用户名: 密码: 验证码:
石墨烯负载金属氧化物作为高性能锂离子电池负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯具有超大比表面积、高导电性、优异的机械强度和化学稳定性,是很好的锂离子电池活性物质载体材料。过渡金属氧化物与硫化物由于其大比容量,已被广泛研究用于锂离子电池负极材料。这些大比容量的活性材料在充放电过程中通常会出现严重的体积形变,产生大的形变应力,从而导致电极材料的破碎,最终造成电池容量的不断衰减。本论文工作,我们采用多孔结构的高表面积热剥离石墨烯纳米片(GNS)为载体,分别负载了无定型介孔Fe203纳米膜、介孔NiO纳米片、MnO和SnS2纳米粒子等。通过将这些活性材料与GNS的复合,有效控制了充放电过程中的体积形变,显著提高了活性材料的循环性能。
     通过乙醇挥发法,在石墨烯表面负载硝酸铁纳米膜,进一步在低温下进行原位热分解,制备了介孔氧化铁/GNS复合材料。电化学测试结果表明,介孔氧化铁/GNS复合材料具有优异的循环性能,在1000mA/g电流密度下、400次循环后,容量未出现衰减。此外,电池在100mA/g电流密度下的比容量高达1000mAh/g,并表现出良好的倍率性能。由于氧化铁与GNS表面的含氧基团可以形成牢固的共价键,氧化铁纳米膜紧紧的锚定在GNS的表面。因此,GNS可以限制介孔氧化铁的体积变化。在GNS限制效应的作用下,介孔氧化铁的体积膨胀与收缩将沿着垂直于GNS的方向进行。因此,体积变化过程中的应力将通过增加或减小氧化铁纳米膜的厚度得到释放。此外,由于介孔结构的高孔隙率可以为体积膨胀提供缓冲的空间,因此它也可以一定程度释放应力。以上两个特点有效防止了电极的粉碎,从而显著提高了电池的循环性能。该复合结构中,GNS在很好的调控形变应力的同时,还可以提供有效的导电网络。此外,介孔结构将利于电解液的传输。该研究工作为大容量活性材料体积形变应力的释放提供了一条全新的思路。在以上工作基础之上,通过水热法,在GNS表面生长Ni(OH)2纳米片,进一步低温热处理,制备了介孔NiO纳米片/GNS复合材料。该复合材料在100mA/g电流密度下的比容量约为700mAh/g,同时也表现出良好的循环稳定性与倍率性能。
     本论文发展了利用一步法获得金属氧化物和石墨烯复合结构的方法。利用乙醇挥发法,制备了硝酸锰/GNS复合材料,进一步的高温热处理过程中,硝酸锰将首先转化成Mn304,随着温度的进一步升高,Mn304与GNS发生碳热还原反应,并被还原成MnO,所得的MnO纳米粒子与GNS牢固结合。电化学测试结果表明,MnO/GNS复合材料在100mA/g电流密度下的比容量约700mAh/g,同时具有优异的循环性能与良好的倍率性能。电化学反应过程中,MnO纳米粒子与GNS之间的牢固结合,可以有效防止MnO的脱落与团聚。此外,相比于其他金属氧化物,MnO电极材料表现出更低的充电电压,这将利于提高电池的开路电压与能量密度。
     为获得性能优良的低电位SnS2负极材料,我们通过溶剂热法制备了不同SnS2负载量的SnS2纳米粒子/GNS复合材料。SEM和TEM观测显示,SnS2纳米粒子均匀的分布在GNS表面。电化学测试结果表明,GNS与SnS2的质量比为1:4的样品具有最好的性能,50次循环后其可逆容量为351mAh/g,明显高于纯SnS2样品(23mAh/g)。充放电过程中,GNS可以为均匀分散的SnS2纳米粒子提供很好的导电基体,同时可以有效调控SnS2纳米粒子体积形变。
Graphene has been extensively studied as carbon matrix for secondary battery electrode materials due to its large specific surface area, excellent electrical conductivity, good mechanical strength and chemical stability. Transition metal oxides and sulphides have been extensively studied for lithium-ion battery anode materials due to their high capacities. During the charge-discharge process, the pulverization problem induced by large volume changes leads to loss of electrical contact and subsequent rapid capacity fading. In the present study, we use the thermal exfoliation graphene nanosheets (GNS) with large specific surface area and porous structure as matrix for amorphous mesoporous Fe2O3nanofilm, mesoporous NiO nanosheet, MnO nanoparticle, and SnS2nanoparticle. By the combination of these lithium-ion battery active materials and GNS, the volume change during charging and discharging was controlled effectively, thus improving significantly the cycling performance of the active materials.
     By the ethanol evaporation method, iron nitrate nanofilm was coated on GNS surface. Mesoporous iron oxide/GNS composite was prepared via in situ thermal decomposition at low temperature. The electrochemical test results show that the mesoporous iron oxide/GNS composite possesses excellent cycling performance, and there is no capacity fading after400cycles at1000mA/g. Furthermore, the battery has a large capacity of1000mAh/g at100mA/g, and shows a good rate capability. The existence of covalent chemical bonding formed through oxygen-containing defect sites on GNS surface provides an opportunity to tightly anchor iron oxide on GNS, allowing GNS to constrain the volume change of the MIO nanofilm. Under the constraint effect of the GNS, the volume expansion/contraction of the MIO progresses along the vertical direction of the GNS. Therefore, the lithiation-induced strain is easily relaxed by increasing/decreasing the nanofilm thickness. Furthermore, the mesoporous structure of MIO also partially accommodates the lithiation-induced strain because its high porosity provides free space. These two features can effectively prevent electrode pulverization upon lithium-ion insertion/extraction, thus enhancing the cycling performance. The present results provide a new insight into the accommodation of the large lithiation-induced strain for volume changes. Furthermore, the mesoporous NiO nanoplate/GNS composite was prepared through the growth of Ni(OH)2nanoplate on GNS surface by using the hydrothermal method and subsequently heat treatment at a low temperature. The composite showed a high capacity of about700mAh/g at100mA/g, and good cycle stability and rate capability.
     This thesis developed one-step method to obtain the composite structure of the metal oxide and graphene. Ethanol evaporation method was used to prepare manganese nitrate/GNS composites. By further decomposition of manganese nitrate and carbothermal reduction under high temperature, MnO nanoparticles were obtained and bound strongly to GNS. The electrochemical test results showed that the MnO/GNS composite possessed a capacity of about700mAh/g at100mA/g, excellent cyclic stability, and good rate capability. During the charge-discharge process, graphene nanosheets served as a three-dimensional conductive network for MnO nanoparticles. Furthermore, the detachment and agglomeration of MnO nanoparticles were effectively prevented due to the tight combination of MnO nanoparticles and graphene. In addition, compared with other metal oxides, MnO electrode showed a lower charging voltage, which is favorable for increasing the operation voltage and energy density when the electrode is used as an anode in full batteries.
     GNS-SnS2nanocomposite was prepared via a solvothermal method with different loading of SnS2. SEM and TEM results indicated that SnS2particles distributed homogeneously on GNS. The electrochemical properties of the samples as active anode materials for lithium-ion batteries were examined by constant current charge-discharge cycling. The composite with weight ratio between GNS and SnS2of1:4had the highest rate capability among all the samples and its reversible capacity after50cycles was351mAh/g, which was much higher than that of the pure SnS2(23mAh/g). With GNS as conductive matrix, homogeneous distribution of SnS2nanoparticles can be ensured and volume changes of the nanoparticles during the charge and discharge processes can be accomodated effectively, which results in good electrochemical performance of the composites.
引文
[1]M. Perrin, Y.M. Saint-Drenan, F. Mattera, P. Malbranche, J. Power Sources.144,402 (2005).
    [2]A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Renewable Sustainable
    Energy Rev.13,318 (2009).
    [3]H. Ye, J. Huang, J. J. Xu, A. Khalfan, S. G. Greenbaum, Electrochem. Soc.154, A1048 (2007).
    [4]C. Sirisopanaporn, A Fernicola and B. J. Scrosati, Power Sources.186,490 (2007).
    [5]A. Guerfi, M. Dontigny, Y. Kobayashi, A. Vijh, K. Zaghib, Solid State Electr. 13, 1003 (2009).
    [6]J. Cho, M. Liu, Electrochim. Acta. 42,1481 (1997).
    [7]C.J. Rydh, B.A. Sanden, Energ. Convers. Manage.46,1957 (2005).
    [8]J. B. Goodenough, W. Schalkwijk, B. Scrosati, Kluwer Academic/Plenum Publishers: New York, Chapter 4 (2002).
    [9]A. K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem.Soc. 144,1188 (1997).
    [10]G. G.Amatucci, N. Pereira, T. Zheng, J. M. Tarascon, Electrochem.Soc. 148, A171 (2001).
    [11]W. Choi, A. Manthiram, J. Electrochem. Soc.154, A792 (2007).
    [12]J. B. Goodenough, H. Y. P. Hong, J. A. Kafalas, Mater. Res. Bull.11,203. (1976).
    [13]A. Manthiram, J. B. Goodenough, J. Solid State Chem. 71,349 (1987).
    [14]J. B. Goodenough, Electrochem. Soc. Proc. 1,99 (2000).
    [15]Y. Kim, J. B. Goodenough, J. Phys. Chem. C.112,15060 (2008).
    [16]B. Scrosati, J. Garche, J. Power Sources. 195,2419 (2010)
    [17]K.M. Abraham, Z. Jiang J. Electrochem. Soc.143, p.1 (1996).
    [18]J. Read J. Electrochem. Soc. 149 p. A1190 (2002).
    [19]N. Satoh, T. Kuboki, N. Takami, T. Ohsaki T. Okuyama, Japanese Patent 3,515,492 (2004).
    [20]J.S. Wilkes, M.J. Zaworotko Chem. Commun. p.965 (1992)
    [21]J. Tellefson, Nature.456, 436 (2008).
    [22]W. Schalkwijk, B. Scrosati, Advances in Lithium-ion Batteries, Kluwer Academic/Plenum, Boston, (2004).
    [23]Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, DOE, July (2007).
    [24]M. Winter, J.O. Besenhard, Electrochim. Acta.45,31(1999).
    [25]G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater.19,2336 (2007).
    [26]J. Hassoun, P. Reale, B. Scrosati, J. Mater. Chem.178,3668 (2007).
    [27]P. Reale, D. Privitera, S. Panero, B. Scrosati, Solid State Ionics 178,1390 (2007).
    [28]A.K. Padhi, K.S. Nanjundaswamy, C. Masquellier, S. Okada, J.B. Goodenough, J. Electrochem. Soc.144,1609 (1997).
    [29]A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 4, 366 (2005).
    [30]P. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Ind. Ed.47,2830 (2008).
    [31]M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chem. Mater.17,5085 (2005).
    [32]B. Kang, G. Ceder, Nature 458,190 (2009).
    [33]N. Recham, M. Armand, L. Laffont, J.-M. Tarascon, J. Power Sources. 180,875 (2008).
    [34]S. Beninati, L. Damen, M. Mastragostino, J. Power Sources.180, 875 (2008).
    [35]Y. L. Ding, C. Y. Wu, H. M. Yu, J. Xie, G S. Cao, T. J. Zhu, X. B. Zhao, Y. W. Zeng, Electrochim. Acta.56,5844 (2011).
    [36]F. Gray, M. Armand, in:T. Osaka, M. Datta, Energy Storage Systems for Electronics, Gordon and Breach Science Pu. p. 351 (2000).
    [37]F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature. 394, 456 (1998).
    [38]Isikawa, J. Power Sources.162,658 (2006).
    [39]A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc.144, 1188(1997)..
    [40]Y. Guo, J. Hu, L. Wan, Adv Mater.20,2878 (2008).
    [41]J. Liu, A. Manthiram, Chem. Mater. 21,1695 (2009).
    [42]Y. Kim, N. Arumugam, J. B. Goodenough, Chem. Mater.20,470 (2008).
    [43]Y. Kim, J. B. Goodenough, Electrochem. Commun.10,497 (2008).
    [44]C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. Huggins, Y. Cui,. Nat. Nanotechnol.3,31 (2008).
    [45]H. Kim, J. Cho, Nano Lett. 8, 3688 (2008).
    [46]R. Fong, U. Sacken, J. R. Dahn, J. Electrochem. Soc.137,2009 (1990).
    [47]R. Yazami, Electrochim. Acta. 45,87 (1999).
    [48]L. Vogdanis, B. Martens, H. Uchtmann, F. Hensel, W. Heitz, Makromolekul. Chem. 191,465(1990).
    [49]S. E. Cheon, et al., J. Electrochem. Soc.150, A800 (2003).
    [50]J. H. Shin, E. J. Cairns, J. Electrochem. Soc. 155 A368 (2008).
    [51]M. M. Thackeray, P. J. Jahnson, D. L. A. Picciotto, P. G. Bruce, J. B. Goodenough, Mater. Res. Bull.19,435 (1984).
    [52]G. G. Amatucci, N. Pereira, T. Zheng, J. M. Tarascon, J. Electrochem.Soc. 148, A171 (2001).
    [53]W. Choi, A. J. Manthiram, Electrochem. Soc. 154, A792 (2007).
    [54]J. B. Goodenough, H. Y. P. Hong, J. A. Kafalas, Mater. Res. Bull.11,203 (1976).
    [55]A. Manthiram, J. B. Goodenough, J. Solid State Chem.71,349 (1987).
    [56]J. L. Tirado, Mater. Sci. Eng, R 40,103 (2003).
    [57]N. A. Kaskhedikar, J. Maier, Adv. Mater.21,2664 (2009).
    [58]M. S. Whittingham, Chem. Rev.104,4271 (2004).
    [59]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull.15, 783 (1980).
    [60]G. G. Amatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc.143,1114 (1996).
    [61]M. M. Thackeray, Prog. Solid State Chem.25,1 (1997).
    [62]P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed.47,2930 (2008).
    [63]A. B. Tamayo, B. Walker, T.-Q. Nguyen, J. Phys. Chem. C.2,11545 (2008).
    [64]A. B. Tamayo, X.-D. Dang, B. Walker, J. H. Seo, T. Kent, T.-Q. Nguyen, Appl. Phys. Lett.94, 063302 (2009).
    [65]N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Bellette, G. Durocher, Y. Tao, M. Leclerc, J. Am. Chem. Soc.130,732 (2008).
    [66]C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater.11,374 (2001).
    [67]A. Gadisa, M. Svensson, M. R. Andersson, O. Inganasa, Appl. Phys. Lett.84,1609 (2004).
    [68]L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett.88,93511 (2006).
    [69]S. A. Choulis, J. Nelson, Y. Kim, D. Poplavskyy, T. Kreouzis, J. R. Durrant, D. D. C. Bradley, Appl. Phys. Lett.83,3812 (2003).
    [70]T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater. 2005,15,1193.
    [71]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov Science.306 666 (2004).
    [72]C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, A. Govindaraj, J. Mater. Chem.19, 2457 (2009).
    [73]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature.438,197 (2005).
    [74]Y. Zhang, J. W. Tan, H. L. Stormer, P. Kim, Nature 438,201 (2005).
    [75]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 315,1379(2007).
    [76]X. B. Sun, Y. Zhou,W.Wu, Y. Liu, W. Tian, G Yu, W. Qiu, S. Chen, D. J. Zhu, J. Phys. Chem. B 110,7702 (2006).
    [77]N. Kopidakis, W. J. Mitchell, J. van de Lagemaat, D. S. Ginley, G. Rumbles, S. E. Shaheen, Appl. Phys. Lett.89,103524 (2008).
    [78]M. T. Lloyd, A. C. Mayer, S. Subramanian, D. A. Mourey, D. J. Herman, A. Bapat, V. J. E. Anthony, G. G. Malliaras, J. Am. Chem. Soc.129,9144 (2007).
    [79]H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, J. Am. Chem. Soc.132,13978 (2010).
    [80]J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, A. Zettl,
    Nano Lett.8,3582 (2008).
    [81]A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund, Nano Lett.6,2667 (2006).
    [82]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett.97,187401 (2006).
    [83]M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. A. Cancado, A. Jorio, R. Sato, Phys. Chem. Chem. Phys.9,1276 (2007).
    [84]D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett.7,238 (2007).
    [85]K. A. Ritter, J. L. Lyding, Nanotechnology.19,015704 (2008).
    [86]A. N. Sidorov, M. M. Yazdanpanah, R. Jalilian, P. J. Ouseph, R.W. Cohn, G. U. Sumanasekera, Nanotechnology.18,135301 (2007).
    [87]E. Rollings, G.-H. Gweon, S. Y. Zhou, B. S. Mun, J. L. McChesney, B. S. Hussain, A. V. Fedorov, P. N. First, W. A. de Heer, A. Lanzara, J. Phys. Chem. Solids, 67, 2172 (2006).
    [88]J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. M. D. Tascon, Langmuir.24, 10560 (2008).
    [89]A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 8, 2012 (2008).
    [90]G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee, S. T. Lee, Chem. Phys. Lett. 467, 361 (2009).
    [91]Z. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H. Cheng, Carbon. 47, 493 (2009).
    [92]A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, J. Kong, J. Phys. Chem. C.112,17741 (2008).
    [93]C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, N. Alexei, Marchenkov, H. Edward, Conrad, N. Phillip, Walt A. de Heer Science.312 1191 (2003)
    [94]W. Peter, J. I. F. Sutter, A. Eli, Sutter Nature materies.7 406 (2006)
    [95]A. H. Castro Neto, F. Guinea, Phys. Rev. B.75, 045404 (2007).
    [96]J. Yan, W. Y. Ran, M. Y. Chou, Condens. Matter. 0901.3086 (2009).
    [97]W. Kohn, Phys. Rev. Lett.2,393 (1959).
    [98]D. M. Basko, Condens. Matter.0902.4345 (2009).
    [99]A. Das, B. Chakraborty, A. K. Sood, Bull. Mater. Sci.31,579 (2008).
    [100]Z. Ni, Y. Wang, T. Yu, Z. X. Shen, Nano Res.1,273 (2008).
    [101]S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner, Nano Lett.7,3394 (2007).
    [102]Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc.130,5856 (2008).
    [103]G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C.112, 8192(2008).
    [104]K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, J. Mater. Chem.18,1517(2008).
    [105]P. R. Somani, S. P. Somani, M. Umeno, Chem. Phys. Lett. 430, 56 (2006).
    [106]O. E. Andersson, B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y Kaburagi, M. Yoshikawa, S. Bandow, Phys. Rev. B.58,16387 (1998).
    [1]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature.407,496 (2000).
    [2]P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, Nat. Mater.5,567 (2006).
    [3]K. T. Nam, D.-W. Kim, P. J. Yoo, C.-Y. Chiang, N. Meethong, P. T. Hammond, Y.-M. Chiang, A. M. Belcher, Science. 312,885 (2006).
    [4]M. Armand, J.-M. Tarascon, Nature.451,652 (2008).
    [5]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater.20,258 (2008).
    [6]J. Cabana, L. Monconduit, D. Larcher, M. R. Palacin, Adv. Mater.22, E170 (2010).
    [7]B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, J. Am. Chem. Soc.133, 17146(2011).
    [8]Z. Wang, D. Luan, S. Madhavi, C. M. Lia, X. W. Lou, Chem. Commun.47,8061 (2011).
    [9]B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, G. Wang, J. Phys. Chem. C.114, 18753(2010).
    [10]C. Ban, Z. Wu, D. T. Gillaspie, L. Chen, Y. Yan, J. L. Blackburn, A. C. Dillon, Adv. Mater.22, E145 (2010).
    [11]W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo, L. J. Wan, Adv. Funct. Mater.18, 3941 (2008).
    [12]T. Muraliganth, A. V. Murugan, A. Manthiram, Chem. Commun.47,7360 (2009).
    [13]E. Kang, Y. S. Jung, A. S. Cavanagh, G.-H. Kim, S. M. George, A. C. Dillon, J. K. Kim, J. Lee, Adv. Funct. Mater.21,2430 (2011).
    [14]J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater. 22,212(2010).
    [15]W. J. Yu, P. X. Hou, L. L. Zhang, F. Li, C. Liu, H. M. Cheng, Chem. Commun. 46, 8576 (2010).
    [16]Y. Zhao, J. Li, Y. Ding, L. Guan, Chem. Commun.47,7416 (2011).
    [17]Z. Yang, J. Shen, L. A. Archer, J. Mater. Chem.21,11092 (2011).
    [18]H. Wang, L.-F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, H. Dai, J. Am. Chem. Soc.132,13978 (2010).
    [19]H. Wang, Y. Yang, Y. Liang, L.-F. Cui, H. S. Casalongue, Y. Li, G. Hong, Y. Cui, H. Dai, Angew. Chem. Int. Ed.50,7364 (2011).
    [20]S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. Int. Ed. 49,4795 (2010).
    [21]S. Yang, X. Feng, S. Ivanovici, K. Mullen, Angew. Chem. Int. Ed.49,8408 (2010).
    [22]G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu, H.-M. Cheng, Chem. Mater. 22,5306 (2010).
    [23]W. Chen, S. Li, C. Chen, L. Yan, Adv. Mater.23,5679 (2011).
    [24]P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang, H. Wang, Electrochim. Acta. 56, 834 (2010).
    [25]J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X. W. Lou, X. Chen, H. Zhang, H. H. Hng, Q. Yan, Nanoscale.3,1084 (2011).
    [26]L. Ji, Z. Tan, T. R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, Y. Zhang, Phys. Chem. Chem. Phys.13,7170 (2011).
    [27]J.-Z. Wang, C. Zhong, D. Wexler, N. H. Idris, Z.-X. Wang, L.-Q. Chen, H.-K. Liu, Chem.—Eur. J.17,661 (2011).
    [28]M. Zhang, D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, J. Mater. Chem. 20,5538(2010).
    [29]B. Li, H. Cao, J. Shao, M. Qu, Chem. Commun.47,10374 (2011).
    [30]W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan,
    Q. Yan, C. M. Li, T. Yu, Energy Environ. Sci.4,4954 (2011)
    [31]D. Chen, G. Ji, Y. Ma, J. Y. Lee, J. Lu, ACS Appl. Mater. Interfaces 3,3078 (2011).
    [32]X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, ACS nano.5,3333 (2011).
    [33]G. Wang, T. Liu, Y. Luo, Y. Zhao, Z. Ren, J. Bai, H. Wang, J. Alloys Compd. 509, L216 (2011).
    [34]H. Zhou, D. Li, M. Hibino, I. Honma, Angew. Chem. Int. Ed.44,797 (2005).
    [35]I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, N. Nakashima, Adv. Mater.18,69 (2006).
    [36]P. G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed.47,2930 (2008).
    [37]Y. Ren, A. R. Armstrong, F. Jiao, P. G. Bruce, J. Am. Chem. Soc.132,996 (2010).
    [38]Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nanoscale. 2,1294 (2010).
    [39]G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater.22, 4944(2010).
    [40]H. Liu, Z. Bi, X.-G. Sun, R. R. Unocic, M. P. Paranthaman, S. Dai, G. M. Brown, Adv. Mater.23,3450 (2011).
    [41]B. Guo, X. Wang, P. F. Fulvio, M. Chi, S. M. Mahurin, X.-G. Sun, S. Dai, Adv. Mater. 23,4661 (2011).
    [42]S. Yang, X. Feng, K. Mullen, Adv. Mater.23,3575 (2011).
    [43]M. B. Zheng, G. B. Ji, Y. W. Wang, J. Cao, S. Q. Feng, L. Liao, Q. L. Du, L. F. Zhang, Z. X. Ling, J. S. Liu, T. Yu, J. M. Cao, J. Tao, Chem. Commun.33,5033 (2009).
    [44]H. Wang, H. S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc.132,7472 (2010).
    [45]Q. L. Du, M. B. Zheng, L. F. Zhang, Y. W. Wang, J. H. Chen, L. P. Xue, W. J. Dai, G. B. Ji, J. M. Cao, Electrochim. Acta.55,3897 (2010).
    [46]M. B. Zheng, J. Cao, S. T. Liao, J. S. Liu, H. Q. Chen, Y. Zhao, W. J. Dai, G. B. Ji, J. M. Cao, J. Tao, J. Phys. Chem. C.113,3887 (2009).
    [47]M. Muruganandham, R. Amutha, B. Ahmmad, E. Repo, M. Sillanpaa, J. Phys. Chem. C.114,22493 (2010).
    [48]L. Machala, R. Zboril, A. Gedanken, J. Phys. Chem. B. 111,4003 (2007).
    [49]M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, C. Gregor, J. Am. Chem. Soc. 129,10929 (2007).
    [50]D. N. Srivastava, N. Perkas, A. Gedanken, I. Felner, J. Phys. Chem. B.106,1878 (2002).
    [51]J. Pinkas, V. Reichlova, R. Zboril, Z. Moravec, P. Bezdicka,; J. Matejkova, Ultrason. Sonochem.15,257 (2008).
    [52]Q. Qu, S. Yang, X. Feng, Adv. Mater. 23,5574 (2011).
    [53]Y. Senzaki, J. Caruso, M. J. Hampden-Smith, T. T. Kodas, L.-M Wang, J. Am. Ceram. Soc.78,2973 (1995).
    [54]F. Meng, S. A. Morin, S. Jin, J. Am. Chem. Soc.133,840892011).
    [55]M. B. Zheng, Z. X. Ling, S. T. Liao, Z. J. Yang, G. B. Ji, J. M. Cao, J. Tao, Acta Chim. Sinica.67,1069 (2009).
    [56]S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J-M. Tarascon, J. Electrochem. Soc.149, A627 (2002).
    [57]J. Li, H. M. Dahn, L. J. Krause, D.-B. Le, J. R. Dahn, J. Electrochem. Soc. 155, A812 (2008).
    [58]S.-L. Chou, J.-Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.-K. Liu, S.-X. Dou, J. Mater. Chem.20, 2092 (2010).
    [59]Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci.5,5252 (2012).
    [1]M. Armand, J. M. Tarascon, Nature.451,652 (2008).
    [2]B. L. Ellis, K. T. Lee, L. F. Nazar, Chem Mater.22,691 (2010).
    [3]B. Scrosati, J. Garche, J Power Sources.195,2419 (2010).
    [4]W. Y. Li, L. N. Xu, J. Chen, Adv Funct Mater.15,85 (2005).
    [5]P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, M. K. Sunkara Nano Lett.9,612(2009).
    [6]C. Z. Wu, P. Yin, X. Zhu, C. Z. O. Yang, Y. Xie, J Phys Chem B.110, 17806 (2006).
    [7]B. Varghese, M. V. Reddy, Z. Y. Wu, C. S. Lit, H. T. C. Rao, B. V. Chowdari, A. T. S. Wee, C. T. Lim, C. H. Sow, Chem Mater.20,3360 (2008).
    [8]B. A. Boukamp, G. C. Lesh, R. A. Huggins, J Electrochem Soc.128,725 (1981).
    [9]H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, J Am Chem Soc.132, 7472 (2010).
    [10]Q. L. Du, M. B. Zheng, L. F. Zhang, Y. W. Wang, J. H. Chen, L. P. Xue, W. J. Dai, G. B. Ji, J. M. Cao, Electrochim Acta. 55, 3897 (2010).
    [11]X. H. Huang, J. P. Tu, C. Q. Zhang, F. Zhou, Electrochim Acta.16,8981 (2010).
    [12]G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv Mater.19,2336 (2007).
    [13]C. M. Ban, Z. C. Wu, D. T. Gillaspie, L. Chen, Y. F. Yan, J. L. Blackburn, A. C. Dillon, Adv Mater.22, E145 (2010).
    [14]P. Guo, H. H. Song, X. H. Chen, Electrochem Commun.11,1320 (2009).
    [15]M. M. Rahman, S. L. Chou, C. Zhong, J. Z. Wang, D. Wexler, H. K. Liu, Solid State Ionics.180,1646 (2010).
    [16]G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, H. M. Cheng, Chem Mater.22,5306 (2010).
    [1]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature.407 496 (2000).
    [2]E. Kang, Y.S. Jung, A.S. Cavanagh, G.-H. Kim, S. M. George, A.C. Dillon, J.K. Kim, J. Lee, Adv. Funct. Mater.21,2430 (2011).
    [3]J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater.22, 212 (2010).
    [4]Liu Z, Tay SW. Mater Lett.72,74 (2012).
    [5]Zhu Y, Bai YJ, Han FD, Qi YX, Lun N, Yao B, Zhan JX. Mater Lett. 65, 3157 (2011).
    [6]X.Q. Yu, Y. He, J.P. Sun, K. Tang, H. Li, L.Q. Chen, X.J. Huang, Electrochem. Commun.11,791 (2009).
    [7]K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang, L. Chen, J. Power Sources.195,3300 (2010).
    [8]T. Kokubu, Y. Oaki, E. Hosono, H. Zhou, H. Imai, Adv. Funct. Mater.21,3673 (2011).
    [9]Y.L. Ding, C.Y. Wu, H.M. Yu, J. Xie, G.S. Cao, T.J. Zhu, X.B. Zhao, Y.W. Zeng, Electrochim. Acta.56, 5844 (2011).
    [10]B. Sun, Z. Chen, H.-S. Kim, H. Ahn, G. Wang, J. Power Sources.196,3346 (2011).
    [11]Y. Liu, X. Zhao, F. Li, D. Xia, Electrochim. Acta.56,6448 (2011).
    [12]G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Chem. Mater.22,5306 (2010).
    [13]W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H.J. Fan, Q. Yan, C.M. Li, T. Yu, Energy Environ. Sci.4, 4954 (2011).
    [14]K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, L. Chen, ACS Appl. Mater. Interfaces.4 658 (2012).
    [15]Q.L. Du, M.B. Zheng, L.F. Zhang, Y.W. Wang, J.H. Chen, L.P. Xue, W.J. Dai, G.B. Ji, J.M. Cao, Electrochim. Acta.55,3897 (2010).
    [1]H. S. Kim, Y. H. Chung, S. H. Kang, Y. E. Sung, Electrochim Acta.54,3606 (2009).
    [2]J. T. Zai, K. X. Wang, Y. Z. Su, X. F. Qian, J. S. Chen, J Power Sources.196, 3650 (2011).
    [3]C. R. Patra, A. Odani, V. G. Pol, D. Aurbach, A. GedankenA, J Solid State Electrochem.11,186 (2007).
    [4]Z.Y. Wang, G. Chen, D. G. Xia, J Power Sources.184,432 (2008).
    [5]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science.306,666 (2004).
    [6]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature.438,197 (2005).
    [7]J. Yao, X. P. Shen, B. Wang, H. K. Liu, G. X. Wang, Electrochem Commun.11,1849 (2009).
    [8]X. Y. Wang, X. F. Zhou, K. Yao, J. G. Zhang, Z. P. Liu, Carbon.49,133 (2011).
    [9]G. X. Wang, B. Wang, X. L Wang, J. Park, S. X. Dou, H. Ahn, K. Kim, J Mater Chem. 19, 8378 (2009).
    [10]D. F. Qiu, Z. J. Xu, M. B. Zheng, B. Zhao, L. J. Pan, L. Pu, Y. Shi, J Solid State Electrochem.16,1889 (2012).
    [11]Q. L. Du, M. B. Zheng, L. F. Zhang, Y. W. Wang, J. H. Chen, L. P. Xue, W. J. Dai, G. B. Ji, J. M. Cao, Electrochim Acta.55,3897 (2010).
    [12]Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, H. M. Cheng HM, ACS Nano.4,3187 (2010).
    [13]Momma T, Shiraishi N, Yoshizawa A, Osaka T, Gedanken A, Zhu JJ, Sominski L. J. Power Sources,,97,198 (2001).
    [14]T. J. Kim, C. Kim, D. Son, M. Choi, B. Park, J Power Sources.167,529 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700