用户名: 密码: 验证码:
页岩气储层岩石数字岩心建模及导电性数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
页岩气是一种潜力巨大的非常规油气资源,其勘探开发为解决能源供应不足提供了一个重要途径。电法测井是页岩气勘探和评价的主要手段之一,而岩石的导电性质是电法测井的基础。由于页岩气储层低孔低渗,各向异性突出,结构组分复杂,常规岩石物理实验遇到了困难,而基于数字岩心的数值模拟是一种研究页岩气储层岩石物理性质的新手段。由于页岩气储层岩心的电阻率实验难度很大,目前难以获得准确的实验数据,本文依据电测井资料,利用数字岩心模型对页岩气储层岩石电学特性的规律进行探索。
     本文建立了页岩气储层的不同参数的数字岩心模型并对其导电性进行了数值模拟。采用改进后的MCMC法,利用页岩气储层岩石的二维切片图像,选取适当的组分,分别重构出各组分的初始三维数字岩心模型,再利用嵌套组合法将各个组分的初始模型组建成最终的页岩气储层三维数字岩心,并利用有限元法对具有不同参数的页岩气储层三维数字岩心有效电阻率的进行了计算。
     利用本文提出的重构算法建立的三维数字岩心尺度合理,包含较为完善的矿物组分及结构信息,为微观尺度上页岩气储层电性数值模拟的开展奠定了基础。
     从导电性数值模拟结果可知,页岩气储层水平方向和竖直方向的导电特性差异巨大,具有很强的各向异性特征。不同地层水矿化度下页岩气储层数字岩心模型的地层因素不同,且地层因素与孔隙度在双对数坐标系下并非呈直线的对应关系。通过对地层因素和孔隙度的近似拟合,可知页岩气储层的a值很大,m值很小,与常规砂岩储层差异巨大,这样的结果与页岩气储层中层状分布的粘土矿物以及黄铁矿的附加导电性有关。
     通过对微观组分对页岩气储层导电性影响的研究可知,地层的导电性对粘土矿物的性质最为敏感,随粘土矿物阳离子交换能力和粘土含量的增加而降低;地层电阻率随黄铁矿含量的增加而降低;假设固体有机质充填骨架的前提下,储层模型的导电性质对固体有机质不敏感而对孔隙含气和含水更为敏感,由此推断固体有机质和气体通过对孔隙的充填影响页岩气储层的导电性。
As a huge potential unconventional energy resource, shale gas has been a solution ofthe shortage of energy supply. Resistivity well logging is one of the primary way of shalegas exploration and evaluation, while the conductive properties of the rock is thefoundation of resistivity well logging. Because shale reservoirs have the proerties of lowporosity and permeability, anisotropy and complicated structure and components, theconventional petrophysics experiments are difficult to be done. Numerical simulationbased on digital cores could be the new way to study shale reservoir petrophysicalproperties. Due to the difficulty of shale resistivity experiments, in this study thenumerical simulation study results were compared to resistivity well logging data.
     The digital core models of shale gas reservoirs were built and the conductivity of themodels were calculated by numerical method in this thesis. After selecting the appropriatecomponents, by using the improved MCMC method, the initial3D digital core models ofall components were reconstructed through a2D X-Ray energy spectrum slice image of ashale rock, and then initial3D digital cores of different components were combined intothe final model by using the nested combination method which was presented in this thesis.And the effect conductivity of the models were calculated by using FEM method.
     The final3D digital core model of shale reservoir rock had a reasonable scale andcomplete component information and it could be the foundation for the micro-scalenumerical simulation of shale reservoir rock restistivity property.
     By calculating the effective resistivity of the3D digital core model of shale reservoirrock, it was revealed that the conductivity properties of horizontal and vertical directionsin shale reservoirs had huge differences, and there were also some differences between thehorizontal directions. So the shale reservoir had highly anisotropic conductivitycharacteristics. Under conditions of different formation water salinity, the digital coremodel of shale reservoir rock had different formation factors, and the formation factorsand porosity didn’t show a liner relationship in the double logarithmic coordinates. SoArchie formula wasn’t appropriate in shale reservoirs. Through the approximate fit offormation factors and porosities, we can see that in shale reservoirs, the “a” was with greatvalue,“m” was with very small value, and they had huge difference with them inconventional reservoirs. Such results were related with the additional conductivity ofpyrite and layered clay mineral in shale reservoirs.
     By numerical simulation on models of different micro-component volume levels andconductivity characteristics, the results showed that the formation resistivity decreaseswith the increase of clay mineral content and the cation exchange capacity (CEC) of clay.The formation resistivity also decreases with the increase of pyrite content. The resultsshowed the formation resistivity was not sensitive to the solid organic matters but to thegas in the pores with the assumption that the solid organic matters are in the matrix but notin the pore space. So it can be deduced the solid organic matters and gas are both filled inthe pores and cause the resistivity of the shale reservoir rising.
引文
[1] Al-Gharbi Mohammed Saif. Dynamic pore-Scale modelling of two-phase flow [D]:[Ph. DThesis]. London: Imperial College London,2004.
    [2] Adler P. M., Jacquin C. G., Quiblier J. A.. Flow in simulated porous media [J]. InternationalJournal of Multiphase Flow.1990,16(4):691-712.
    [3] Arns C. H. The influence of morphology on physical properties of reservoir rocks:[Ph. DThesis]. Sydney: The University of New South Wales,2002.
    [4] Arns C. H. A Comparison of pore size distributions derived by NMR and X-ray-CT techniques[J]. Physica A: Statistical Mechanics and its Applications.2004,339(1-2):159-165.
    [5] Arns C. H., Bauget F., Ghous A., et al. Digital core laboratory: petrophysical analysis from3Dimaging of reservoir core fragments [J]. Petrophysics.2004a,46(4):260-277.
    [6] Arns C. H., Knackstedt M. A., Pinczewski W. V., et al. Virtual permeametry onmicrotomographic images [J]. Journal of Petroleum Science and Engineering.2004b,45(1-2):41-46.
    [7] Arns C. H., Bauget F., Limaye A., et al. Pore scale characterisation of carbonates using X-Raymicrotomography [A]. Houston, Texas: SPE Annual Technical Conference and Exhibition [C],2004c.
    [8] Arns C. H., Senden T. J., Sok R. M., et al. Digital core laboratory: analysis of reservoir corefragments from3D images [A]: SPWLA45th Annual Logging Symposium [C],2004d.
    [9] Arns C. H., Bauget F., Limaye A., et al. Pore scale characterization of carbonates using X-Raymicrotomography [J]. SPE Journal.2005,10(4):475-484.
    [10] Arns Ji-Youn, Arns C. H., Adrian P. S., et al. Relative permeability from tomographic images;effect of correlated heterogeneity [J]. Journal of Petroleum Science and Engineering.2003,39(3-4):247-259.
    [11] Arns Ji-Youn, Robins Vanessa, Sheppard A. P., et al. Effect of network topology on relativepermeability [J]. Transport in Porous Media.2004,55(1):21-46.
    [12] Arns C.H., Knackstedt M.A., Pinczewski W. V. et al.. Virtual permeametry on microtomographicimages [J]. Journal of Petroleum Science and Engineering,2004a,45:41-46.
    [13] Bakke S., ren P. E.3-D Pore-scale modelling of sandstones and flow simulations in the porenetworks [J]. SPE Journal.1997,2(2):136-149.
    [14] Blunt M. J., Jackson M. D., Piri M., et al. Detailed physics, predictive capabilities and upscalingfor pore-scale models of multiphase flow [J]. Advances in Water Resources.2004, V8-12(25):1069-1089.
    [15] Bowker K. A.. Barnett shale gas production, Fort Worth Basin: issues and discussion [J]. AAPGBulletin,2007,91(4):523-533.
    [16] Brown W. F.. Solid mixture permittivities [J]. Journal of Chemical Physics,1955,23:1514-1517.
    [17] Bustin R. M., Bustin A. M. M., Cui X., et al. Impact of shale properties on pore structure andstorage chatacteristics [J]. SPE119892,2008.
    [18] Coenen J., Tchouparova E., Jing X.. Measurement parameters and resolution aspects of microX-ray tomography for advanced core analysis [A]. Proceedings of International Symposium ofthe Society of Core Analysts [C],2004, AbuDhabi, UAE.
    [19] Curtis J. B.. Fractured shale-gas systems [J]. AAPG,2002,86(11):1921-1938.
    [20] Curtis M. E., Ambrose R. J., Sondergeld C. H., et al. Structural characterization of gas shales onthe micro-and nano-scales [J]. SPE137693,2010.
    [21] Dunsmuir J.H., Ferguson S.R., D'Amico K.L. et al. X-ray micro-tomography: a new tool for thecharacterization of porous media [A]. Paper SPE22860, Proceedings of66th Annual TechnicalConference and Exhibition of the Society of Petroleum Engineers [C],1991,Dallas, TX.
    [22] Elliott J. C., Dover S. D.. X-ray micro-tomography [J]. Journal of Microscopy,1982,126:211-213.
    [23] Fatt I. The network model of porous media III: Dynamic properties of networks with tube radiusdistribution [J]. Trans. AIME.1956, V207:164-181.
    [24] Fertl W. H., Chilingar G. V.. Total organic carbon content determined from well logs [J].SPE15812,1988.
    [25] Garboczi, E. J.. Finite element and finite difference programs for computing the linear electricand elastic properties of digital images of random materials[R]. NIST Interagency ReportNISTIR6269, Building and Fire Research Laboratory, National Institute of Standards andTechnology,1998.
    [26] Ghous A., Knackstedt M. A., Arns C. H., et al.3D imaging of reservoir core at multiple scales;correlations to petrophysical properties and pore scale fluid distributions [A]. Kuala Lumpur,Malaysia: International Petroleum Technology Conference [C],2008.
    [27] Hazlett R. D.. Statistical characterization and stochastic modeling of pore networks in relation tofluid flow [J]. Mathematical geology,1997,29(6):801-822.
    [28] Hidajat I., Rastogi A., Singh M.. Transport properties of porous media from thin section [J]. SPEJournal.2002,7(1):40-48.
    [29] Hill D. G., Nelson C. R.. Reservoir properties of the Upper Cretaceous Lewis Shale, a newnatural gas play in the San Juan Basin [J]. AAPG Bulletin,2000,84(8):1240.
    [30] Ioannidis M. A., Chatzis I. A dual-network model of pore structure for Vuggy Carbonates [A].Abu Dhabi: International Symposium of the Society of Core Analysts [C],2000:1-12.
    [31] Jarvie D. M., Hill R. J., Ruble T. E., et al. Unconventional shale gas systems: the MississippianBarnett Shale of north-central Texas as one model for thermogenic shale gas assessment [J].AAPG Bulletin,2007,91(4):475-499.
    [32] Jones A. C., Arns C. H., Hutmacher D. W., et al. The correlation of pore morphology,interconnectivity and physical properties of3D ceramic scaffolds with bone ingrowth [J].Biomaterials,2009,30(7):1440-1451.
    [33] Joshi M.. A class three-dimensional modeling technique for studying porous media [D]:[Ph. DThesis]. Kansas: University of Kansas,1974.
    [34] Keehm Y.. Computational rock physics: transport properties in porous media and applications[D]:[Ph. D Thesis]. Stanford: Stanford University,2003.
    [35] Knackstedt M. A., Arns C. H., Pinczewskiz W. V., et al. Computation of linear elastic propertiesfrom microtomographic images: methodology and agreement between theory and experiment [J].Geophysics,2002,67(5):1396-1405.
    [36] Knackstedt M. A., Arns C. H., Limaye A., et al. Digital core laboratory: properties of reservoircore derived from3D images [A]. Kuala Lumpur, Malaysia: SPE Asia Pacific Conference onIntegrated Modelling for Asset Management [C],2004.
    [37] Knackstedt M. A., Arns C. H., Sheppard A. P., et al. Archie'S exponents in complex lithologiesderived from3D digital core analysis [A]. Austin, Texas:48th Annual Logging Symposium [C],2007a.
    [38] Knackstedt Mark Alexander, Sok Rob, Adrian Sheppard, et al.3D pore scale characterisation ofcarbonate core: relating pore types and interconnectivity to petrophysical and multiphase flowproperties [A]. Dubai, U.A.E.: International Petroleum Technology Conference [C],2007b.
    [39] Küntz M., Mareschal J. C. and Lavall e P.. Numerical estimation of electrical conductivity insaturated porous media with a2-D Lattice-Gas [J]. Geophysics,2000,65(3):766-772.
    [40] Liu X. F., Sun J. M. and Wang H. T.. Reconstruction of3-D digital cores using a hybrid method[J]. Applied Geophysics,2009,6(2):105-112.
    [41] Lymberopoulos D. P., Payatakes A. C.. Derivation of topological, geometrical, and correlationalproperties of porous media from pore-chart analysis of serial section data [J]. Journal of Colloidand Interface Science,1992,150(1):61-80.
    [42] Makarynska D., Gurevich B., Ciz R., et al. Finite element modelling of the effective elasticproperties of partially saturated rocks [J]. Computers&Geosciences,2008, V34(6):647-657.
    [43] Martini A. M., Walter L. M., Budai J. M., et al. Genetic and temporal relations betweenformation waters and biogenic methane Upper Devonian Antarin shale, Michigan basin, USA [J].Geochinica et Cosmochinica Acta,1998,62(10):1699-1720.
    [44] Olafuyi O. A., Sheppard A. P., Arns C. H., et al. Experimental investigation of drainage capillarypressure computed from digitized tomographic images [A]. Tulsa, Oklahoma, USA: SPE/DOESymposium on Improved Oil Recovery [C],2006.
    [45] Okabe H., Blunt M. J.. Prediction of permeability for porous media reconstructed usingmultiple-point statistics [J]. Physical Review E,2004,70:066135.
    [46] Okabe H., Blunt M.J.. Pore space reconstruction using multiple-point statistics [J]. Journal ofPetroleum Science and Engineering,2005,46:121-137.
    [47] ren P. E., Bakke S.. Process based reconstruction of sandstones and prediction of transportproperties [J]. Transport in Porous Media,2002,46(2-3):311-343.
    [48] ren P. E., Bakke S.. Reconstruction of Berea sandstone and pore—scale modeling of wettabilityeffects [J]. Journal of Petmleum Science and Enginering,2003,39(2):177-199.
    [49] Quiblier J. A.. A new three-dimensional modeling technique for studying porous media [J].Journal of Colloid and Interface Science,1984,98(1):84-102.
    [50] Robert M. S., Trond V. and Abid G., et al., Pore scale characterization of carbonates at multiplescales: integration of Micro CT, BSEM and FIBSEM [J]. SCA2009-18.
    [51] Rogner H. H.. An assessment of world hydrocarbon resources [R]. Annual Review of EnergyEnvironment,1997,22:217-262.
    [52] Rosenberg E., Lynch J., Guéroult P.. High resolution3D reconstructions of rocks and composites[J]. Oil&Gas Science and Technology,1999,54(4):497-511.
    [53] Sakellariou A., Arns C. H., Sheppard A. P., et al. Developing a virtual materials laboratory [J].Materials Today,2007,10(12):44-51.
    [54] Sisk C., Diaz E., Walls J., et al.3D visualization and classification of pore structure and porefilling in gas shales [A]. Paper SPE134582-MS parented at SPE Annual Technical Conferenceand Exhibition [C], September19-222010, Florence, Italy.
    [55] Suman R. J., Knight R. J.. Effect of pore structure and wettability on the electrical resistivity ofpartially saturated rock—a network study [J]. Geophysics,1997,62(4):1151-1162.
    [56] Tomutsa L., Radmilovic V.. Focused ion beam assisted three-dimensional rock imaging atsubmicron-scale [A]. Proceedings of International Symposium of the Society of Core Analysts[C],2003, Pau, France.
    [57] Tomutsa L., Silin D.. Nanoscale pore imaging and pore scale fluid flow modeling in chalk [R].Lawrence Berkeley National Laboratory: Paper LBNL-56266,2004.
    [58] Tomutsa L., Silin D., Radmilovic V.. Analysis of chalk petrophysical properties by means ofsubmicron-scale pore imaging and modeling [J]. SPE Reservoir Evaluation&Engineering,2007,10:285-293.
    [59] Torquato S.. Random heterogeneous media: microstructure and improved bounds on effectiveproperties [J]. Applied Mechanics Review,1991,44:37-76.
    [60] Vogel H. J., Roth K.. Quantitative morphology and network representation of soil pore structure[J]. Advances in Water Resources,2001,24(3-4):233-242.
    [61] Walls J. D. and Sinclair S. W.. Eagle Ford Shale characterization by digital rock physics (DRP)[R]. SPWLA Short Course “Lab Measurements of Shale Gas Cores”, Colorado Springs, CO,2011.
    [62] Wang Y., Sharma M. M.. A network model for the resistivity behavior of partially saturated rocks[A]. San Antonio, Texas:29th SPWLA Ann. Logg. Symp [C],1988.
    [63] Warlick D.. Gas shale and CBM development in North America [J]. Oil and Gas Finacial Journal,2006,3(11):1-5.
    [64] Wu K., Nunan N., Crawford J. W., et al. An efficient markov chain model for the simulation ofheterogeneous soil structure [J]. Soil Science Society of American,2004,68:346-351.
    [65] Wu K., Van Dijke I. J. M., Couples G. D., et al.3D stochastic modelling of heterogeneousporouos media-applications to reservoir rocks [J]. Transport in Porous Media,2006,65(3):443-467.
    [66] Youssef S., Rosenberg E., Gland N. F., et al. High resolution CT and pore-network models toassess petrophysical properties of homogeneous and heterogeneous carbonates [A]. Abu Dhabi,UAE: SPE/EAGE Reservoir Characterization and Simulation Conference [C],2007.
    [67] Youssef S., Bauer D., Han M., et al. Pore-network models combined to high resolution micro-CTto assess petrophysical properties of homogenous and heterogenous rocks [A]. Kuala Lumpur,Malaysia: International Petroleum Technology Conference [C],2008.
    [68]蔡进功.泥质沉积物和泥岩中有机黏土复合体[M].北京:科学出版社,2004.
    [69]蔡进功,包于进,杨守业,等.泥质沉积物和泥岩中有机质的赋存形式与富集机制[J].中国科学D辑,2007,37(2):234-243.
    [70]陈家军,杨建,田亮.基于孔隙网络模型的非水溶相液体运移实验研究进展[J].地球科学进展,2007(10):997-1004.
    [71]陈民锋,姜汉桥.基于孔隙网络模型的微观水驱油驱替特征变化规律研究[J].石油天然气学报(江汉石油学院学报),2006(05):91-95.
    [72]陈尚斌,朱炎铭,王红岩,等.四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J].石油学报,2011,32(5):775-782.
    [73]程克明,王世谦,董大忠,等.上扬子区下寒武统筇竹寺组页岩气成藏条件[J].天然气工业,2009,29(5):40-44.
    [74]程相志,周凤鸣,彭银辉,等.W-S模型在泥质砂岩储层含油性评价中的应用[J].石油与天然气地质,2000,21(4):313-317.
    [75]褚人杰.确定碎屑岩储集层参数m和a值的方法[J].测井技术,1992,16(5):313-322.
    [76]董丙响,程远方,刘钰川,等.页岩气储层岩石物理性质[J].西安石油大学学报(自然科学版).2013,28(1):25-36.
    [77]高楚桥,章成广,毛志强.润湿性对岩石电性的影响[J].地球物理学进展,1998,1(13):231-236.
    [78]高慧梅,姜汉桥,陈民锋,等.储集层微观参数对油水相对渗透率影响的微观模拟研究[J].石油勘探与开发,2006(06):734-737.
    [79]高慧梅,姜汉桥,陈民锋.储层孔隙结构对油水两相相对渗透率影响微观模拟研究[J].西安石油大学学报(自然科学版),2007a(02):56-59.
    [80]高慧梅,姜汉桥,陈民锋.多孔介质孔隙网络模型的应用现状[J].大庆石油地质与开发,2007b(02):74-79.
    [81]黄兆辉,邹长春,聂昕,等.页岩气储层参数的测井评价方法[A].中国地球物理学会.中国地球物理2012[C]:409-410.
    [82]侯颉,邹长春,杨玉卿.页岩气储层矿物组分测井分析方法[J].工程地球物理学报,2012,9(5):607~613.
    [83]姜黎明.基于数字岩心的天然气储层岩石声电特性数值模拟研究[D]:[博士学位论文].山东,东营:中国石油大学(华东),2012.
    [84]蒋宇冰.岩石激发极化现象的实验研究及理论分析[D]:[硕士学位论文].山东,东营:中国石油大学(华东),2007.
    [85]蒋裕强,董大忠,漆麟,等.页岩气储层的基本特征及其评价[J].天然气工业,2010,30(10):7-12.
    [86]雷宇,王凤琴,刘洪军,等.鄂尔多斯盆地中生界延长组长7泥页岩岩电关系[J].西安石油大学学报(自然科学版),2012,27(2):27-35.
    [87]李仁民,刘松玉,方磊,等.采用随机生长四参数生成法构造黏土微观结构[J].浙江大学学报(工学版),2010,44(10):1897-1901.
    [88]李新景,吕宗刚,董大忠,等.北美页岩气资源形成的地质条件[J].天然气工业,2009,29(5):27-32.
    [89]李延钧,张烈辉,冯媛媛,等.页岩有机碳含量测井评价方法及其应用[J].天然气地球科学,2013,24(1):169-175.
    [90]李玉彬,李向良,高岩.用微焦点X-CT成象研究岩石微观特征[J].油气采收率技术,2000,7(4):50-54.
    [91]刘成林.非常规油气资源[M].北京:地质出版社,2011.
    [92]刘成林,李景明,李剑,等.中国天然气资源研究[J].西南石油学院学报,2004,26(1):9-12.
    [93]刘双莲,陆黄生.页岩气测井评价技术特点及评价方法探讨[J].测井技术,2011,35(2):112-116.
    [94]刘学锋.基于基于数字岩心的岩石声电特性微观数值模拟研究[D]:[博士学位论文].山东,东营:中国石油大学(华东),2010.
    [95]刘学锋,孙建孟,王海涛,等.顺序指示模拟重建三维数字岩心的准确性评价[J].石油学报,2009,30(3):391-395.
    [96]鲁国明.基于孔隙网络模型的砂砾岩微观水驱油驱替特征[J].特种油气藏,2010(01):64-67.
    [97]毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发,2000(2):87-90.
    [98]聂海宽,张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J].石油实验地质,2011,33(3):219-225.
    [99]聂海宽,张金川.页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例[J].地质学报,2012,86(2):349-361.
    [100]聂昕,邹长春,杨玉卿,等.井技术在页岩气储层力学性质评价中的应用[J].工程地球物理学报,2012,9(4):433-439.
    [101]蒲泊伶,包书景,王毅,等.页岩气成藏条件分析-以美国页岩气盆地为例[J].石油地质与工程,2008,22(3):33-39.
    [102]齐宝权,杨小兵,张树东,等.应用测井资料评价四川盆地南部页岩气储层[J].天然气工业,2011,31(4):44-47.
    [103]孙建孟,姜黎明,刘学锋,等.数字岩心技术测井应用与展望[J].测井技术,2012,36(1):1-7.
    [104]孙建孟,王克文,朱家俊.济阳坳陷低电阻储层电性微观影响因素研究[J].石油学报,2006,27(5):61-65.
    [105]谭茂金,张松扬.页岩气储层地球物理测井研究进展[J].地球物理学进展,2010,25(6):2024-2030.
    [106]陶果,岳文正,谢然红,等.岩石物理的理论模拟和数值实验新方法[J].地球物理学进展,2005,20(1):4-11.
    [107]陶军,姚军,李爱芬,等.利用孔隙级网络模型研究油水两相流[J].油气地质与采收率,2007(02):74-77.
    [108]田菲.马尔可夫链蒙特卡罗算法[D]:[硕士学位论文].湖北,武汉:湖北大学,2007.
    [109]王波.基于数字岩心的页岩气微观渗流研究[D]:[硕士学位论文].北京:中国石油大学(北京),2013.
    [110]王波,宁正福.多孔介质模型的三维重构方法研究[J].油气藏评价与开发,2012a,2(2):45-49.
    [111]王波,宁正福,姬江.多孔介质模型的三维重构方法[J].西安石油大学学报(自然科学版),2012b,27(4):54-57.
    [112]王晨晨,姚军,杨永飞,等.基于格子玻尔兹曼方法的碳酸盐岩数字岩心渗流特征分析[J].中国石油大学学报(自然科学版),2012,36(6):94-98.
    [113]王晨晨,姚军,杨永飞,等.碳酸盐岩双孔隙数字岩心结构特征分析[J].中国石油大学学报(自然科学版),2013,37(2):71-74.
    [114]王家禄,高建,刘莉.应用CT技术研究岩石孔隙变化特征[J].石油学报,2009,30(6):887-897.
    [115]王金勋,吴晓东,潘新伟.孔隙网络模型法计算水相滞留对气体渗流的影响[J].石油勘探与开发,2003(05):113-115.
    [116]王克文.基于逾渗网络模型和升尺度方法的储层岩石电性研究[D]:[博士学位论文].山东东营:中国石油大学(华东),2007.
    [117]王克文,关继腾,范业活,等.孔隙网络模型在渗流力学研究中的应用[J].力学进展,2005(03):353-360.
    [118]王克文,孙建孟,耿生成.不同矿化度下泥质对岩石电性影响的逾渗网络研究[J].地球物理学报,2006,49(6):1867-1872.
    [119]王克文,孙建孟,关继腾,等.储层岩石电性特征的逾渗网络模型研究[J].石油学报,2007,28(1):101-106.
    [120]王兰生,邹春艳,郑平,等.四川盆地下古生界存在页岩气的地球化学依据[J].天然气工业,2009,29(5):59-62.
    [121]王世谦,陈更生,董大忠,等.四川盆地下古生界页岩气藏形成条件与勘探前景[J].天然气工业,2009,29(5):51-58.
    [122]吴庆红,李晓波,刘洪林,等.页岩气测井解释和岩心测试技术[J].石油学报,2011,32(3):484-488.
    [123]夏乐天,朱元甡.马尔可夫链预测方法的统计试验研究[J].水利学报,2007, S1:372-378.
    [124]肖昆,邹长春,黄兆辉,等.页岩气储层测井响应特征及识别方法研究.科技导报,2012,30(18):73-79.
    [125]熊伟,郭为,刘洪林,等.页岩的储层特征以及等温吸附特征[J].新能源,2012,32(1):113-116.
    [126]闫存章,黄玉珍,葛春梅,等.页岩气是潜力巨大的非常规天然气资源[J].天然气工业,2009,9(5):1-6.
    [127]杨峰,宁正福,胡昌蓬,等.页岩气储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.
    [128]姚军,赵秀才,衣艳静,等.数字岩心技术现状及展望[J].油气地质与采收率,2005,12(6):52-54.
    [129]姚军,赵秀才,衣艳静,等.储层岩石微观结构性质的分析方法[J].中国石油大学学报(自然科学版),2007,31(1):80-86.
    [130]尹小涛,王水林,党发宁,等.CT实验条件下砂岩破裂分形特性研究[J].岩石力学与工程学报,2008,27(S1):2721-2726.
    [131]于宝.混合泥质砂岩双水电阻率模型实验研究[D]:[硕士学位论文].黑龙江,大庆:大庆石油学院,2006.
    [132]岳文正,陶果,朱克勤.饱和多相流体岩石电性的格子气模拟[J].地球物理学报,2004,47(5):905-910.
    [133]章成广,毛志强.油藏条件下孔隙岩样毛管和电学性质研究[J].地球物理学进展,1995,10(01):76-89.
    [134]张建华,刘振华,仵杰.电法测井原理与应用[M].陕西,西安:西北大学出版社,2002.
    [135]张金川,边瑞康,荆铁亚,等.页岩气理论研究的基础意义[J].地质通报,2011,30(2~3):318-323.
    [136]张金川,徐波,聂海宽,等.中国天然气勘探的两个重要领域[J].天然气工业,2007,27(11):1-6.
    [137]张顺康,陈月明,侯健,等.岩石孔隙中微观流动规律的CT层析图像三维可视化研究[J].石油天然气学报,2006,28(4):107-110.
    [138]张挺,李道伦,卢德唐,等.基于多点地质统计法的多孔介质重构研究[J].中国科学G辑,2009,39(9):1348-1360.
    [139]赵秀才.数字岩心及孔隙网络模型重构方法研究[D]:[博士学位论文].山东,东营:中国石油大学(华东),2009.
    [140]赵秀才,姚军,陶军,等.基于模拟退火算法的数字岩心建模方法[J].高校应用数学学报(A辑),2007,22(2):127-133.
    [141]赵永峰,陈世江.基于VC++岩石CT图像的分形研究[J].采矿技术,2008,8(6):70-71.
    [142]朱益华,陶果.顺序指示模拟技术及其在3D数字岩心建模中的应用[J].测井技术,2007a,31(2):112-115.
    [143]朱益华,陶果,方伟.图像处理技术在数字岩心建模中的应用[J].石油天然气学报,2007b,29(5):54-57.
    [144]朱益华,陶果,方伟,等.3D多孔介质渗透率的格子Boltzmann模拟[J].测井技术,2008(01):25-28.
    [145]邹长春,谭茂金,尉中良,等(2010).地球物理测井[M].北京:地质出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700