broome U. Risk factors and clinical presentation of hepatobiliary carcinoma in patients with primary sclerosing cholangitis: a case-control study. Hepatology, 1998, 27(2): 311-316.
    [32] Chalasani N, Baluyut A, Ismail A, Zaman A, Sood G, Ghalib R, McCashland TM, Reddy KR, Zervos X, Anbari MA, Hoen H. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology, 2000, 31(1): 7-11.
    [33] Watanapa P. Cholangiocarcinoma in patients with opisthorchiasis. Br J Surg, 1996, 83(8): 1062-1064.
    [34] Hardell L, Bengtsson NO, Jonsson U, Eriksson S, Larsson LG. Aetiological aspects on primary liver cancer with special regard to alcohol, organic solvents and acute intermittent porphyria--an epidemiological investigation. Br J Cancer, 1984, 50(3): 389-397.
    [35] Sorensen HT, Friis S, Olsen JH, Thulstrup AM, Mellemkjaer L, Linet M, Trichopoulos D, Vilstrup H, Olsen J. Risk of liver and other types of cancer in patients with cirrhosis: a nationwide cohort study in Denmark.Hepatology, 1998, 28(4): 921-925.
    [36] Shin HR, Lee CU, Park HJ, Seol SY, Chung JM, Choi HC, Ahn YO, Shigemastu T. Hepatitis B and C virus, Clonorchis sinensis for the risk of liver cancer: a case-control study in Pusan, Korea. Int J Epidemiol, 1996, 25(5): 933-940.
    [37] Kobayashi M, Ikeda K, Saitoh S, Suzuki F, Tsubota A, Suzuki Y, Arase Y, Murashima N, Chayama K, Kumada H. Incidence of primary cholangiocellular carcinoma of the liver in japanese patients with hepatitis C virus-related cirrhosis. Cancer, 2000, 88(11): 2471-2477.
    [38] Berthiaume EP, Wands J. The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis, 2004, 24(2): 127-137.
    [39]王曙光,李大江.胆管癌分子生物学研究现状.中国现代普通外科进展, 2007, 10(2): 4.
    [40] Tada M, Omata M, Ohto M. High incidence of ras gene mutation in intrahepatic cholangiocarcinoma. Cancer, 1992, 69(5): 1115-1118.
    [41] Tannapfel A, Benicke M, Katalinic A, Uhlmann D, Kockerling F, Hauss J, Wittekind C. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut, 2000, 47(5): 721-727.
    [42] Terada T, Ashida K, Endo K, Horie S, Maeta H, Matsunaga Y, Takashima K, Ohta T, Kitamura Y. c-erbB-2 protein is expressed in hepatolithiasis and cholangiocarcinoma. Histopathology, 1998, 33(4): 325-331.
    [43] Kim HJ, Yoo TW, Park DI, Park JH, Cho YK, Sohn CI, Jeon WK, Kim BI, Kim MK, Chae SW, Sohn JH. Gene amplification and protein overexpression of HER-2/neu in human extrahepatic cholangiocarcinoma as detected by chromogenic in situ hybridization and immunohistochemistry: its prognostic implication in node-positive patients. Ann Oncol, 2007, 18(5): 892-897.
    [44] Rizzi PM, Ryder SD, Portmann B, Ramage JK, Naoumov NV, Williams R. p53 Protein overexpression in cholangiocarcinoma arising in primary sclerosing cholangitis. Gut, 1996, 38(2): 265-268.
    [45] Furubo S, Harada K, Shimonishi T, Katayanagi K, Tsui W, Nakanuma Y. Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma. Histopathology, 1999, 35(3): 230-240.
    [46]唐启彬衣孙石.肝外胆管癌中染色体9p2 1区段抑癌基因簇表达异常的研究.肿瘤防治研究, 2004, 31(9): 3.
    [47]唐朝晖邹郝杨裘. DPC4蛋白在不同部位胆道恶性肿瘤中的缺失表达.中华外科杂志2002年7月, 2002, 40(7): 4.
    [48] Kang YK, Kim WH, Jang JJ. Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma. HumPathol, 2002, 33(9): 877-883.
    [49] Harnois DM, Que FG, Celli A, LaRusso NF, Gores GJ. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatology, 1997, 26(4): 884-890.
    [50] Tan G, Yilmaz A, De Young BR, Behling C, Lehman A, Frankel WL. Immunohistochemical analysis of biliary tract lesions. Appl Immunohistochem Mol Morphol, 2004, 12(3): 193-197.
    [51] Guo LL, Xiao S, Guo Y. Detection of bcl-2 and bax expression and bcl-2/JH fusion gene in intrahepatic cholangiocarcinoma. World J Gastroenterol, 2004, 10(22): 3251-3254.
    [52] Okaro AC, Deery AR, Hutchins RR, Davidson BR. The expression of antiapoptotic proteins Bcl-2, Bcl-X(L), and Mcl-1 in benign, dysplastic, and malignant biliary epithelium. J Clin Pathol, 2001, 54(12): 927-932.
    [53] de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med, 1999, 341(18): 1368-1378.
    [54] Washburn WK, Lewis WD, Jenkins RL. Aggressive surgical resection for cholangiocarcinoma. Arch Surg, 1995, 130(3): 270-276.
    [55] Nagino M, Nimura Y, Kamiya J, Kanai M, Uesaka K, Hayakawa N, Yamamoto H, Kondo S, Nishio H. Segmental liver resections for hilar cholangiocarcinoma. Hepatogastroenterology, 1998, 45(19): 7-13.
    [56] Reding R, Buard JL, Lebeau G, Launois B. Surgical management of 552 carcinomas of the extrahepatic bile ducts (gallbladder and periampullary tumors excluded). Results of the French Surgical Association Survey. Ann Surg, 1991, 213(3): 236-241.
    [57] Klempnauer J, Ridder GJ, Werner M, Weimann A, Pichlmayr R. What constitutes long-term survival after surgery for hilar cholangiocarcinoma? Cancer, 1997, 79(1): 26-34.
    [58] Jonas S, Kling N, Guckelberger O, Keck H, Bechstein WO, Neuhaus P. Orthotopic liver transplantation after extended bile duct resection as treatment of hilar cholangiocarcinoma. First long-terms results. Transpl Int, 1998, 11 Suppl 1: S206-208.
    [59]周泉波周陈. 67例肝门部胆管癌的外科治疗及预后分析.中国肿瘤临床, 2007, 34(5): 4.
    [60] Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, Hruban RH, Lillemoe KD, Yeo CJ, Cameron JL. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg, 1996, 224(4): 463-473; discussion 473-465.
    [61] Henson DE, Albores-Saavedra J, Corle D. Carcinoma of the extrahepatic bile ducts. Histologic types, stage of disease, grade, and survival rates.Cancer, 1992, 70(6): 1498-1501.
    [62] Gonzalez Gonzalez D, Gerard JP, Maners AW, De la Lande-Guyaux B, Van Dijk-Milatz A, Meerwaldt JH, Bosset JF, Van Dijk JD. Results of radiation therapy in carcinoma of the proximal bile duct (Klatskin tumor). Semin Liver Dis, 1990, 10(2): 131-141.
    [63] Kuvshinoff BW, Armstrong JG, Fong Y, Schupak K, Getradjman G, Heffernan N, Blumgart LH. Palliation of irresectable hilar cholangiocarcinoma with biliary drainage and radiotherapy. Br J Surg, 1995, 82(11): 1522-1525.
    [64] Pitt HA, Nakeeb A, Abrams RA, Coleman J, Piantadosi S, Yeo CJ, Lillemore KD, Cameron JL. Perihilar cholangiocarcinoma. Postoperative radiotherapy does not improve survival. Ann Surg, 1995, 221(6): 788-797; discussion 797-788.
    [65] Bowling TE, Galbraith SM, Hatfield AR, Solano J, Spittle MF. A retrospective comparison of endoscopic stenting alone with stenting and radiotherapy in non-resectable cholangiocarcinoma. Gut, 1996, 39(6): 852-855.
    [66] Sanz-Altamira PM, Ferrante K, Jenkins RL, Lewis WD, Huberman MS, Stuart KE. A phase II trial of 5-fluorouracil, leucovorin, and carboplatin in patients with unresectable biliary tree carcinoma. Cancer, 1998, 82(12): 2321-2325.
    [67] Ramage JK, Donaghy A, Farrant JM, Iorns R, Williams R. Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastroenterology, 1995, 108(3): 865-869.
    [68] Nichols JC, Gores GJ, LaRusso NF, Wiesner RH, Nagorney DM, Ritts RE, Jr. Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis. Mayo Clin Proc, 1993, 68(9): 874-879.
    [69] Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci, 1995, 20(3): 117-122.
    [70] Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79(1): 143-180.
    [71] Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol, 1997, 9(2): 180-186.
    [72] Chambard JC, Lefloch R, Pouyssegur J, Lenormand P. ERK implication in cell cycle regulation. Biochim Biophys Acta, 2007, 1773(8): 1299-1310.
    [73] Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. Embo J, 1996, 15(11): 2760-2770.
    [74] Minden A, Lin A, Claret FX, Abo A, Karin M. Selective activation of theJNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell, 1995, 81(7): 1147-1157.
    [75] Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ. Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci U S A, 1997, 94(14): 7337-7342.
    [76] Minden A, Lin A, Smeal T, Derijard B, Cobb M, Davis R, Karin M. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol, 1994, 14(10): 6683-6688.
    [77] Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science, 1993, 259(5102): 1760-1763.
    [78] Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol, 1996, 16(3): 1247-1255.
    [79] Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell, 1995, 80(2): 187-197.
    [80] Park J, Tadlock L, Gores GJ, Patel T. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology, 1999, 30(5): 1128-1133.
    [81] Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, Hauss J, Wittekind C. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut, 2003, 52(5): 706-712.
    [82] Yoon JH, Gwak GY, Lee HS, Bronk SF, Werneburg NW, Gores GJ. Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells. J Hepatol, 2004, 41(5): 808-814.
    [83] Park J, Gores GJ, Patel T. Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated activation of p44/p42 mitogen-activated protein kinase. Hepatology, 1999, 29(4): 1037-1043.
    [84] Tadlock L, Patel T. Involvement of p38 mitogen-activated protein kinase signaling in transformed growth of a cholangiocarcinoma cell line. Hepatology, 2001, 33(1): 43-51.
    [85] Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology, 2002, 122(4): 985-993.
    [86] Yamagiwa Y, Marienfeld C, Tadlock L, Patel T. Translational regulation by p38 mitogen-activated protein kinase signaling during human cholangiocarcinoma growth. Hepatology, 2003, 38(1): 158-166.
    [87] Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med, 1998, 4(7): 844-847.
    [88] Gillespie JW, Best CJ, Bichsel VE, Cole KA, Greenhut SF, Hewitt SM, Ahram M, Gathright YB, Merino MJ, Strausberg RL, Epstein JI, Hamilton SR, Gannot G, Baibakova GV, Calvert VS, Flaig MJ, Chuaqui RF, Herring JC, Pfeifer J, Petricoin EF, Linehan WM, Duray PH, Bova GS, Emmert-Buck MR. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol, 2002, 160(2): 449-457.
    [89] Perlmutter MA, Best CJ, Gillespie JW, Gathright Y, Gonzalez S, Velasco A, Linehan WM, Emmert-Buck MR, Chuaqui RF. Comparison of snap freezing versus ethanol fixation for gene expression profiling of tissue specimens. J Mol Diagn, 2004, 6(4): 371-377.
    [90] Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, Pieri F, Fraternali-Orcioni G, Pileri SA. The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol, 1998, 51(7): 506-511.
    [91] Di Modugno F, DeMonte L, Balsamo M, Bronzi G, Nicotra MR, Alessio M, Jager E, Condeelis JS, Santoni A, Natali PG, Nistico P. Molecular cloning of hMena (ENAH) and its splice variant hMena+11a: epidermal growth factor increases their expression and stimulates hMena+11a phosphorylation in breast cancer cell lines. Cancer Res, 2007, 67(6): 2657-2665.
    [92] Huang WC, Hsu RM, Chi LM, Leu YL, Chang YS, Yu JS. Selective downregulation of EGF receptor and downstream MAPK pathway in human cancer cell lines by active components partially purified from the seeds of Livistona chinensis R. Brown. Cancer Lett, 2007, 248(1): 137-146.
    [93] Trojan L, Thomas D, Knoll T, Grobholz R, Alken P, Michel MS. Expression of pro-angiogenic growth factors VEGF, EGF and bFGF and their topographical relation to neovascularisation in prostate cancer. Urol Res, 2004, 32(2): 97-103.
    [94] Meng S, Chen Z, Munoz-Antonia T, Wu J. Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J, 2005, 391(Pt 1): 143-151.
    [95] Festuccia C, Angelucci A, Gravina GL, Biordi L, Millimaggi D, Muzi P, Vicentini C, Bologna M. Epidermal growth factor modulates prostate cancer cell invasiveness regulating urokinase-type plasminogen activator activity. EGF-receptor inhibition may prevent tumor cell dissemination.Thromb Haemost, 2005, 93(5): 964-975.
    [96] Hayashi Y, Widjono YW, Ohta K, Hanioka K, Obayashi C, Itoh K, Imai Y, Itoh H. Expression of EGF, EGF-receptor, p53, v-erb B and ras p21 in colorectal neoplasms by immunostaining paraffin-embedded tissues. Pathol Int, 1994, 44(2): 124-130.
    [97] Marti U, Ruchti C, Kampf J, Thomas GA, Williams ED, Peter HJ, Gerber H, Burgi U. Nuclear localization of epidermal growth factor and epidermal growth factor receptors in human thyroid tissues. Thyroid, 2001, 11(2): 137-145.
    [98] Westermark K, Lundqvist M, Wallin G, Dahlman T, Hacker GW, Heldin NE, Grimelius L. EGF-receptors in human normal and pathological thyroid tissue. Histopathology, 1996, 28(3): 221-227.
    [99] Ness GO, Haugen DR, Varhaug JE, Akslen LA, Lillehaug JR. Cytoplasmic localization of EGF receptor in papillary thyroid carcinomas: association with the 150-kDa receptor form. Int J Cancer, 1996, 65(2): 161-167.
    [100] van der Laan BF, Freeman JL, Asa SL. Expression of growth factors and growth factor receptors in normal and tumorous human thyroid tissues. Thyroid, 1995, 5(1): 67-73.
    [101] Saga K, Jimbow K. Immunohistochemical localization of activated EGF receptor in human eccrine and apocrine sweat glands. J Histochem Cytochem, 2001, 49(5): 597-602.
    [102]周岗李海红,姜笃银,白晓东,雷永红,孙同柱付陈.胎儿皮肤EGF、EGFR基因表达特征及与汗腺形成的关系研究.创伤外科杂志, 2006, 2006年第8卷第1期: 4.
    [103] Chen J, Chen JK, Neilson EG, Harris RC. Role of EGF receptor activation in angiotensin II-induced renal epithelial cell hypertrophy. J Am Soc Nephrol, 2006, 17(6): 1615-1623.
    [104] Reich H, Tritchler D, Herzenberg AM, Kassiri Z, Zhou X, Gao W, Scholey JW. Albumin activates ERK via EGF receptor in human renal epithelial cells. J Am Soc Nephrol, 2005, 16(5): 1266-1278.
    [105] Biesterfeld S, Schuh S, Muys L, Rath W, Mittermayer C, Schroder W. Absence of epidermal growth factor receptor expression in squamous cell carcinoma of the uterine cervix is an indicator of limited tumor disease. Oncol Rep, 1999, 6(1): 205-209.
    [106] Lee MY, Chou CY, Tang MJ, Shen MR. Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res, 2008, 14(15): 4743-4750.
    [107] Niu H, Ye BH, Dalla-Favera R. Antigen receptor signaling induces MAPkinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev, 1998, 12(13): 1953-1961.
    [108] Shi CS, Kehrl JH. Activation of stress-activated protein kinase/c-Jun N-terminal kinase, but not NF-kappaB, by the tumor necrosis factor (TNF) receptor 1 through a TNF receptor-associated factor 2- and germinal center kinase related-dependent pathway. J Biol Chem, 1997, 272(51): 32102-32107.
    [109] Inselman A, Handel MA. Mitogen-activated protein kinase dynamics during the meiotic G2/MI transition of mouse spermatocytes. Biol Reprod, 2004, 71(2): 570-578.
    [110] Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci, 2004, 117(Pt 16): 3539-3545.
    [111] Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer, 2008, 8: 48.
    [112] Tischoff I, Tannapfel A. [Hepatocellular carcinoma and cholangiocarcinoma-different prognosis, pathogenesis and therapy]. Zentralbl Chir, 2007, 132(4): 300-305.
    [113] Patel T, Singh P. Cholangiocarcinoma: emerging approaches to a challenging cancer. Curr Opin Gastroenterol, 2007, 23(3): 317-323.
    [114] Lee WS, Lee KW, Heo JS, Kim SJ, Choi SH, Kim YI, Joh JW. Comparison of combined hepatocellular and cholangiocarcinoma with hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Surg Today, 2006, 36(10): 892-897.
    [115] Fava G, Marzioni M, Benedetti A, Glaser S, DeMorrow S, Francis H, Alpini G. Molecular pathology of biliary tract cancers. Cancer Lett, 2007, 250(2): 155-167.
    [116] Lau SK, Prakash S, Geller SA, Alsabeh R. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Hum Pathol, 2002, 33(12): 1175-1181.
    [117] Durnez A, Verslype C, Nevens F, Fevery J, Aerts R, Pirenne J, Lesaffre E, Libbrecht L, Desmet V, Roskams T. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology, 2006, 49(2): 138-151.
    [118] Van Eyken P, Sciot R, Paterson A, Callea F, Kew MC, Desmet VJ. Cytokeratin expression in hepatocellular carcinoma: an immunohistochemical study. Hum Pathol, 1988, 19(5): 562-568.
    [119] Wu PC, Fang JW, Lau VK, Lai CL, Lo CK, Lau JY. Classification of hepatocellular carcinoma according to hepatocellular and biliarydifferentiation markers. Clinical and biological implications. Am J Pathol, 1996, 149(4): 1167-1175.
    [120] Nagorney DM, Donohue JH, Farnell MB, Schleck CD, Ilstrup DM. Outcomes after curative resections of cholangiocarcinoma. Arch Surg, 1993, 128(8): 871-877; discussion 877-879.
    [121] Klempnauer J, Ridder GJ, von Wasielewski R, Werner M, Weimann A, Pichlmayr R. Resectional surgery of hilar cholangiocarcinoma: a multivariate analysis of prognostic factors. J Clin Oncol, 1997, 15(3): 947-954.
    [122] Ebata T, Nagino M, Kamiya J, Uesaka K, Nagasaka T, Nimura Y. Hepatectomy with portal vein resection for hilar cholangiocarcinoma: audit of 52 consecutive cases. Ann Surg, 2003, 238(5): 720-727.
    [123] Shirabe K, Shimada M, Tsujita E, Aishima S, Maehara S, Tanaka S, Takenaka K, Maehara Y. Prognostic factors in node-negative intrahepatic cholangiocarcinoma with special reference to angiogenesis. Am J Surg, 2004, 187(4): 538-542.
    [124]黄海,刘胜利.胆管癌预后因素分析.江苏大学学报(医学版), 2007,第5期(第17卷).
    [125]何平王韩陈石.影响胆管癌患者生存预后因素的研究.消化外科, 2002年第1卷第2期115—117, 2(1): 3.
    [126]易滨张姜张俞程吴张.手术方式与肝门部胆管癌预后的关系分析.中华外科杂志, 2005, 13(43): 4.
    [127] Batevik R, Grong K, Segadal L, Stangeland L. The female gender has a positive effect on survival independent of background life expectancy following surgical resection of primary non-small cell lung cancer: a study of absolute and relative survival over 15 years. Lung Cancer, 2005, 47(2): 173-181.
    [128] Chatkin JM, Abreu CM, Fritscher CC, Wagner MB, Pinto JA. Is there a gender difference in non-small cell lung cancer survival? Gend Med, 2004, 1(1): 41-47.
    [129] Alexiou C, Onyeaka CV, Beggs D, Akar R, Beggs L, Salama FD, Duffy JP, Morgan WE. Do women live longer following lung resection for carcinoma? Eur J Cardiothorac Surg, 2002, 21(2): 319-325.
    [130] Agrawal S, Kuvshinoff BW, Khoury T, Yu J, Javle MM, LeVea C, Groth J, Coignet LJ, Gibbs JF. CD24 expression is an independent prognostic marker in cholangiocarcinoma. J Gastrointest Surg, 2007, 11(4): 445-451.
    [131] Qu Y, Adler V, Izotova L, Pestka S, Bowne W, Michl J, Boutjdir M, Friedman FK, Pincus MR. The dual-specificity kinases, TOPK and DYRK1A, are critical for oocyte maturation induced by wild-type--but not by oncogenic--ras-p21 protein. Front Biosci, 2007, 12: 5089-5097.
    [132]彭志明王韩段陈.肝外胆管癌细胞系的建立.中华实验外科杂志, 1997, 2(14): 2.
    [133] Shimizu Y, Demetris AJ, Gollin SM, Storto PD, Bedford HM, Altarac S, Iwatsuki S, Herberman RB, Whiteside TL. Two new human cholangiocarcinoma cell lines and their cytogenetics and responses to growth factors, hormones, cytokines or immunologic effector cells. Int J Cancer, 1992, 52(2): 252-260.
    [134] Sirisinha S, Tengchaisri T, Boonpucknavig S, Prempracha N, Ratanarapee S, Pausawasdi A. Establishment and characterization of a cholangiocarcinoma cell line from a Thai patient with intrahepatic bile duct cancer. Asian Pac J Allergy Immunol, 1991, 9(2): 153-157.
    [135] Hidalgo M, Amador ML, Jimeno A, Mezzadra H, Patel P, Chan A, Nielsen ME, Maitra A, Altiok S. Assessment of gefitinib- and CI-1040-mediated changes in epidermal growth factor receptor signaling in HuCCT-1 human cholangiocarcinoma by serial fine needle aspiration. Mol Cancer Ther, 2006, 5(7): 1895-1903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700